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ABSTRACT

Long-read next-generation amplicon sequencing
shows promise for studying complete genes or
genomes from complex and diverse populations.
Current long-read sequencing technologies have
challenging error profiles, hindering data process-
ing and incorporation into downstream analyses.
Here we consider the problem of how to reconstruct,
free of sequencing error, the true sequence variants
and their associated frequencies from PacBio reads.
Called ‘amplicon denoising’, this problem has been
extensively studied for short-read sequencing tech-
nologies, but current solutions do not always suc-
cessfully generalize to long reads with high indel er-
ror rates. We introduce two methods: one that runs
nearly instantly and is very accurate for medium
length reads and high template coverage, and an-
other, slower method that is more robust when reads
are very long or coverage is lower. On two Mock
Virus Community datasets with ground truth, each
sequenced on a different PacBio instrument, and on
a number of simulated datasets, we compare our two
approaches to each other and to existing algorithms.
We outperform all tested methods in accuracy, with
competitive run times even for our slower method,
successfully discriminating templates that differ by a
just single nucleotide. Julia implementations of Fast
Amplicon Denoising (FAD) and Robust Amplicon De-
noising (RAD), and a webserver interface, are freely
available.

INTRODUCTION

The Pacific Biosciences platform allows complex popula-
tions of long DNA molecules to be sequenced at reason-
able depth. This has been used to study diverse viral pop-
ulations (1–5), microbial communities (6,7), phage display
libraries (8,9) and more.

PacBio SMRT sequencing generates extremely long reads
(some >80 kb), with very high error rates (∼15%) (10).
However, this length can be traded for accuracy. By ligat-
ing hairpin adapters that circularize linear DNA molecules,
the sequencing polymerase can make multiple noisy passes
around single molecules, and these can be collapsed into
Circular Consensus Sequences (CCS) that have much
higher accuracy (11).

When sequencing amplicons of a fixed length, the num-
ber of passes (i.e. the total raw read length divided by the
amplicon length) is a primary determinant of the accuracy
of a CCS read. The raw read length distribution has a long
right tail, which means that the number of passes around
each molecule, and consequently the CCS error rates, can
vary substantially. Here, we confine our discussion to these
CCS reads.

A critical feature of PacBio sequences is a high ho-
mopolymer indel rate. Laird Smith et al. (3) show that, for
a 2.6 kb amplicon, under their quality filtering conditions,
80% of the errors are indels and 20% are substitution er-
rors, and the indel errors are concentrated in homopolymer
regions, increasing in rate with the length of the homopoly-
mer. While high indel rates can be computationally chal-
lenging to deal with, since sequence alignment can be slow,
they are favorable from a statistical perspective, because the
errors appear in predictable places, making them more cor-
rectable (12).
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Figure 1. Under a simple error model, with constant per-base error prob-
abilities (P), the probability that a sequence will have no errors decreases
exponentially with the sequence length, with the slope of this decrease de-
termined by P.

Amplicon denoising (13–19) refers to a process that takes
a large set of reads, corrupted by sequencing errors, and at-
tempts to distill the noiseless variants and their frequencies.
This has been extensively studied for short-read sequencing
technology, but these approaches do not always generalize
well to longer reads.

It is helpful to distinguish between two sequencing
regimes: short and accurate (SA) and long and inaccu-
rate (LI), and PacBio sequencing datasets can span both
of these. For a given error rate, the probability of an ob-
served read being noise free decreases exponentially with
read length, and the error rate determines how precipitous
this decline is (see Figure 1). For short, accurate reads,
we can expect to have many noiseless representative reads
in our dataset. Indeed, many Illumina amplicon denoising
strategies (13,20) rely on this, and amount to simply iden-
tifying these reads using their relative abundance informa-
tion. Shorter PacBio reads fall into this category as well.
However, as the amplicon length increases, not only are
there more opportunities for error, but the number of passes
around each molecule decreases, increasing the per-base er-
ror rate. There may be variants that simply do not have any
noiseless representatives, forcing us to abandon these ‘read-
selection’ strategies of amplicon denoising in this long, inac-
curate regime. We can only hope to reconstruct the noiseless
reads by identifying a set of noisy reads that originate from
the same variant, and averaging out their noise.

