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ABSTRACT
Despite recent evidence that 5-hydroxymethylcytosine (5hmC) possesses roles in gene regulation
distinct from 5-methylcytosine (5mC), relatively little is known regarding the functions of 5hmC in
mammalian tissues. To address this issue, we utilized an approach combining both paired bisulfite (BS)
and oxidative bisulfite (oxBS) DNA treatment, to resolve genome-wide patterns of 5hmC and 5mC in
normal breast tissue from disease-free women. Although less abundant than 5mC, 5hmC was
differentially distributed, and consistently enriched among breast-specific enhancers and transcrip-
tionally active chromatin. In contrast, regulatory regions associated with transcriptional inactivity,
such as heterochromatin and repressed Polycomb regions, were relatively depleted of 5hmC. Gene
regions containing abundant 5hmC were significantly associated with lactate oxidation, immune cell
function, and prolactin signaling pathways. Furthermore, genes containing abundant 5hmC were
enriched among those actively transcribed in normal breast tissue. Finally, in independent data sets,
normal breast tissue 5hmC was significantly enriched among CpG loci demonstrated to have altered
methylation in pre-invasive breast cancer and invasive breast tumors. Primarily, our findings identify
genomic loci containing abundant 5hmC in breast tissues and provide a genome-wide map of
nucleotide-level 5hmC in normal breast tissue. Additionally, these data suggest 5hmCmay participate
in gene regulatory programs that are dysregulated during breast-related carcinogenesis.
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Background

5-hydroxymethylcytosine (5hmC) is generated by ten-
eleven translocase (TET)-dioxygenase-mediated oxi-
dation of 5-methylcytosine (5mC)[1,2]. Production of
5hmC is required for DNA demethylation, however,
recent studies indicate 5hmC is abundant and stable
under specific biological contexts [3–5]. Such observa-
tions suggest a direct involvement for 5hmC in gene
regulation and function, independent of its role in
DNAdemethylation [3,6–8]. However, standard tech-
nologies used-to-date cannot effectively disambiguate
5mC and 5hmC, therefore the utility of existing gen-
ome-wide methylation resources is limited.
Application of approaches that quantify 5hmC abun-
dance at a genome-wide level are required to improve
our understanding of 5hmC and its role in the regula-
tion of tissue-specific gene expression. Furthermore,

comprehensive reference datasets of 5hmC in normal
tissues are required to effectively study its contribution
to disease.

5hmC is the most abundant form of oxidized 5mC
in human tissues [4]. It is now appreciated that a large
proportion of cellular 5hmC is chemically stable and
not simply present as an intermediate in the regen-
eration of naiive cytosine [5]. An increasing body of
evidence suggests this stable contingent of 5hmC
directly participates in the regulation of gene expres-
sion. Indeed, enrichment for 5hmChas been observed
among genomic regions positively-associated with
transcription, such as enhancers, DNase hypersensi-
tivity sites, transcription factor binding sites, and
sense-strand DNA [8–12]. Proteins capable of bind-
ing 5hmC have been identified, including transcrip-
tion factors and chromatin regulators [13–15],
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providing insight into the mechanism by which
5hmC regulates gene expression. For example, epige-
netic readers MDB3 and MeCP2 show preferential
specificity for 5hmC, and both have important roles
in transcriptional regulation [16]. Co-localization of
5hmC at sites of DNA damage has also promoted
discussion of its potential functions in the facilitation
and coordination of DNA repair [17,18]. Contrasting
with that of 5mC, distribution and abundance of
5hmC varies greatly across human tissues. Brain and
breast tissue possess themost abundant 5hmC among
human tissues [19]. Approximately four times greater
levels of 5hmC has been observed in brain relative to
breast tissue [19], and brain has therefore been the
focus of early studies characterizing the distribution of
5hmC in human tissues [20–25]. However, little is
known regarding the genomic distribution and func-
tion of 5hmC in breast tissue.

