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Early stopping in clinical PET studies:
How to reduce expense and exposure
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Abstract

Clinical positron emission tomography (PET) research is costly and entails exposing participants to radioactivity.

Researchers should therefore aim to include just the number of subjects needed to fulfill the purpose of the study.

In this tutorial we show how to apply sequential Bayes Factor testing in order to stop the recruitment of subjects in a

clinical PET study as soon as enough data have been collected to make a conclusion. By using simulations, we demon-

strate that it is possible to stop a study early, while keeping the number of erroneous conclusions low. We then apply

sequential Bayes Factor testing to a real PET data set and show that it is possible to obtain support in favor of an effect

while simultaneously reducing the sample size with 30%. Using this procedure allows researchers to reduce expense and

radioactivity exposure for a range of effect sizes relevant for PET research.
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Introduction

Positron emission tomography (PET) examinations are
expensive and may impose a substantial burden on
research budgets. Depending on the local PET centers
finances and the experimental design, it is not unusual
that researchers pay 5000 Euro/USD or more for a
PET-scan of a single subject. In addition to the high
cost, a PET scan entails exposing individuals to radio-
activity, with average doses often ranging between 0.6
to 5mSv.1 It is hence in the interest of the PET
researcher to keep the number of included research
subjects to a minimum, while still performing enough
PET examinations to be able to draw appropriate con-
clusions from the collected data.

Traditionally, the number of included subjects in a
clinical PET study is determined a priori based on a
power analysis and the null-hypothesis significance
testing (NHST) procedure.2 However, a difference
between groups may sometimes be detectable before
the study reaches the a priori determined sample size.
Ideally, the researchers should include just the number
of individuals needed to be able to interpret the results
with high confidence, no more, no less. When perform-
ing more scans than needed, PET researchers are

wasting money and exposing people unnecessarily to

radioactivity.
One way to avoid superfluous PET scans is to inter-

mittently check for a statistical effect while the study is

still ongoing, generally termed sequential testing of

data. In the uncorrected NHST framework, however,

sequential testing does pose a problem, as it can greatly

inflate the nominal false positive rate.3 If a new
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uncorrected p-value is calculated and used for making
inference after the collection of each research subject,
the false positive rate will be above 20% for commonly
seen sample sizes in PET literature.4

There exist however statistical techniques that are
appropriate to use when performing sequential testing.
One possibility, called Pocock’s correction,5 involves
lowering the significance threshold for each test so
that the overall error rate does not surpass a pre-set
rate of false positives (usually 5%). Another efficient
and flexible method is to apply so called alpha-
spending functions (using e.g., the ÓBrien and
Flemming boundaries), where the significance thresh-
old changes for each sequential test, making it harder
to reject the null-hypothesis (H0) at an early stage of
the study, but easier later on, while still allowing for
exact control over the rate of false positives.6,7

An alternative possibility is to use an entirely differ-
ent metric to test scientific hypotheses: the Bayes
Factor (BF).8–11 The BF has been gaining traction in
the field of biomedicine during the last decade and has
two important characteristics; first, it is well suited for
sequential testing of data,12,13 and second, it also
allows for quantification of relative evidence in
favour of H0, meaning that a PET study can be stopped
when it is determined that H0 is supported.14 In this
tutorial we will show how to use sequential BF tests in
common PET study designs, in order to stop data col-
lection in a study early.

Bayes factor - A versatile alternative for testing
hypotheses

Support in data for competing hypotheses. Bayesian
hypothesis testing using BF aims to assess how compat-
ible the observed data (such as a patient-control differ-
ence) is with each of two competing hypotheses. These
hypotheses are often specified as the null hypothesis (H0)
and an alternative hypothesis (H1). The null-hypothesis
typically states that the effect is exactly zero and the alter-
native hypothesis states that the effect is different from
zero. The BF, quantifying the support in data in favor of
the alternative hypothesis over the null-hypothesis, is
defined as the likelihood ratio of the two hypotheses

BF ¼ PðDjH1Þ=PðDjH0Þ

whereD denotes the observed data.15 For example, a BF
of 4 can be interpreted as “the observed data is 4 times
more likely to have occurred under the alternative
hypothesis compared to the null hypothesis.” As such,
the BF directly quantifies the evidence in data in favour
of one hypothesis against another. The reciprocal of BF,
quantifies the support in data in favour of the null
hypothesis, compared to the alternative. A BF of 1/5

would hence mean that there is 5 times more support in
the data in favor of H0, compared to H1. See
Supplementarymaterial for amore in-depth explanation
on the BF, and how it is connected to Bayes theorem.

Evidence thresholds. The BF quantifies evidence on a
continuous scale ranging from 0 to infinity, where
values over 1 support the hypothesis in the numerator,
and values below 1 support the hypothesis in the
denominator. A set of thresholds have been suggested
to help with the interpretation and decision making
when using BF10 (Table 1). A BF of 3, which often
corresponds to a p-value around 0.0514,16,17 is com-
monly interpreted as providing “moderate” evidence
in favour of one hypothesis over another. It is often
considered to be the minimal threshold for claiming
support of a hypothesis.

Specifying the alternative hypothesis. In the classical NHST
framework, the alternative hypothesis is often specified
as meaning any other value than point zero. The use of
BF does however require the researchers to be more
specific when describing H1. For example, the research-
er could specify the alternative hypothesis as a single
value different from zero, such as predicting that a
mean patient-control difference in binding potential
will be exactly 0.5. However, since it is rare that
researchers are confident in predicting a single point
value, the alternative hypothesis is often specified as a
probability distribution covering a range of values
instead. In doing so, the researchers are “hedging
their bets” by spreading the prediction out across
many plausible values of an effect. This probability
distribution can be informative,18,19 e.g. a narrow
normal distribution centered around a specific value.
It can also be made “non-informative,” e.g. a wide dis-
tribution centered around zero.