Previous approaches to this have used off-the-shelf clus-
tering tools to render approximate reconstructions of the
underlying population (3,21,22), but can be improved upon
substantially.

Our strategy here embraces this SA/LI distinction, with
one tool (FAD) that operates in the SA regime, and one
(RAD) that operates in the LI regime. Both are imple-
mented entirely in Julia, an emerging language for scientific
computing.

MATERIALS AND METHODS

Overview

We present two methods: the fast amplicon denoiser (FAD)
and the robust amplicon denoiser (RAD). FAD is designed
for cases where an appreciable number of sequences are ex-
pected to be error free, and these can reliably serve as our
inferred templates, avoiding any form of clustering or con-
sensus calls, and exploiting abundance and neighborhood
information to keep or reject templates. This method per-
forms better for shorter amplicons, higher quality sequenc-
ing and better read-per-template coverage.

RAD is more complex, and designed for cases where very
few reads are error free. This can occur in PacBio amplicon
sequences when either amplicons are very long, with fewer
passes per molecule, or for short movie lengths, reducing
raw read lengths, or for older sequencing chemistries. RAD
works in stages. We first employ a kmer-domain clustering
approach, inspired by a non-parametric Bayesian procedure
(23,24) to partition reads into clusters, followed by a recur-
sive cluster refinement procedure (also in the kmer domain).

Kmer representation. For both RAD and FAD, we heavily
exploit a kmer-based distance calculation. We first convert
all sequences to their kmer counts. For all analyses here k
= 6, representing each sequence as a vector of integers of
length 4k. We then seek to approximate the pairwise edit
distance between two sequences using these kmer frequency
vectors.

While there exist sophisticated distance metrics based
on kmer similarity (25), we opt for a simple approach
that scales linearly with substitutions for low-divergences.
Consider two identical sequences, with identical associated
kmer vectors. When a random substitution is introduced,
there will typically be ∼2k differences between the kmer vec-
tors. So, our kmer approximation of edit distance is simply:

D(A, B) = 1
2k

4k∑

i

(Ai − Bi )2

See Figure 2 for a demonstration of how this behaves, com-
pared to edit distance. We can optionally scale this distance
by dividing by the sequence length, to yield a per-base per-
centage difference.

Fast amplicon denoising (FAD)

FAD is the simpler of the two algorithms, intended to work
in low-noise scenarios. FAD proceeds by de-replicating
reads, and sorting them by abundance, ignoring all reads
that do not occur at least twice. FAD iterates through each
read from largest to smallest, maintaining a set of accepted
templates. When the current read is distant from all reads
already included in the set by ≥1 bp (as calculated by our
corrected kmer distance), then it is added to the set. If it is
within 1 bp, then the abundances of the higher frequency
template are considered when deciding to keep or discard
the lower frequency template.

We first, however, correct the abundances by the ex-
pected proportion of error-free sequences. We convert the
QV scores into error probabilities, and obtain an expected
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Figure 2. This distance approximates edit distance as mutations are intro-
duced, starting from the 2599 bp NL4-3 HIV-1 env sequence. When only
substitutions are introduced, edit distance is extremely well approximated.
When indels are introduced, our kmer distance underestimates edit dis-
tance. This is desirable behavior when the sequencing error process is dom-
inated by indels, because they will be downweighted in our distance func-
tion.

number of errors per sequence. We then evaluate the prob-
ability of each sequence having zero errors, and take the
mean of this. For our 2.6 kb MVC dataset, this comes to
38%.

We take the most abundant template ≤1 bp from the cur-
rent template, and we calculate the P-value for the size of
a spurious offspring that differs at one base, under a Pois-
son error assumption, Bonferroni corrected for the average
number of sites in the template. If this is ≤α (default: α =
0.01), then we reject the null hypothesis that we would ob-
tain an offspring template this large by chance, and we in-
clude this template in the set.

Finally, we take all reads, and assign each read to an ac-
cepted template based on the minimum distance under the
kmer approximation. These are used to compute the final
frequencies for all reads.

Robust amplicon denoising (RAD)

RAD is intended for high-noise scenarios, where we do not
expect sufficient numbers of reads to be noise free for the
strategy employed by FAD to succeed. We nevertheless aim
to keep the computation time as low as possible, exploiting
kmer distances extensively.