Emerging evidence also suggests dysregulation
of 5hmC abundance may actively contribute to
human cancer2 [6,26]. Global reduction of 5hmC
is observed among cancers of diverse tissues
[27,28], including breast cancer, and maintenance
of 5hmC protects against characteristic cancer-
associated CpG island hypermethylation [29,30].
Accordingly, mechanisms that abrogate TET
expression and function, ultimately reducing
5hmC production, appear to be ubiquitous across
human cancer [31–35]. While methylation
changes between normal and invasive-breast tissue
are well documented [36,37], previous studies have
not accounted for changes in 5hmC abundance.
Indeed, decreased levels of 5hmC have been
reported as a poor prognostic factor in breast
cancer [38]. Collectively, these observations sug-
gest dysregulation of 5hmC may contribute to
breast cancer: however, the detailed reference
maps of 5hmC in normal breast tissues required
to test this hypothesis are not yet available.

Quantification of DNA methylation through
sodium bisulfite (BS) treatment followed by hybridi-
zation to methylation arrays has been used exten-
sively in biomedical research however, this approach
cannot disambiguate 5mC from 5hmC. Oxidative
treatment of DNA using potassium perruthenate
converts 5hmC to 5-formylcytosine (5fC), which
can be further converted to uracil and finally thy-
mine using standard BS treatment. Consequently,
cytosine and 5hmC are converted to thymine by

the oxidative sodium BS (oxBS) procedure, while
5mC remains unconverted [39,40]. Tandem profil-
ing of BS and oxBS-treated DNA from the same
samples followed by hybridization to Infinium
DNAmethylation arrays allows accurate and reliable
quantification of 5hmC and 5mC [41,42]. In recent
years, the oxBS procedure has facilitated studies of
the genomic distribution and function of 5hmC in
human tissues [41,43,44].

Here, we utilize paired bisulfite (BS) and oxidative-
bisulfite (oxBS) DNA modification followed by
assessment using Infinium HumanMethylation450
arrays (450 K) to produce a genome-wide map of
5mC and 5hmC distribution in normal breast tissue.
While 5hmC levels throughout much of the breast
genome are low, we identify and describe genomic
loci containing elevated 5hmC. Furthermore, we
demonstrate that the distribution of high 5hmC is
dependent on genomic-context and is highly enriched
among breast-specific gene regulatory regions asso-
ciated with open chromatin and active transcription.
Finally, we demonstrate 5hmC enrichment among
regulatory regions in transformed and malignant
breast cancer cell lines and observe 5hmC enrichment
among CpG loci differentially methylated between
normal and invasive breast tissues. These findings
give insight into the potential functions of 5hmC in
breast tissue and provide a tissue-specific reference as
a resource for the scientific community.

Results

5hmC abundance and distribution in normal
breast tissue

To assess the genomic distribution of 5hmC in normal
breast tissue, we measured genome-wide 5hmC and
5mC in 18 normal breast tissue samples from 17
distinct deceased female donors with no histological
evidence of disease. All tissue donors were female
and spanned a wide range of ages and BMI values
(Table 1). Study donors were aged between 15 and 80
years (median = 58 years), weighed between 41 and
204 kg (median = 68 kg) and had BMI values between
15 and 63 (median = 25). To obtain total and single-
nucleotide resolution estimates for 5hmCand5mCwe
applied the OxyBS algorithm[45] to data from paired
BS and oxBS-treated DNA measured with 450K
arrays. Altered expression of enzymes that process
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cytosinemodifications onDNA (such asTET1, TET2,
DNMT3A, and DNMT3B) could potentially explain
the observed variation in total 5hmC across samples
therefore, we tested for correlation between total
5hmC and expression of enzymes that process cyto-
sine modification. Generally, there was no correlative
evidence between total 5hmC and gene expression of
cytosine modifying enzymes however, we did observe
a modest correlation between total 5hmC and
DNMT3A expression (r2 = 0.52, P= 0.03,
Supplementary Table 1). Supporting the hypothesis
that 5hmCmay have functions independent of its role
in regeneration of naïve cytosine, we tested the asso-
ciation between total 5hmC (that is, the sum of 5hmC
β-values across all CpGs in a sample divided by the
total number of CpGs profiled) and 5mC content
across all samples and no evidence of a significant
relationship was observed (linear regression P= 0.11,
Supplementary Figure 1). Variation in cell-type com-
position of heterogeneous tissues is known to be
a potential confounder in epigenomic studies [46]
and could impact 5hmC levels. To address this issue,
we estimated putative cell types and their proportions
using a reference-free cell-type deconvolution-based
approach (RefFreeEWAS) [47], which suggested two
major cell populations with varying proportions
across donors in these samples (Supplementary
Figure 2). However, no relationship was observed
between total 5hmC content and cellular proportions
(Supplementary Figure 2).