A commonly used non-informative distribution for
describing H1 when testing mean differences is a two-
sided Cauchy distribution centered around zero20

(Figure 1, see Supplementary material for a mathemat-
ical expression of the Cauchy). This distribution ranges

Table 1. Evidence thresholds for the Bayes Factor.

Bayes Factor Interpretation

>10 Strong evidence in favor of H1

3–10 Moderate evidence in favor of H1

1–3 Negligible to weak evidence in favor of H1

1/3–1 Weak to negligible evidence in favor of H0

1/10–1/3 Moderate evidence in favor of H0

<1/10 Strong evidence in favor of H0

These are suggested BF threshold for interpreting relative evidence in the

data in favor of one hypothesis over another.

Source: Adapted from Lee and Wagenmakers (2014).10
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from minus infinity to plus infinity, and has fat tails,
i.e. it assigns higher probability to more extreme values,
relative to other continuous distributions. Using a
Cauchy distribution means that the researcher specifies
H1 to reflect the belief that the effect (such as a patient-
control difference) is of small or medium size with rel-
atively high confidence, but also allowing, with less
confidence, an effect of a larger size. The fatness of
the tails is determined by the width parameter r (anal-
ogous to the SD of a normal distribution), and is by
convention often set to 0.707. Formally, the two com-
peting hypotheses in such a BF test are

H0 : d ¼ 0

H1 : d�Cauchyð0;0:707Þ

where d denotes the true population effect, and “�”
means “distributed according to.” This particular null
and alternative-hypothesis pair have become so
common today when testing mean differences that it
is called the “default” BF t-test,21 which can be calcu-
lated from a conventional t-statistic22 (see
Supplementary material for an analytical expression
of the test). In this tutorial, we will only evaluate
sequential testing in PET studies using the default BF
t-test.

Example 1. We examined cerebral difference in [11C]
DASB binding potential (an index of serotonin trans-
porter availability) between patients with seasonal
affective disorder and healthy control subjects in the
winter (N¼17 vs. 23) and summer seasons (N¼ 20 vs.
23) by extracting data from Figure 1 in a study by

McMahon et al.23 The group means were compared

using a two-sided default BF t-test. In summer, there

was 3 times more support in favour of H0 compared to

H1 (BF¼ 0.32). In winter, there was instead 3 times

more support in favour of H1 compared to H0

(BF¼ 3.01), with patients showing higher binding.

We can hence conclude that there is moderate evidence

of no difference in serotonin transporter availability

between patients and controls in the summer season,

contrary to the winter season.

Sequential BF testing. In sequential BF testing, the null

hypothesis is assessed in constant competition to the

alternative hypothesis. If a BF is calculated after the

collection of each data point, it informs the researcher

how the stated hypotheses are gaining or losing support

from the data. Because of this, the BF can be used for

“online” monitoring of incoming data. The researchers

can stop when they reach a pre-set decision threshold, a

pre-set maximum sample size (or when they simply run

out of money, time or patience).12,13

However, it is important to note that BF testing is

subject to the same sources of uncertainty as NHST

inference, i.e. the data could potentially lend support

to the wrong hypothesis. This means that in sequential

BF testing, the researchers can end up stopping a study

early and reach an incorrect conclusion. In order to

plan a PET study when intending to use a sequential

BF design, the researchers should be aware of the dif-

ferent errors that can occur when making stopping

decisions. False positive evidence is defined as data

supporting the alternative hypothesis, when the popu-

lation effect truly is zero (cf. the type I error in the

classical NHST framework). False negative evidence

Figure 1. Example of two hypotheses compared in BF hypothesis testing. The alternative hypothesis (H1) in black is represented by a
two-sided Cauchy distribution centered on zero with an r (width-parameter) of 0.707. The null hypothesis (H0) in red, is defined as
the point zero value.
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is defined as data supporting the null hypothesis, when
in fact there is a real effect in the population. It is also
possible that the sequential BF testing procedure ends
up unable to stop for either hypotheses, by never pass-
ing the decision threshold before a maximum possible
fixed sample size (Nmax) is reached. In this tutorial, we
refer to such results as an “inconclusive” stopping out-
come. Figure 2 depicts the continuous evidence updat-
ing, after each added data point, and shows the three
possible outcomes: a stop decision for the alternative
hypothesis, a stop decision for null hypothesis and an
inconclusive stop outcome, when applying sequential
BF testing.

If a researcher continues to collect data indefinitely,
the default BF t-test will eventually converge to sup-
porting the hypothesis most compatible with the
population effect, i.e. it will show evidence for the
null-hypothesis if in fact there is no true mean differ-
ence, or for the alternative-hypothesis if there is an
underlying difference in the population.22 However,
such continuous collection of data is often unrealistic
in a clinical PET study. Apart from the high cost, a
PET examination also entails injecting subjects with
radioactivity. Hence, a maximum sample size usually
has to be decided on a priori and approved by an eth-
ical review board and/or a radiation safety committee.