Dirichlet process means clustering. We wish to cluster our
kmer frequency vectors. We need the algorithm to scale well
with the input dataset size and the number of clusters, and
we do not know how many clusters we have in advance (rul-
ing out traditional options like k-means). But given that
PacBio error rates per read are highly predictable from the
quality scores, we can tell when two reads are sufficiently
far that they cannot have originated from the same tem-
plate. This distance threshold can be exploited by clustering
approaches to automatically determine the number of clus-
ters, and the ‘Dirichlet process means’ (DP-means) cluster-
ing approach (23) is ideal here.

It is frequently observed that k-means clustering can be
derived as an expectation maximization algorithm for a fi-
nite mixture of isotropic Gaussians, where the variance of
the Gaussians is sent to zero, forcing hard-assignments of el-

ements to clusters (26). Similarly, DP-means can be derived
as the limit of a sampling procedure for a non-parametric
Bayesian Dirichlet process infinite Gaussian mixture model,
where the variance is similarly driven to zero. This yields a
surprisingly simple deterministic algorithm that uses a ‘ra-
dius’ parameter λ to control the number of clusters (23).

Briefly, the DP-means algorithm works by maintaining
an array of centroids, and passing through the elements one
at a time, computing the distance to all cluster centroids: if
the distance between the element and any centroid is <λ,
then assign the element to the cluster with the nearest cen-
troid, and if not, seed a new cluster, using that element as the
cluster centroid. After each pass through the elements, re-
compute the cluster centroids by averaging all the elements
that are assigned to them. This iterates until convergence.
See (23) for a technical description.

We use this algorithm to cluster our kmer vectors, using
the scaled kmer distance, and a radius λ = 0.01, which is
the error rate we typically use to retain .fastq reads in our
data filtering steps. The ability to set the cluster radius to
match the sequencing error rate is what makes DP-means
an attractive clustering algorithm for this purpose.

The number of clusters is typically much lower than the
number of reads. To reduce computation, after the first DP-
means clustering pass yields a set of centroids, we cluster
these centroids to construct a set of ‘meta-centroids’, and we
compute, just once, the pairwise distance between all reads
and all meta-centroids. Upon each subsequent iteration, we
compute the pairwise distance between all current centroids
and all meta-centroids, and we use the triangle inequality
to avoid computing the read-to-centroid distances when we
can deduce that they are >λ, reducing computation by a
factor that depends on the template diversity.

Fine cluster splitting. Clustering reads using a radius equal
to the error filtering cutoff can fail to distinguish variants
that are very closely related. We therefore introduce a sec-
ond layer of cluster refinement that directly seeks to split
clusters that are different at any bases. Again, for compu-
tational efficiency, we remain in the kmer frequency vector
domain to avoid sequence alignment.

Consider a cluster of a few closely related variants, each
with multiple reads corrupted by sequencing noise (which
has errors scattered at random bases). We attempt to sup-
press the noise by identifying the kmers that differ the most,
and cluster just on these, with a very low clustering radius.
To avoid splitting on homopolyer errors, we choose M (de-
fault M = 20) kmers with the largest variance, and search
this set of high-variance kmers for kmer pairs that differ by a
single homopolymer length edit, discarding these. We take
the highest variance remaining N (default N = 6) kmers,
and run DP-means clustering on this very low dimensional
representation of the reads, with Euclidean distance, and a
default radius of 1; i.e. if any reads differ at more than one
of these kmers, we separate them. Please note that 1 bp dif-
ference should cause at least 6 kmers to differ, so this can
split reads that differ by a single base.

This clustering step produces a ‘candidate’ cluster split,
which we then decide to accept or reject, using the abun-
dance information of these sub-clusters. If the original clus-
ter gets fragmented into too many small clusters that fall
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below a size threshold, we reject the split. For this, we use
the same Bonferroni corrected Poisson P-value approach as
used in FAD. After splitting, we recurse, and continue split-
ting each sub-cluster until there is no evidence of hetero-
geneity.