We next sought to evaluate the genome-wide dis-
tribution of 5hmC at the nucleotide level. Cumulative
density plots of mean 5hmC and 5mC at each mea-
sured CpG across all samples revealed that the major-
ity of CpGs had low levels of 5hmC and that mean
5mC levels across all CpGs had the expected bimodal

distribution (Figure 1(a)). Most CpGs also showed
a negative correlation between 5hmC and 5mC levels,
with only approximately 10% of all CpGs demonstrat-
ing a positive correlation (Figure 1(b)). We observed
the well-documented characteristic dependency of
CpG island context on 5mC abundance, with rela-
tively lower proportions of 5mC situated within CpG
island and CpG island shore regions compared to
open sea and shelf regions (Figure 1(c)). Despite the
substantially lower abundance of 5hmC, a similar pat-
tern of abundancewas observed across the CpG island
context strata to that of 5mC, with the lowest levels of
5hmC present within CpG island and CpG island
shores (Figure 1(d)). Functions of DNA methylation
are known to vary by genomic region therefore, we
posited that 5hmC may be differentially distributed
among CpG islands, shores, shelves, and open sea
regions in breast tissue. Based on the percentile dis-
tribution of median beta values across all donors, the
highest levels of both 5hmC and 5mC were observed
within CpG island shelf regions (Figure 1(c,d)).
Similar levels of 5hmC was seen across CpG open
sea, shores and shelve regions, while shores exhibited
greater levels of 5mC relative to open seas and shelves
(Figure 1(d)).

Genomic enrichment of 5hmC in normal breast
tissue

To provide insight into the potential functional rele-
vance of 5hmC in breast tissue, we sought to identify
CpG loci with the highest consistent abundance across
samples. Large numbers of CpGs had median 5hmC
beta-values near 0, though 66,341 CpG sites hadmed-
ian 5hmC levels above 5%, 14,733 CpG sites had
median 5hmC levels above 10%, and 2,881 CpG sites
had median 5hmC levels above 15% (Figure 2(a)).
Aiming to distinguish functional 5hmC signal from
background noise due to the generally sparse nature of
5hmC, we selected 3876 CpGs with the highest 1%
median 5hmC values, as calculated across all samples
(Figure 2(b)). These CpGs had a range of median
5hmC beta-values from 14% to 31% and were defined
as the ‘high 5hmC CpGs’ utilized in subsequent ana-
lyses. We utilized the quantile distribution of 5hmC
beta-values to measure the consistency of each high
5hmCCpGacross all tested breast tissues. 84.6%of the
high 5hmCCpGs (3281/3876) presentedwith a 5hmC
beta value of >0.15 (25th percentile of 5hmC beta-

Table 1. Donor characteristics.
Characteristics (n=17)

Age (years)
Median 58
Min, max (Range) 15, 80 (65)

BMI
Median 24.9
Min, max (Range) 15.9, 62.7 (46.8)

Race, n (%)
Caucasian 16 (94)
African-American 1 (6)

Tobacco use
Yes 10
No 7

All donors were female.
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value distribution) in at least half of the 18 tissue
samples, demonstrating these CpG loci were consis-
tently elevated across samples. In contrast, 12.9% (500/
3876) of the high 5hmCCpGswere among the top 1%
most variable, based on standard deviation, suggesting
more inter-subject variability. Basic genomic annota-
tion data, aswell as CpG-specificmedian and standard
deviation, are provided for the complete high 5hmC
CpG set in Supplementary Data 1. To assess the rela-
tionship between 5hmC and 5mC abundance at
a CpG-specific level, we compared 5hmC and 5mC
beta-values at all high 5hmC CpG sites across all
donors. Generally, the greatest levels of 5hmC were
observed for CpGs with intermediate to low levels of
5mC (Figure 2(c)), suggesting 5hmCmay function in
a manner distinct from 5mC. The majority of high
5hmC CpGs (3342/3876, 86.2%) were located within
promoters, exons or introns) with the remaining
CpGs located in intergenic regions (Supplementary