In summary, BF is a versatile metric that can be
used for different purposes. In the PET literature,
there have so far only been a few articles that have
used BF to e.g. complement reported p-values, as a

stand-alone metric to quantify the evidence of stated
hypotheses, or to assess the replicability of previously
published results.24–26 Of particular interest for this
tutorial, the BF first lends itself naturally to sequential
testing of data12,13; and second, it quantifies evidence in
favour of either H1 and H0, meaning that the null-
hypothesis also can gain, or lose, support by the data
and hence be formally accepted or rejected.14,22

However, as with all metrics used for statistical infer-
ence, the BF is not without limitations and criti-
cism.27,28 Specifically, when planning to use a
sequential testing procedure in a study, it is important
to consider the rate of false evidence, as interpreting a
BF outcome based only on evidential thresholds might
lead to unacceptable high levels of inappropriate
conclusions.29,30

In this tutorial we will explore how to use the default
BF t-test to sequentially test data in two common
clinical PET study designs: a cross-sectional (e.g. a
patient-control comparison) and a paired (e.g. a pre-
intervention-post scan) design. Our first aim is to
demonstrate the relative merit of using sequential BF
testing to stop data collection at an earlier stage, com-
pared to simply applying a conventional “fixed N”
design, while still keeping the number of false positives
below the commonly set threshold of 5%. Our second
aim is to assess whether sequential BF testing can be
used to stop early, not only when there is an effect in
the population (H1 is true), but also when there is no
effect in the population (H0 is true). Our third aim is to

Figure 2. Possible outcomes of sequential testing using Bayes Factor. Three different studies have been initiated, all having N¼ 30 as
the maximum possible sample size. For the blue line, BF crosses the pre- specified threshold (here BF> 4) triggering an early stop
decision in favor of an effect. Assuming there is a true effect in the population, this would be a “true positive” finding. If there is no
effect in the population, this would be a “false positive” finding. For the red line, the reciprocal of BF crosses the pre-specified
threshold (here< 1/4), meaning that the study is stopped in favor of the null hypothesis. Assuming there is no effect in the population
this would be a “true negative”, but if there is an effect, this would be a “false negative” finding. For the black line, BF does not reach
either below 1/4 or above 4 before the pre-specified number of subjects have been reached, and therefore denotes an inconclusive
stopping outcome.
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apply sequential BF testing on real clinical PET data,
and evaluate the outcome.

Standardized effect sizes. Throughout this tutorial we use
standardized effect sizes instead of raw values of e.g.
binding potential (BPND), total distribution volume
(VT) or percentage differences when we simulate
mean differences. To derive a standardized effect for
a comparison of two different groups, such as patients
and controls, we divide the average difference in the
raw outcome by the pooled standard deviation of the
two groups, and call the result Cohen’s D.31 For a
comparison within the same individual over time,
such as a pre-scan-intervention-post-scan design, we
divide the average difference in the raw outcome by
the within-subject standard deviation (i.e. the standard
deviation of the difference score), and call the result
Cohen’s Dz.32

The main rationale for using standardized effect
sizes is that it allows us to generalize the results of
the simulations to all radioligands. In Table 2 we pre-
sent a subset of commonly used radioligands in PET
research,33–36 and how differences in BPND or VT trans-
late into standardized effect sizes and vice versa.

Objective 1 - Keeping false positive rate below 5%

Simulation set-up. Our first aim of this tutorial is to com-
pare sequential BF testing to the conventional way of
evaluating research hypotheses in a clinical PET study,
which is to apply a single test after the entire sample
size has been collected (i.e. a “fixed N approach”).

Here we will explore the differences between sequential

BF testing and taking a fixed N approach, presenting

the reader with the trade-offs that are made when using

a sequential procedure. We will show how sequential

BF testing can be used in order to stop a study early

while still keeping the rate of false positive findings

under the commonly set threshold of 5%. In order to

compare the sequential BF framework to the conven-

tional approach, we will only stop data collection when

there is evidence in favour of an effect. In this simula-

tion, evidence for the null hypothesis will hence be

treated the same as inconclusive stopping outcomes,

i.e. no early stopping decisions will be made when

BF< 1. For a demonstration on how to stop a study

early also when H0 is supported, see Objective 2 below.
Due to the high cost of performing a PET scan, it is

rare to see PET studies with large sample sizes. In order

to reflect this reality, our simulations focus on typical

cases in PET research, when the study includes <100

subjects/group.
Sequential BF testing has been shown to produce

errors, leading to wrong decisions, most often when

sample sizes are very low.13 If the first BF is calculated

soon after the initiation of the study (e.g. at n¼ 3 sub-

jects/group), then the false positive rate can become

unacceptably high. It is therefore sensible to first collect

a fixed number of subjects from each group before ini-

tiating sequential testing with BF. Below we present the

results from simulations within which sequential BF

testing began after data from 12 subjects/group had

been collected.

Table 2. Translating standardized effect sizes into raw BPND and VT values for four radioligands.

Effect size

[11C]raclopride

(Putamen) BPND

(%) difference

[11C]AZ10419369

(Occipital cortex)

BPND (%) difference

[11C]PBR28

(Grey matter)

VT (%) difference

[11C]UCB-J

(Putamen)

VT (%) difference

Cohen’s D

0.2 0.07 (2%) 0.03 (2%) 0.37 (10%) 0.36 (2%)

0.5 0.17 (5%) 0.07 (4%) 0.92 (26%) 0.90 (4%)

0.8 0.27 (7%) 0.12 (7%) 1.48 (42%) 1.43 (6%)

1.2 0.41 (11%) 0.18 (10%) 2.22 (63%) 2.15 (10%)

1.5 0.51 (14%) 0.22 (13%) 2.77 (79%) 2.69 (12%)

Cohen’s Dz

0.2 0.03 (1%) 0.03 (2%) 0.12 (3%) 0.21 (1%)

0.5 0.08 (2%) 0.07 (4%) 0.30 (8%) 0.53 (2%)