Kmer-seeded alignment consensus. Unlike FAD, the clus-
ters identified by RAD are not expected to have noise-free
sequences associated with them. We thus rely on a consen-
sus approach to infer these templates. We start by finding
the sequence whose kmer vector is nearest to the cluster av-
erage kmer vector, which we take as a draft consensus. We
then align all reads, pairwise, to this draft consensus. Us-
ing these pairwise alignment coordinates, we run a sliding
window over the draft consensus, and when any blocks of
this draft reference do not match the most common sub-
sequence of the aligned reads, we replace that block of the
draft reference with this modal value. We exploit kmer seed-
ing (k = 30), and this approximate pairwise alignment algo-
rithm scales linearly with sequence length.

If the amplicon spans a coding sequence, then Rifraf.jl
(12) can be used to infer a frame-shift corrected template se-
quence, as long as a reference sequence with a trusted read-
ing frame is available.

A metric for comparing inferred to true templates

A population can be represented by a set of sequences,
and their associated frequencies. We seek a metric that can
be used to evaluate the reconstruction accuracy of an al-
gorithm. A useful distance metric for evaluating recon-
struction accuracy must be zero when the reconstructed se-
quences and frequencies are identical to the ground truth,
should grow as the divergence between the two sets grows
and should have a meaningful numerical interpretation.
One attractive option here is the Earth Mover’s Distance,
operating on the matrix of pairwise distances and frequen-
cies. We have previously advocated this (21), but here we ex-
pand on this a little. We now refer to this as ‘Sequence Mu-
tation Distance’ (SMD) and release SequenceMutationDis-
tance.jl, which calculates this metric. A related approach,
UniFrac (27,28), is commonly used to compare microbial
communities, but UniFrac computes distances over a phy-
logeny, whereas SMD operates directly on the pairwise dis-
tance matrix, without phylogenetic assumptions.

Consider the ground truth sequences A, the inferred tem-
plates B, and a distance matrix D wherein Di, j is the distance
between Ai and Bj (here we use edit distance). Construct a
flow matrix F, which is of the same shape as D, but Fi, j rep-
resents how much of Ai maps onto Bj.

SMD can be defined as:

SMD = min
F

(
∑

i

∑

j

Fi, j × Di, j )

with respect to constraints:
∑

j

Fi, j = freq(Ai ) and
∑

i

Fi, j = freq(Bj )

where freq(X) is the frequency associated with variant X.
This SMD score corresponds to the weighted average num-
ber of nucleotide changes per sequence required to convert

Figure 3. Sequence Mutation Distance (SMD) accurately approximates
the average error rate, when computed between a set of templates, and a set
of sequences that are derived from the templates by some noisy process.

A to B, finding the (possibly non-unique) minimum by op-
timizing over F. In our implementation, we use the Julia
package JuMP.jl (29) to perform this optimization.

This can be interpreted as the total error in the recon-
struction per sequence. Indeed, if we compute the SMD be-
tween noisy sequences and the templates from which they
were derived, we obtain a very precise estimate of the em-
pirical error rate, biased only very slightly toward underes-
timation (see Figure 3).

The SMD score is optimized while respecting frequency
constraints on both ground truth sequences A, and the in-
ferred templates B. We can additionally derive two scores
of interest: By relaxing the constraint on frequencies of A,
we get SMDFP, which increases with the extent and fre-
quency of false positives (i.e. reconstructed sequences that
are absent from the ground truth). Similarly, by eliminat-
ing the constraint on B, we get SMDFN, a measure of false-
negatives, which increases when our reconstructions are
missing sequences that are present in the ground truth.

Comparison methods

(i) VSEARCH: VSEARCH’s cluster-fast is run with an
identity threshold of 0.99 (equivalent to our radius
threshold of 0.01), and the consensus output is eval-
uated.

(ii) USEARCH: USEARCH’s cluster-fast is run with
identical parameters to VSEARCH, with an id thresh-
old of 0.99. The ‘consensus output’ is used as inferred
templates.

(iii) Deep USEARCH: Similar parameters as the USE-
ARCH method, but with the ‘max-accepts’ parame-
ter set to 300 instead of the default, and the ‘max-
rejects’ parameter set to 600 instead of the default, to
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cause USEARCH to search more aggressively for bet-
ter matches during clustering.