Data 2). cg16398761 (C14orf43/ELM2), cg25252585
(FXYDY), and cg04403423 (ATP1A1) represented
the three individual CpG loci with the most abundant
5hmC (median beta-values 0.310, 0.296, and 0.294
(Figure 2(b))), respectively. SEPT9, a member of the
septin family of cytoskeletal polymers [48], was asso-
ciated with the greatest number of high 5hmC CpGs
(a total of nine CpGs) of any gene covered on the
450K array (Supplementary Data 2). In addition,
there were 44 genes with at least five high 5hmC
CpG located within or proximal to them. An over-
whelming proportion of these high 5hmC CpGs
associated with these genes was located within intro-
nic regions (Supplementary Data 2). In addition,
many of the genes containing at least five high
5hmC CpGs were located within transcriptional
(co)activators or chromatin-modifying genes,
including NCOR2, ARID1B, DNMT3A, FOXO3,
and FOXP1, among others (Supplementary Data 2).

ba

dc

Figure 1. Abundance and genomic distribution of 5hmC in breast tissue. (a) Cumulative density distributions of median 5hmC and
5mC methylation beta-values breast tissue (n= 18). (b) Cumulative density distributions of Pearson and Spearman correlation
coefficients as calculated for the relationship between 5hmC and 5mC beta-values at each CpG loci across all breast tissues (n= 18).
Percentiles of median 5mC (c) and 5hmC (d) beta-values as calculated across all breast tissues and stratified by CpG island context
(islands, shores, shelves, and open sea regions).
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Furthermore, several tumor suppressor genes (TSGs;
MBNL1, ARID1B, DNMT3A, and FOXO3) as well as
oncogenes (AFF1, FOXP1, GNAS, LPP, MAML2,
PBX1, ZBTB16) were present among the 44 genes
associated with at least five high 5hmC CpGs, sug-
gesting dysregulation of 5hmC abundance at specific
loci could contribute to breast-related carcinogen-
esis. Unsupervised clustering analyses using the
high 5hmC loci did not clearly distinguish donors
by age, BMI or cell type proportion (Supplementary
Figure 3).

Previous studies in both non-diseased and diseased
tissue have suggested an enrichment for 5hmC
amongst regions involved in transcriptional

regulation and gene bodies [8,9,49]. Amongst the
high 5hmC CpGs, similar proportions were observed
up- and downstream (51.7% and 48.3%, respectively)
of the nearest canonical transcriptional start site (TSS)
(Supplementary Figure 4), with the majority situated
within at most 1kb of the TSS (Figure 2(d)).
Significant enrichment for the high 5hmC CpG loci
was observed among CpG island shore regions, with
relatively lower levels of enrichment among shelf and
open sea regions (Figure 3(a)). In contrast, CpG island
regions were strongly depleted of high 5hmC CpGs
(Figure 3(a)). To control for the varying proportion of
5hmC by CpG island context, we applied the
Cochran-Mantel-Haenzel test for enrichment

a

dc

2,881 
CpGs14,733 

CpGs66,341 
CpGs

3,876 CpGs
(high 5hmC 

CpGs)

b cg16398761 (C14orf43/ELM2)
cg25252585 (FXYDY)

cg04403423 (ATP1A1)

Figure 2. 5hmC is uniquely distributed in breast tissue. (a) Rank ordered distribution of CpG-specific median 5hmC as calculated
across 18 breast tissues. Purple, blue, and red lines, in conjunction with arrows and labels, indicate the number of CpG loci
with at least a minimum beta-value of 0.05, 0.10, and 0.15, respectively. (b) Rank ordered distribution of CpG-specific median
5hmC as calculated across 18 breast tissues, with the highest 1% mean 5hmC values (the ‘high 5hmC CpG sites’) across all
samples denoted in red. Green line denotes mean 5hmC value of the 3876th rank ordered high 5hmC CpG. (c) Scatter density
plot of 5hmC beta-value vs 5mC beta-value for all high 5hmC CpGs. Each high 5hmC CpG is plotted once for each sample.
Regions of orange and red indicate a higher density of CpGs, whereas darker (black) regions indicate sparsity. (d) High 5hmC
CpG site distribution relative to nearest canonical transcriptional start site (TSS). Vertical axis indicates the percentage of high
5hmC within each distance grouping denoted on the horizontal axis. Distance groupings provided for regions upstream and
downstream on canonical TSSs. kb; kilo bases.