0.8 0.13 (4%) 0.11 (6%) 0.48 (13%) 0.85 (4%)

1.2 0.19 (5%) 0.16 (10%) 0.71 (20%) 1.28 (6%)

1.5 0.24 (7%) 0.20 (12%) 0.89 (25%) 1.60 (7%)

The standardized effect sizes are used to assess the difference between two groups (Cohen’s D for a cross-sectional design) and difference within the

same subjects (Cohen’s Dz for a paired design) and have here been translated into raw mean difference in BPND and VTand percentage mean difference

(%) for four PETradioligands. The mean, SD between subjects and SD within subjects for a representative brain region for each radioligand were taken

from test-retest studies on healthy subjects. NB: the variance is likely to be higher in a more heterogeneous clinical population, which will lead to

smaller effect sizes for the same raw or % difference.
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Specifically, for the cross-sectional design we:

1. Simulated a population of patients and control sub-

jects with a true difference between the groups cor-

responding to d. We then sampled eleven patients

and eleven controls from this population.
2. We sampled one additional patient and one addi-

tional control and compared the difference between

group means, using the default two-sample BF t-test

from the R-package BayesFactor.37

3. The data collection was stopped if the BF reached a

predefined threshold.
4. If BF did not reach a predefined stopping threshold,

we repeated steps 2–3 until we reached Nmax sub-

jects/group. At that point, the data collection was

stopped, regardless of the BF result.

Step 1–4 were then repeated 30,000 times, and the

results from the sequential BF testing were saved. We

examined a range of d values, from a Cohen’s D¼ 0 (no

difference between patients and controls) to a Cohen’s

D¼ 1.5 (large difference between patients and con-
trols). We also evaluated a range of stopping thresh-

olds, going from 2 (negligible evidence for H1) to 10
(strong evidence for H1).

The same simulation scheme as above was used for
the paired design, with the exception of simulating

within-subject differences and applying a paired BF t-
test instead of a two-sample test.

Results. Figure 3(a) and (b) show the estimated false

positive rate when applying sequential BF testing in
the case in which there is no difference between the
two groups. Three different stopping thresholds have

been used (BF> 3, 4 and 6, respectively). When the
maximum allowed sample size increases, the false pos-
itive rate goes up. This is because the longer the sequen-

tial testing can go on, the more decisions are being
made. Some of these decisions will be wrong, meaning
that the researcher will claim support for an effect,

when in fact there is no effect in the population.
Eventually, when N becomes high enough, the rate of

Figure 3. (a and b) The rate of false positive stopping decisions increases as the maximal number of subjects per group (Nmax)
becomes higher due to an increasing number of decisions being made, shown for three different BF decision thresholds. (c and d) The
BF decision threshold can be adjusted to achieve a desired rate of false positive evidence (here 5%) for different Nmax. For all figures:
samples are drawn from populations showing no (between or within) mean difference; testing starts at N¼ 12 subjects/group; and BF
is checked after every additional comparison pair (1 set of patient-control scans or pre-post scans).
FPR: false positive rate.
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false positives will reach an asymptote (see
Supplementary Figure S1). With the settings chosen
for Figure 3(a) and (b), and a maximum sample size
above 30 subjects/group, it is not possible to keep false
positives below 5% using a decision threshold of 4. If
the researchers wish to control the false positives at the
5% level, several options are available: start testing
later than N¼ 12, test less often (e.g. after every
second or third added patient-control pair), choose a
higher r value for the Cauchy distribution, or, increase
the decision threshold. Figure 3(c) and (d) show the
estimated decision threshold that would be needed to
keep the false positive rate at 5% when using sequential
testing with the default BF t-test, while still starting at
12 subjects/group and checking the BF after the collec-
tion of each patient-control pair.

Figure 4 shows the results from the simulations
when Nmax¼ 30 subjects/group, using a decision
threshold just above 4. In the upper panel the rate
of positive studies at different population effects is
visualised. The curves cross the y-axis at D¼ 0 (i.e.,

the false positive rate), 5% for both sequential BF
testing and the conventional fixed N test. As can be
seen, had the researcher instead applied a fixed N
approach (at 30 subjects/group), they would have
increased the power to detect the population effect
by no more than �10% for any effect size compared
to using sequential testing. Note that when calibrating
the BF threshold to correspond to a 5% false positive
rate, and stopping only for H1, the BF procedure will
show identical results to performing sequential NHST
t-tests with a 5% corrected significance level. Hence,
this approach will be identical to the blue line in
Figure 4.

Figure 4(c) and (d) show the average number of
subjects needed to reach a decision at different popu-
lation effects. As the underlying difference between the
two populations is increased, fewer subjects are needed
to reach a decision using sequential BF testing. Already
at a true population difference of Cohen’s Dz¼ 0.5,
researchers will on average save 30% in terms of both
expense and amount of injected radioactivity when

Figure 4. Panels (a) and (b) show the proportion of studies that showed support for H1 (aka “power curves”) for BF sequential
testing (blue) and fixed N test (black), at different population effects (starting at D¼ 0, i.e. no effect). For the fixed N approach, only
one test is performed at N¼ 30 subjects/group. For the sequential testing, 12 subjects/group are first collected, then BF is checked
after each added comparison pair until 30 subjects/group is reached, stopping the study when BF> 4. Panels (c) and (d) show the
average number of subjects needed to reach a stopping decision at different population effects. The fixed N test is the black line
(N¼ 30 subjects/group); BF sequential testing is the blue line with shaded area denoting� 1SD.
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applying sequential BF testing compared to the fixed N
approach.