(iv) UNOISE: Fastx uniques is run with a size output
to dereplicate reads, followed by UNOISE3, using the
‘amplicon output’ (without chimera filtering) as in-
ferred templates. Please note that the UNOISE doc-
umentation asserts that UNOISE is not designed for
PacBio data.

All methods were run single-threaded on an AMD Ryzen
7 1700 processor @ 3.0 Ghz.

RESULTS

We assembled five datasets to compare methods; two Mock
Viral Communities (MVCs) each sequenced on a different
PacBio instrument, and three datasets simulated using the
PacBio sequence simulator developed in (21):

(i) 2.6 kb MVC: We used a number of closely related HIV
envelope clones available in our laboratory, each com-
prising an env sequence embedded in a pLenti-III-HA
plasmid (Addgene). To construct a ground truth clus-
tering for these reads, we attempted to amplify 96 sin-
gle clones in single wells, using paired forward and re-
verse primers that uniquely identify the well, sequenced
on the RS-II using P6/C4 chemistry, with 6-h movie
lengths. CCS reads were inferred with PacBio’s CCS al-
gorithm (v3.0), and filtered at the 1% accuracy thresh-
old (3). From this, we recovered clonal sequences from
80 wells. The consensus of reads from each well is taken
as the ground truth sequence. When inferring tem-
plates using RAD, FAD and other methods, we first
trim off the barcodes from the .fastq reads to ensure the
true clustering is obscured. The full dataset had ∼18k
reads, but we also subsampled datasets of 10k, 5k and
2k to investigate lower template coverage (which could
occur when multiplexing samples).

(ii) 5 kb MVC: This used the same strategy and popu-
lation as the 2.6 kb MVC, but we amplified a longer
(4.8 kb) stretch of the pLenti+env construct. This was
sequenced on a PacBio Sequel, using the 3.0 chemistry,
with 10-h movie lengths. All preprocessing steps were
identical to the 2.6 kb dataset. We recovered clonal se-
quences from 83 wells. The full dataset had ∼86.6k
reads, but we also subsampled datasets of 40k, 20k, 10k
and 5k to investigate lower template coverage (which
could occur when multiplexing samples). Since this
dataset was so large, to avoid interminable processing
we imposed a 5-h compute time limit for all methods.

(iii) EnvSim low diversity: This is a simulated dataset.
We obtained templates and frequencies from a run of
the Full Length Envelope Analysis pipeline (FLEA)
(21) on donor P018 (3). The ‘low diversity’ dataset
(17782 reads) is simulated from the P018 ‘V06’ time
point, ∼6 months post-infection, representing a chal-
lenging dataset of low diversity. We include an unfil-
tered dataset, as well as one filtered at a 1% expected
error threshold.

(iv) EnvSim high diversity: As for the previous simula-
tion, but using the 33 months post-infection templates

and frequencies, which had higher diversity, simulating
11798 reads. The error profiles for the P018 datasets
were generated to match P5/C3 chemistry (the previ-
ous generation), and have a higher mean error rate than
our P6/C4 and 3.0 datasets, which impacts the relative
performance of the methods. We again include an un-
filtered dataset, as well as one filtered at a 1% expected
error threshold.

(v) 9 kbSim: We simulated low-diversity evolution of 9 kb
templates, starting from the full-length nl43 plasmid,
with random mutations (including indels), generating
32 closely related templates. Frequencies were simu-
lated from a uniform distribution, resulting in 5916
reads. We matched the error rates in the simulated
reads to those from a 9 kb plasmid sequence (data
not shown), and these are substantially lower than
the ∼2.6 kb amplicons, primarily due to the amplicon
length. Here we include unfiltered, 1% filtered and 2%
filtered datasets.

Template sequence phylogenies and summary statistics
for these datasets are depicted in Supplementary Figure SI1.

Performance

See Figure 4 for accuracy (SMD scores) and timing results.
These SMD scores are not normalized by sequence length
and can be interpreted as the per-sequence error rate. So, an
SMD of 1.0 means that there is, on average, 1 bp incorrect
in each sequence. False positive and false negative SMDs
are shown in Supplementary Figure SI2, and all numerical
results are shown in Supplementary Tables SI1 and SI2.