402 O. M. WILKINS ET AL.



analyses of 5hmC among other genomic features,
allowing us to test the enrichment of 5hmC among
specific genomic features while adjusting for CpG
island context. We observed a substantial enrichment
for intronic 5hmC, yet a dearth of exonic and inter-
genic 5hmC (Figure 3(b)). Among repetitive DNA
elements, 5hmC demonstrated a significant enrich-
ment at SINE and LINE elements, as well as
a depletion among low complexity and simple repeats
(Supplementary Figure 5). No overlapping genomic
loci were identified between high 5hmC CpGs and
satellite or ncRNA repeats (Supplementary Figure 5),
suggesting a strong depletion of 5hmC among such
regions. 5hmC did not show a significant relationship
among regions containing long-terminal repeat
(LTR) elements (Supplementary Figure 5).

To test the enrichment of 5hmC among breast-
specific regulatory regions, we leveraged learned

chromatin states for normal breast myoepithelial
cells and human mammary epithelial cells
(HMECs). These chromatin states are derived
from the core 15-state model, learned through
the application of ChromHMM, a multivariate
hidden markov model, to consolidated epigen-
omes generated in the NIH Roadmap
Epigenomics Project [50,51]. ChromHMM states
in the core 15-state model represent active chro-
matin states associated with transcriptional activity
and seven associated with transcriptional repres-
sion. In breast myoepithelial cells, we observed
enrichment among several ChromHMM states
associated with active transcription, enhancer
regions (both genic and non-genic enhancers) as
well as regions annotated as having weak tran-
scription, flanking an active TSS, or regions flank-
ing an actively transcribed state (Figure 3(c)). In

Transcriptional features

OR (95% CI) P-value
1.00 (0.93-1.08) 9.9E-01
0.56 (0.49-0.64) 1.0E-19
1.74 (1.63-1.87) 7.5E-56
0.59 (0.54-0.65) 3.3E-32

Depletion Enrichment

a b
CpG Island context

OR (95% CI) P-value
0.16 (0.14-0.18) 7.2E-325
2.06 (1.93-2.20) 8.7E-98
1.20 (1.63-1.87) 5.8E-04
1.41 (1.32-1.50) 1.7E-25

Depletion Enrichment

c dChromHMM states

Depletion Enrichment

ChromHMM states

Depletion Enrichment

Breast myoepithelial cells Human mammary epithelial 
cells (HMECS)

OR (95% CI) P-value
0.39 (0.34-0.44) 9.6E-68
2.87 (2.61-3.14) 7.5E-95
4.00 (3.20-4.95) 1.2E-26
0.47 (0.40-0.54) 2.0E-33
1.25 (1.14-1.37) 3.0E-06
2.77 (2.42-3.15) 4.4E-42
4.05 (3.77-4.39) 4.5E-287
0.32 (0.12-0.70) 1.4E-03
0.15 (0.06-0.30) 7.1E-13
0.26 (0.09-0.62) 3.7E-04
0.22 (0.10-0.44) 6.6E-08
0.36 (0.25-0.51) 1.2E-11
0.12 (0.09-0.17) 7.0E-76
0.19 (0.14-0.25) 1.7E-61
0.40 (0.35-0.45) 1.5E-67

OR (95% CI) P-value

0.21 (0.17-0.25) 1.7E-98
2.00 (1.83-2.18) 7.0E-48
2.53 (1.83-3.42) 8.0E-08
0.68 (0.56-0.81) 4.8E-06
1.53 (1.41-1.66) 3.2E-23
3.42 (2.86-4.06) 3.7E-33
3.56 (3.31-3.82) 4.0E-220
0.12 (0.00-0.67) 4.3E-03
0.06 (0.03-0.11) 6.4E-65
0.32 (0.09-0.82) 1.3E-02
0.11 (0.03-0.27) 1.4E-11
0.48 (0.29-0.74) 3.4E-04
0.38 (0.30-0.49) 4.1E-20
0.43 (0.36-0.50) 2.1E-35
0.50 (0.46-0.55) 8.7E-56