In summary, if the PET researchers apply a sequen-
tial testing procedure as presented here, they have the
potential of reducing both expense and radioactivity
exposure, however, it is important to note that this
procedure comes at a cost of a lower rate of true pos-
itives (i.e. statistical power), for a range of effect sizes.

Simulation results for different choices of Nmax
(15, 20, 50 and 100 subjects/group) are
presented in Supplementary material (Supplementary
Figures S2 to S5).

Practical recommendations 1. In this simulation set-up we
show that it is possible to stop a PET study early if
there is a true underlying effect in the population, while
keeping the number of false positive findings below
5%. We recommend to not start sequential BF testing
until at least 12 subjects per group have been collected,
adjusting the BF threshold upwards for larger values of
Nmax. Importantly, these settings should only be used
when the PET researcher is interested in stopping early
when data shows support for H1. All BF values show-
ing support in favour of H0 (BF< 1) should not, with
these settings, be interpreted as anything else but incon-
clusive stopping outcomes.

Objective 2 - Stopping for both H1 and H0

The second aim of this tutorial is to assess whether
sequential BF testing can be used to stop a clinical
PET study early, both when there is an effect in the
population, but also when the population effect is zero.
After the collection of each data point, we will compare
both the BF, and its reciprocal, to an a priori set deci-
sion threshold. If either the BF or its reciprocal passes
the threshold, the study will be stopped, and we will
declare support in favour of the alternative or null
hypothesis, respectively.

Simulation set-up. We used the same simulation set-up as
above, where a grid of maximum sample sizes and
effect sizes ranging from 0 to 1.5 was used to evaluate
sequential BF testing in a cross-sectional and paired
design respectively. We used the same settings for the
default BF t-test as above with one exception: the alter-
native hypothesis was still a Cauchy distribution (cen-
tered at zero with r¼ 0.707) but now specified as being
one-sided, instead of two-sided. This means that we
anticipate that the effect will go in one direction (e.g.
patients will have a higher BPND than controls),
making the test into a one-sided default BF t-test.
The reason for considering only a one-sided test in
this scenario is that it is not possible to stop for H0

when using a two-sided test at smaller sample sizes

when using reasonable decision thresholds (BF< 1/4,
see Supplementary Figure S6).

In the simulations reported below, a one-sided
default BF t-test was therefore performed sequentially,
after 12 subjects per group had been collected. If no
decision was reached after 30 subjects/group had been
collected, the study was stopped and the result was
considered to denote an inconclusive stopping out-
come. The decision threshold was set to 4 and 1/4,
for the alternative and null hypothesis respectively.

Results. Figure 5 summarises the results from the simu-
lations. When the population difference is zero in the
cross-sectional design, a study will stop (incorrectly) for
H1 just above 5% of the time, and (correctly) for H0

about 60% of the time. In this case, studies will be able
to stop, on average, after just 21 subjects/group have
been scanned. Hence, assuming there is no true differ-
ence between groups, a sequential BF testing procedure
will on average save 18 PET examinations, i.e. 30% in
terms of expense and exposure, compared to the strat-
egy of collecting data until Nmax is reached.

For the paired design we observe a similar false pos-
itive rate but a higher rate of true negative evidence
(�75%) when the population effect is zero. The rate
of true positives is also higher at all evaluated effect
sizes compared to the cross-sectional design (Figure 5).
For example, at a population effect of Dz¼ 0.5, a stop
decision is reached before or at Nmax in 75% of stud-
ies. In this case, studies can on average be stopped after
scanning 19 subjects/group, saving in total 22 exami-
nations, i.e. 36% expense and injected radioactivity.

The area around the point where the red and black
line cross, is a weak spot for the BF sequential testing
procedure. At this range of true effects in the popula-
tion, the risk of obtaining an inconclusive result is at its
highest (i.e. the blue line is at its nadir). In the cases in
which a decision is reached, the study will stop with
equal probability for H1 and H0, and the risk for
false negative evidence is around 25%.

Assuming that the PET researcher would be inter-
ested in stopping a study early when H0 is supported, a
range of population effects with high risk of false neg-
ative evidence will always exist. It is therefore sensible
to beforehand decide on a minimal population effect of
interest, and choose the settings to ensure that any
larger effect does not have too high a risk of generating
evidence for H0. For example, with the settings pre-
sented in Figure 5 (Nstart¼ 12, Nmax¼ 30, thresh-
old¼ 4) the risk of false negative evidence is >10%
for effects between D¼ 0 and 0.45.

The same results but for different Nmax (15, 20,
50 and 100 subjects/group) are presented in
Supplementary material (Supplementary Figures S7
to S10).
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Practical recommendations 2. In this simulation set-up we

show that it is possible to stop a PET study early either

when there is a true underlying effect in the population,

or when the effect is zero. When using the Cauchy dis-

tribution to describe the alternative hypothesis, we rec-

ommend that sequential BF testing does not start until

at least 12 subjects per group have been collected, set-

ting the BF threshold to a minimum of 3, and using a

one-sided test. Using a one-sided test means that the

researcher must make an a priori prediction of which

direction the effect will have, and not change this pre-

diction after the study is started, similar to performing

a classical one-sided NHST t-test. Making a one-sided

prediction can be desirable in molecular imaging

research, as long as it is well anchored in previous lit-

erature or theory. This decision should, however, be

part of the research question and overall study

design, and not simply made to fulfill the criteria for

performing a statistical procedure.

Objective 3 - Application to real clinical PET data

The third and final aim of this tutorial is to apply

sequential BF testing to a real clinical PET setting.