USEARCH (with default parameters) and UNOISE are
fast, but inaccurate. In many cases, USEARCH has an accu-
racy similarly to the SMD of uncorrected reads. UNOISE,
as expected, is not well suited to long-read datasets with
higher error rates. Deep USEARCH, modified for a more
extensive search during clustering, is slower and more ac-
curate than USEARCH. The timing difference can be dra-
matic: from a minute for USEARCH, to nearly an hour for
deep USEARCH, when inferring templates from the unfil-
tered 9 kb dataset. VSEARCH has intermediate accuracy,
with SMDs as low as 0.51 for the P018 low-diversity dataset.
VSEARCH runs in times comparable to deep USEARCH
for 2.6 kb datasets, but becomes very slow for 9 kb datasets,
taking 10 h on the slowest dataset without a timeout condi-
tion.

FAD (like UNOISE) does not complete on the 9 kb
datasets, because it requires an appreciable proportion of
error-free reads. FAD is extremely fast on all 2.6 kb datasets,
never taking longer than 6 s, and completed 5 kb MVC (the
largest dataset) in under a minute. FAD is the most accu-
rate method on the full 2.6 kb MVC dataset, with an SMD
of 0.068 (which translates to a per-base error rate of 1 in
∼38 800). As expected, FAD’s performance degrades as the
template coverage decreases, and as the error rates increase
(the simulated 2.6 kb datasets had higher error rates than
2.6 kb MVC). Strikingly, FAD was also the most accurate
method on the 5 kb dataset, across all subsampling sizes be-
sides the 5000 read version, where RAD became more ac-
curate. On the full dataset, FAD obtained an SMD error
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Figure 4. (A) Error rates (measured by Sequence Mutation Distance) of re-
constructions against ground truth for a number of datasets. 2.6 kb MVC
is a real sequencing dataset, using primer barcodes to obtain the ground
truth clustering. P018 (∼2.6 kb) comprises reads simulated in silico from a
set of templates obtained from an HIV+ donor, from a low diversity, early
time point, and a later, more diverse, time point. The 9 kb dataset comprises
a set of closely related templates, with long reads simulated from these, us-
ing a higher error rate profile. The dashed horizontal gray line shows the
threshold for an expected error rate (by SMD) of 1 bp per sequence. Also
shown below are run times of the various methods. (B) From the 2.6 kb
MVC full dataset, we show a phylogeny depicting the ground truth tem-
plates, as well as the inferred templates for FAD and RAD.

rate of 0.0077 errors per read, which is entirely driven by
fractional differences in the variant frequencies compared
to the ground truth. This shows that FAD can take dramatic
advantage of the accuracy improvements facilitated by the
Sequel 3.0 chemistry.

RAD is always faster than deep USEARCH, and faster
than VSEARCH on all-but-two datasets, and has especially
well controlled run times for the 9 kb datasets (where it takes
10 min compared to e.g. VSEARCH’s 10 h). RAD, however,

stands out as being consistently accurate across all datasets,
with results close to FAD in the low-noise 2.6 kb MVC and
5 kb MVC datasets, but with clearly superior results across
the noisier regimes. The closest competitor not proposed
here, VSEARCH, has substantially higher SMD scores than
RAD on all datasets, with accuracies ranging from 2.4× to
69.7× worse (on the 5 kb MVC 5000 and 5 kb MVC 50 000
datasets, respectively), and is substantially slower.

While many template sequences in 2.6 kb MVC were
closely related to each other, there were two template se-
quences that differed by just a single base. Despite this,
RAD and FAD were able to reconstruct both variants.

The 5 kb MVC dataset demonstrates that the Sequel
3.0 chemistry is a dramatic improvement over the RS-II
P6/C4. Despite reads being nearly twice as long as the
2.6 kb MVC dataset, the per-read accuracy was sufficient
for an approach such as FAD to be competitive, suggest-
ing many reads with zero errors. 4.8 kb templates are more
accurately reconstructed with RAD and FAD from 10 000
Sequel reads than 2.6 kb templates are from 18 000 RS-II
reads. This is despite these SMD scores representing per-
sequence error rates, and so longer reads should be more
error prone given the same per-base error rate. Interestingly,
the other methods appear less able to take advantage of the
improvements in the sequencing chemistry. The constant re-
gion in this dataset also afforded an examination of the ho-
mopolymer error rates, both in the original CCS reads, as
well as post-denoising (see Supplementary Figure SI3).