To this purpose, we used already collected data of

patients with major depressive disorder and healthy

control subjects examined with [11C]WAY100635, a

radioligand which binds to the serotonin 1A

(5HT1A) receptor.38,39 From this data, we included

40 medication-free patients (mean Age 36.2 (12.9

SD); 25 females) and 40 healthy controls (mean Age

37.1 (14.0 SD), 25 females). The 5HT1A receptor acts

inhibitory on serotonergic neurons in the raphe nuclei,

and a high concentration of receptors in this structure

Figure 5. (a) and (b) The black curve denotes the proportion of studies that showed support for H1 (BF> 4) during data collection,
at a range of population effects (starting at no effect, D¼ 0). The red curve is the proportion of studies that showed support for H0
(BF< 1/4). The blue curve is the sum of the red and black curves. It describes the proportion of studies that yield a stopping decision,
either in favour of H0 or in favour of H1. Since the true population effect is unknown to the researcher, the blue curve can be viewed
as the probability of reaching a stopping decision regardless of it being due to true or false evidence. When there is no effect in the
population (D¼ 0), the black curve shows the rate of false positives. At this point, the red curve shows the probability of correctly
stopping early for H0 (i.e. proportion of true negatives). (c) and (d) shows the average number of subjects needed to reach a stopping
decision at different population effects. The flat black line represents Nmax (30 subjects/group). BF sequential testing is the blue line
with shaded area denoting� 1SD.
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will likely lead to lower transmitter release in seroto-
nergic projection areas. Hence, we hypothesized that
patients suffering from MDD show higher 5HT1A
receptor availability in the raphe nuclei compared to
healthy controls. Here we apply sequential BF testing
to examine whether this hypothesis gains enough sup-
port to stop data collection before 40 subjects per
group are reached.

Methods. BPF, defined as the ratio of concentration of
specifically bound radioligand in the brain region to
the concentration of free radioligand fraction in arteri-
al plasma at equilibrium, was used as the primary out-
come measure for assessing 5HT1A receptor
availability in the raphe nuclei. Cerebellar white
matter was used as reference tissue.

We applied sequential BF testing to assess the
support in data in favor of patients having higher
BPF in the raphe nuclei than controls (H1), as com-
pared to no difference (H0). We also examined the
evidence in data in favor of H0 over H1, to stop the
study early if the null hypothesis was supported. The
stopping threshold was set to BF> 5 for H1 (BF< 1/5
for H0), in order to keep the rate of false positive evi-
dence below 5% (see Supplementary Figure S1). We
used a one-sided Cauchy distribution, centered
around 0 with an r¼ 0.707 to describe the predicted
mean difference under H1. H0 was specified as the
point zero value.

First, patient and control data were sorted accord-
ing to the chronological order in which the subjects
were examined. We then retrieved the first 12 patients
and 12 control subjects, standardized all raphe nuclei

BPF values, calculated the BF and compared it against

the stopping thresholds. Following this, we added one

additional patient and one healthy control to the pre-

vious subjects, checked BF against the thresholds, and

so on, until we either were able to stop early, or reached

the maximum of 40 subjects/group.

Results. When applying a one-sided two-sample t-test

to the full dataset, we observed a large group

difference in raphe nuclei BPF (t¼ 4.1, df¼ 76.58,

p¼ 0.00006, BF¼ 385), with patients showing higher

values compared to healthy controls (D¼ 0.91 or a

51% increase).
When applying sequential testing, the BF passes the

threshold of 5 in support of H1, after the inclusion of 27

subjects/group (Figure 6). Hence, had sequential test-

ing been applied in collection of [11C]WAY100635

patient-control data, it would have been possible to

stop the recruitment at a total N of 54 instead of 80,

saving 33% in terms of expense and radioactivity expo-

sure. Assuming that a PET examination costs 5000

USD/Euro, that would amount to saving 130,000

USD/Euro in total.
When using the same settings as described above,

but permuting the order in which patients and controls

were recruited to this study, a stop decision could be

taken on average at 17 subjects/group (SD¼ 5.9, range

12–33). We also included a comparison between BF

sequential testing and two common NHST alpha

spending approaches, which showed very similar stop-

ping decisions for this dataset (see Supplementary

Figure 11).

Figure 6. Sequential BF testing applied to real PET data. Patients with major depressive disorder were compared to healthy control
subjects using [11C]WAY100635 BPF as a measure of 5HT1A receptor availability in the raphe nuclei. BF testing starts after 12
subjects/group have been collected and a stop decision is triggered at 27 subjects/group. The blue line denotes the stopping threshold
for H1 (set to 5) and the red line the stopping threshold for H0 (set to 1/5). The black line shows the change in BF following the
inclusion of each additional patient-control pair. The grey line shows how the BF trajectory would have looked, assuming no stopping
decision was made, and the data collection instead continued up until the full sample of 40 subjects/group.
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Discussion

In this tutorial we show that it is possible to stop

recruitment of subjects in PET studies as soon as

enough data have been collected to make a

conclusion, reducing both expense and exposure to

radioactivity. We do this by employing sequential BF

testing, which assesses the support in data in favor of

two competing hypotheses while the study is still

ongoing.
When applying sequential BF testing, and the true

population effect is small, the savings are modest com-

pared to using the conventional design, where only one

test is performed at a fixed sample size. As the popu-

lation effect becomes bigger however, it is possible to

(on average) stop the data collection early potentially

saving more than half of the resources that would be

needed for a PET study carried out with the conven-

tional approach (e.g. in Figure 5(d), the average sample

size needed is <15/group for population effects larger

than Dz¼ 0.7, compared with fixed N of 30/group).

For a range of effects, a fixed N test will however

show around 5–10% higher true positive rate com-

pared to sequential BF testing (Figure 4(a) and (b)).

By using a lower BF decision threshold, the proportion

of true positive stopping decisions will increase when

there is an effect, but it comes with a cost of more false

positives when H0 is true.

Alternative sequential procedures

There are sequential testing methods other than BF

that can be used to stop the data collection early, and

that offer exact control over error rates. For the NHST

framework, as mentioned in the introduction, a viable

alternative is to apply a so-called group-sequential

design were the significance threshold is corrected so

that the total rate of false positive does not surpass a

pre-set alpha value.6 In fact, when calibrating the BF

threshold (using a “default” Cauchy-distribution for

describing H1) to a 5% false positive rate when

stopping only for H1 (see Objective 1), the sequential

BF procedure will be close to identical to performing

corrected sequential NHST t-tests using so called

Pocock boundries. For NHST, there are several

different flexible strategies for doing sequential testing

to stop a study as soon as H0 can be rejected.40–42

There are also methods for performing so called

“futility testing,” with which the researchers can stop

a study early if it is deemed to unlikely that a significant

finding will be achieved later on.43 Addressing such

sequential-NHST procedures for application in clinical

PET research are however outside the scope of this

tutorial.

Evidence in favor of H0

Sequential BF testing allows a PET study to be stopped
also when there is evidence in favor of no effect in the
population, i.e., when H0 is true. If the researcher
wants to use a sequential BF to assess support for
both H1 and H0, we recommend using a one-tailed
default BF t-test. Without using a one-sided prediction,
it will be difficult (or even impossible) to stop a study
early in support for H0, given the sample sizes used in
typical PET studies (N< 100 subjects/group) while still
using a threshold that is high enough to keep the rate of
false evidence at reasonable levels (see Supplementary
Figure S6).

When allowing a study to be stopped early for H0,
false negative evidence must be considered as an addi-
tional type of error, and PET researchers now have to
consider keeping both false positive and negative evi-
dence low. To do so, the researcher has three main
options to their disposal:

1. Increase the a priori set decision threshold for stop-
ping (see Figure 3).

2. Recruit and scan a larger pool of subjects (>12/
group) before initiating the sequential BF testing.

3. Check BF less frequently, e.g. only after the collec-
tion of each second or third (etc.) comparison pair,
instead of after each single one.

These three approaches could be used separately or
in combination with each other. They do all however
trade off against a higher number of included subjects,
meaning that the study will, on average, require more
subjects before a stop decision can be made.

Figure 5 presents the true and false evidence rates
the researchers can expect when using a one-sided BF t-
test and when they are correct in their prediction of the
direction of an effect. If there is a sizable patient-
control difference in the population, but it goes in the
opposite direction to the predicted one, then using this
approach would lead studies to be stopped early due to
the null-hypothesis being supported almost 100% of
the time. Of course, the null is not true in this case,
but it is closer to the true population effect than the a
priori defined alternative hypothesis. Hence, it will
often gain the most support from the data.

When allowing stopping for H0 as well, the research-
er should be aware that the false negative evidence rate
can become large when the effect is close to zero, but
not exactly zero. Using sequential BF testing, research-
ers will run the risk of stopping the study, claiming
support for no effect, when there is in fact a true but
small effect in the population. Whether or not this is
acceptable to the researchers depends on how small an
effect has to be, in order for the researcher to consider
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it practically indistinguishable from zero. Using the
sequential BF approach with the settings described in
Figure 5 (e.g. a decision threshold of 4), the false neg-
ative evidence rate becomes e.g. >10% for all popula-
tion effects between 0 and 0.45, and >5% for all effects
between 0 and 0.6 for a cross-sectional design. Before
applying a sequential BF testing procedure where stop
for H0 is allowed, PET researchers should therefore
consider what range of effects they consider as practi-
cally or clinically relevant, and what rate of false neg-
ative evidence they are prepared to allow for effects
within this range (see Example 2 below).

However, many PET studies are exploratory in
nature, and it can be difficult to decide a priori what
effect size constitutes a biologically meaningful differ-
ence. Here, it can be helpful to think about the effect
size specified in a conventional power-analysis required
in most clinical PET studies, which ought to be
informed by the minimal effect of interest, or in some
cases, by Nmax restrictions.

Example 2. There is a true difference in [11C]raclopride
BPND between a patient and a control population that
is of size Cohen’s D¼ 0.2 (a difference of 0.07 BPND
or 2%, Table 2). For such a small effect, studies will
often be stopped because H0 is supported when apply-
ing the sequential BF testing procedure, e.g. when
using a threshold of 4 and 1/4, respectively. A PET
researcher might consider such an effect to be practi-
cally indistinguishable from zero. In such a scenario,
support for H0 is hence of little concern, or even a
preferred outcome for the researcher. On the other
hand, if the researcher considers a Cohen’s D¼ 0.2 to
be clinically relevant, then a sequential BF procedure
using the default BF t-test cannot reliably give the cor-
rect stopping decision for H1 in commonly seen sample
sizes in PET research (<100 subjects/group).

If the researcher wants to detect small effects, they
need to use a different specification of H1, or a higher
decision threshold (e.g. BF>10) together with a much
larger Nmax.

General considerations. For the reader who is new to the
BF, it might look peculiar to select an alternative
hypothesis that not only includes H0 (point zero) but
also places the highest probability mass at that point
(see Figure 1). The alternative hypothesis in this case
ought however to be interpreted as expressing the pre-
dicted plausibility of observing an effect in a range of
values, rather than single points. This Cauchy distribu-
tion says that the researcher, before seeing the data,
finds values in the range just around zero to be more
likely than values far away from zero.