Please note that none of these results should be taken as a
criticism of USEARCH or VSEARCH’s clustering, as these
algorithms were not designed with this problem in mind,
nor of UNOISE (which explicitly states that it is not for
PacBio reads).

Single-chain Fv

To investigate amplicon denoising behavior under more
extreme diversity than is possible with mock community
datasets, we applied our approach to a single-chain Frag-
ment variable (scFv) phage display library (30). Given the
short read lengths ( 830 bp), we used FAD, which recov-
ered 512 variants. While this dataset has no ground truth,
after four rounds of phage display enrichment we might
expect that it is enriched for intact reading frames, so we
can compare the proportion of stop codons in the orig-
inal CCS sequences (40.6%) versus the denoised variants
(3.7%), suggesting a dramatic denoising effect. We can also
use our fast corrected kmer distance to compare the de-
noised variants in the post-selection library with those in the
pre-selection library, showing that not a single variant post-
selection is within 2% divergence from any read in the pre-
selection library (minimum: 2.36%). This is consistent with
extreme heterogeneity in the pre-selection library, which is
expected. Since these variants aren’t related by descent, we
cannot use phylogenetics to visualize them, but we can use
NextGenSeqUtils.jl and other tools from the Julia envi-
ronment to visualize the community network structure of
the post-selection variants, using the minimum pre-to-post
distance to construct a meaningful connectivity threshold
(see Figure 5, and see https://nextjournal.com/Murrell-Lab/
scfv-fad-analysis/ for a NextJournal notebook showcasing

https://nextjournal.com/Murrell-Lab/scfv-fad-analysis/
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Figure 5. Visualizing the structure of the FAD-denoised variants from the
single-chain Fragment variable phage library, after 4 rounds of selection.
Variant frequency is depicted with bubble size, and variants with ≤2.36%
corrected kmer distance (the minimum distance between any pre- and post-
selection variant) are connected in the network. We also show the largest 3
connected components, coloring each variant depending whether the scFv
linker was short (blue) or long (red).

this analysis). Here, a ‘community’ of variants highlights
where distinct variants with similarities at the sequence level
have been jointly enriched during the selection process, pro-
viding evidence that such variants are enriched due to sim-
ilar functional properties, rather than just stochastically in-
creasing in frequency through successive population bottle-
necks. Note that immune repertoires from unsorted cells
typically exhibit much greater diversity than this dataset,
and will require substantial depth to achieve sufficient per-
template coverage for these approaches to be successful, but
reconstructing long templates from lower diversity cell pop-
ulations (e.g. after antigen sorting) should be possible.

DISCUSSION

We have presented two algorithms, FAD and RAD, for de-
noising long PacBio amplicons. While we intend to use these
tools primarily for applications in virology, which has moti-
vated our choice in datasets, there is no reason why they can-
not be used in any long-read amplicon sequencing domain,
especially for metagenomics (e.g. 16S or even the entire 16S-
23S rRNA region). RAD and FAD can both be run without
any specialist computing hardware––a standard laptop suf-
fices even for large Sequel datasets.

In addition to the methods considered here, we also at-
tempted to use the Long Amplicon Analysis tool (https:
//github.com/PacificBiosciences/pblaa), but this did not ap-
pear to be suitable for datasets of the complexity of our
MVCs (see Supplementary Figure S5).

The appreciable proportion of error-free reads in the 5 kb
MVC dataset was surprising, and can likely be attributed to
improvements in both sequencing chemistry and PacBio’s
circular consensus algorithms. In fact, we expected FAD,
which was inspired by short-read amplicon denoising ap-
proaches, to fail completely. The fact that such strategies
can be used for PacBio reads was independently demon-
strated by Callahan et al. (31) for a 1.5 kb amplicon, further

supporting the prospect of resolving amplicon sequencing
datasets at single nucleotide resolution.