Throughout this article we have used a Cauchy dis-
tribution with an r of 0.707 to describe the alternative

hypothesis. However, for any given study design a
more appropriate choice of H1 might exist. If the
researchers are interested in detecting smaller effects
in the population, they can specify H1 to assign
larger plausibility to smaller differences, by lowering
the width of the Cauchy (setting r to, e.g. 0.5) when
planning the study. The latter will increase the rate of
true positive evidence at smaller effects in the popula-
tion, but it will also increase the rate of false positive
evidence when H0 is true.

If a distribution with a higher r (e.g. 1) is used to
define H1, then the researcher assigns more predictive
weight to a mean-difference further away from 0.
Doing so makes it easier to obtain evidence in favor
of H0 (when there is no effect), but harder to obtain
evidence for H1 when the true effect is small (see
Supplementary Figure S12). This means that in using
a larger r than 0.707 (all other settings the same); (1)
the rate of false positive evidence will be lower; (2) the
researcher will on average stop earlier when H0 is true;
(3) small but true effects will more often produce false
negative evidence (but see Example 2).

In addition to the settings presented in this tutorial,
there are several modifications that can be made for the
BF test. For example, different decision thresholds can
be applied for H1 and H0 depending on whether the
researcher thinks that false positives are more impor-
tant to avoid than false negatives, or vice versa.

This tutorial assumes that, for a cross-sectional
design, a scanned patient is always followed by a
scanned control subject. In a real PET study, this is
not always a feasible recruitment scheme. The results
above also assume that PET researchers base their
stopping decision on the outcome from one primary
region of interest. If a researcher applied sequential
BF testing, but cherry-picks the outcome from two
or more regions to make a stopping decision, the risk
for obtaining false evidence will increase. Finally, this
tutorial only applies to study designs where a two-
sample or paired t-test are suitable, and the reader
cannot assume that the results would be similar if
e.g. a regression model with covariates were to be
used instead.

If PET researchers wish to use settings not discussed
in depth in this tutorial: e.g. custom specification of H1,
different decision thresholds for H1 and H0, other
recruitment schemes, and/or statistical models, we rec-
ommend that they modify our simulation code to eval-
uate their own study design before starting the data
collection. All code can be found freely available on
https://github.com/pontusps/Early_stopping_in_PET.

Practical recommendation 3. If the researcher has an
informed idea on how the studied effect will look,
they should consider using specification of H1 other
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than the “default” zero-centered Cauchy employed in

this tutorial. This could e.g. be a normal distribution

centered around a value considered to be either a plau-

sible group difference or is clinically meaningful. This

recommendation also applies to the null-hypothesis; we

encourage the researcher to consider redefining H0 in

order to test (what might be) a more appropriate

hypothesis. An example of this could be to assess if

an increase in patient BPND gains more support in

data compared to a decrease, rather than just testing

“there is a difference” vs. “there is no difference”.

Inconclusive stopping outcomes. For any given PET-study

where sequential BF testing is applied there will be a

chance of reaching Nmax without crossing the pre-set

decision threshold. In such cases, where the researcher

ends up with an “inconclusive” stop decision, the BF is

still interpretable. The suggested evidence thresholds in

Table 1 can be used to report the support in data in

favor of the two competing hypotheses, even though

BF never formally reached the a priori set stopping

threshold. For example, if the BF is above 3 (or

below 1/3), this can still be reported as “moderate”

support in data for one hypothesis over the other.

However, in doing so the researcher cannot any

longer say that they are controlling the rate of false

evidence at a prespecified level.

Specific recommendations. Before applying the sequential

BF testing method, the researchers should decide what

they want to prioritize: keeping the risk of making the

wrong stopping decision low but accepting more incon-

clusive stopping outcomes, or stopping as early as pos-

sible but with a higher risk of errors. To help decide on

this trade-off when planning PET studies, we have

developed R functions with which PET researchers

can examine how different settings for the sequential

testing approach affects the average sample size needed,

as well as rates of true and false evidence (https://github.

com/pontusps/Early_stopping_in_PET).
It should by now be clear to the reader that a set of

critical decisions needs to be made before applying

sequential BF testing in a clinical PET study. For this

reason, we recommend all researchers to pre-register

their analysis before data collection starts.44–46 A pre-

registration can be thought of as a safety net for the

researcher. It helps guide the analysis and interpreta-

tion of data so that error rates are kept under control.

It can also be shown to reviewers or readers to increase

the credibility of the methods and findings. Deviations

from a pre-registration is of course possible, and often

warranted, but should be reported transparently in the

article. See e.g. https://aspredicted.org/ for easy and

efficient pre-registration.

If a PET researcher wants to perform a study using

sequential BF testing, we recommend that they follow

the steps outlined in a flow-chart found in

Supplementary material (Supplementary Figure S13).

In order to perform the default BF t-test, the freely

available BayesFactor package37 in R or point-and-

click software JASP47–49 can be used.

Caveats. While a sequential testing procedure often

allows the researcher to stop a study early, an impor-

tant caveat is that the estimated effect size can become

upwards biased. If a study can be stopped early due to

H1 being supported, it is more likely that the observed

effect size is above, rather than below, the true popu-

lation effect.13,40 This caveat should be considered

before interpreting the effect size from a PET study

that was stopped early, or before entering such an

effect size into a meta-analysis.

Further reading. If the reader is interested in learning

more about sequential testing the following articles

are a good start for a BF approach: 11–13 and for a

NHST approach.40–42
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