The distribution of read accuracies can vary due to fac-
tors that one has no control over (such as the distribution of
homopolymer lengths in the system being studied), factors
that one can stipulate (such as the PacBio movie length),
but also a number of factors that one can only partially in-
fluence, such as the proportion of intact molecules or how
close one is to the optimal loading concentration. For these
reasons, only speculative guidelines can currently be pro-
vided about what amplicon length may successfully be ap-
proached with these techniques. Our experience suggests
that FAD should be effective up to at least 5 kb, and addi-
tional Sequel datasets (not analyzed here) suggest that the
average number of errors per read for a 9 kb Sequel ampli-
con is roughly one-third of those used in the 9 kb simulation
here (which was modeled on RS-II accuracies). So, while
amplicons of 9 kb will not be amenable to FAD analyses,
we speculate that RAD will be able to denoise amplicons
longer than 9 kb. Additionally, FAD reports a statistic that
should be predictive of the number of noiseless reads, and
recommends when RAD should be used instead.

Our 5 kb MVC analysis suggests that amplicon sequenc-
ing on a Sequel can be productively multiplexed, and here
we saw that 10 000 reads provided reconstructions compa-
rable to the 86k reads of the original dataset. This could
vary depending on the template length, and the number of
templates, and requires further exploration.

With this paper we release four Julia packages:
NextGenSeqUtils.jl, RobustAmpliconDenoising.jl,
DPMeansClustering.jl and SequenceMutationDis-
tance.jl (hosted at https://github.com/MurrellGroup),
which should be a helpful contribution to the Ju-
lia next-generation sequencing ecosystem. We also
provide a web server (link maintained at: https:
//github.com/MurrellGroup/webservers) for convenient
analyses. A .fastq CCS file is uploaded, and filtering
options can be selected. Either FAD or RAD is run, and
the inferred templates, as well as a number of visual-
izations (see Supplementary Figure SI4), are provided.
Finally, we also provide multiple use examples, including
additional features such as demultiplixing with custom
primer barcodes, in computable NextJournal notebooks
(https://nextjournal.com/Murrell-Lab) that allow analyses
to be ‘remixed’ and run in the cloud.

The algorithms could potentially be improved along mul-
tiple dimensions:

(i) Automatically determining the optimal method for
amplicon denoising: we currently use a simple heuris-
tic to choose which of RAD or FAD should be used.
This uses the QV scores to obtain an estimate of the
expected number of error free reads, and it uses the
proportion of identical reads. If both of these are suf-
ficiently high, use FAD, but if either is low, we recom-
mend RAD. The details of what counts as high or low
require further exploration on additional datasets.

(ii) Test other kinds of sequencing data: future work
should compare amplicon denoising methods on
datasets from a wider range of sources, spanning a
range of length and template diversity.

https://github.com/PacificBiosciences/pblaa
https://github.com/MurrellGroup
https://tools.murrell.group/denoise
https://nextjournal.com/Murrell-Lab
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(iii) Using error rates when clustering: since the error rates
are highly predictable, the distance between a read and
a centroid could be adjusted by the expected error in
each, which could result in more accurate clustering.

(iv) Using error rates when splitting: per-base error rates
could also be exploited during cluster splitting for both
FAD and RAD, potentially improving accuracy.

(v) A hybrid algorithm that combines the characteristics
of FAD and RAD, first reconstructing as deeply as
possible using FAD, and then polishing with RAD. We
intend to explore this in the near future.

(vi) Parallelization: We could gain run-time improvements
by parallelizing some components of our model. The
simplest of these would be the RAD consensus step,
where each consensus can be executed on a different
thread.

Additional extensions may be domain specific. For exam-
ple, chimera filtering (32–34) is not useful in domains like
HIV, where extensive biological recombination produces
the same signals as artificial chimeras. However, this could
be useful in other domains, and should be implemented. Fi-
nally, we note that our approach does not tolerate read frag-
ments (from e.g. shotgun sequencing), and we do not expect
that it is extensible to such cases.

CONCLUSION

The advent of accurate long-read denoising approaches
shifts the developmental burden away from data process-
ing. Going forward, the primary impediment to extending
the length of amplicons that can be sequenced is the design
of PCR strategies that can successfully amplify very long
templates.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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