Figure 3. 5hmC is enriched among genomic regions associated with transcriptional regulation. Forest plots show enrichment of high
5hmC CpGs, as determined across 18 normal breast tissue samples, among (a) CpG island regions (CpG islands, shores, shelves, and
open sea regions), (b) transcriptional features (promoters, introns, exons, or intergenic regions), (c) ChromHMM states in breast
myoepithelial cells (E027), and (d) ChromHMM states in human mammary epithelial cells (HMECs, E119). Enrichment was determined
using Fisher’s exact tests (in a) or Cochran-Mantel-Haenszel tests (in b–d) to calculate odds ratios (ORs) and 95% confidence intervals
(95% CIs), with the 450K background set of CpGs used as the background, while controlling for CpG island context (islands, shores,
shelves, open seas). Numerical values for odds ratios and P-values are provided in tables adjacent to each forest plot.
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contrast, all seven regions associated with tran-
scriptional inactivity were strongly depleted for
5hmC (Figure 3(c)). The strongest depletions
were observed for repressed PolyComb regions
(OR, 95% CI; 0.15, 0.06–0.30), and heterochroma-
tin (OR, 95% CI; 0.12, 0.09–0.17; Figure 3(c)).
Three states associated with transcriptional activity
(active TSSs, regions with active transcription, and
ZNF genes/repeats) also demonstrated a depletion
for 5hmC. An almost identical trend was observed
for enrichment of 5hmC among ChromHMM
states in HMECs, with the exception of larger
enrichment among genic enhancers in HMECs
(OR, 95% CI; 3.42, 2.86–4.06; Figure 3(d)) com-
pared with breast myoepithelial cells (OR, 95% CI;
2.77, 2.42–3.15; Figure 3(d)), and smaller enrich-
ment at regions flanking active transcription in
HMECs (OR, 95% CI; 2.53, 1.83–3.42; Figure 3

(d)) compared to breast myoepithelial cells (OR,
95% CI; 4.00, 3.20–4.95; Figure 3(d)). These results
were consistent with enrichment profiles observed
for individual histone modifications in breast
myoepithelial cells and HMECs (Supplementary
Figure 6). Together, these data highlight individual
genes with increased 5hmC abundance in normal
breast tissue and demonstrate 5hmC is associated
with transcriptional activity throughout the breast
genome.

Relation of 5hmC to breast-specific gene
expression programs

Given the observed enrichment of 5hmC among
breast-specific regulatory regions, it is plausible that
a higher-order structure exists for its distribution
such that 5hmC is involved in the regulation of

Table 2. Genomic regions enrichment of annotations tool (GREAT) analysis of genomic regions containing high
breast 5hmC CpGs.

GO: Biological Process
Hyper fold
enrichment

Hyper Raw
P-value

Hyper FDR
Q-value

Lactate oxidation 28.3 2.1E-03 2.9E-02
Positive regulation of mast cell differentiation 17.5 1.1E-06 6.3E-05
Interleukin-17 production 11.7 4.6E-07 3.2E-05
Negative regulation of cell adhesion molecule production 11.3 4.2E-04 8.6E-03
D-serine biosynthetic process 10.3 1.2E-04 3.2E-03
Prolactin signaling pathway 9.5 9.6E-06 3.8E-04
Development of secondary male sexual characteristics 9.4 1.1E-05 4.1E-04
D-serine metabolic process 9 2.4E-04 5.4E-03
Dendritic spine maintenance 8.3 4.2E-07 3.0E-05
Negative regulation of interleukin-2 biosynthetic process 8.2 1.0E-04 2.7E-03
GO: Molecular Function
Phosphatidylinositol 3-kinase catalytic subunit binding 12.40 1.8E-03 4.3E-02
A1 adenosine receptor binding 10.72 5.2E-04 1.9E-02
D-serine ammonia-lyase activity 10.33 1.2E-04 5.9E-03
Threonine racemase activity 10.33 1.2E-04 5.9E-03
Serine racemase activity 10.33 1.2E-04 5.9E-03
Interleukin-18 binding 9.23 9.3E-04 2.9E-02
Nicotinamide N-methyltransferase activity 9.18 2.2E-04 9.3E-03
Sequence-specific DNA binding transcription factor recruiting
transcription factor activity

9.02 2.4E-04 9.9E-03

Polo kinase activity 9.02 1.0E-03 3.0E-02
CCR5 chemokine receptor binding 8.90 1.5E-05 9.6E-04
GO: Cellular Process
Replication fork protection complex 14.17 1.2E-03 1.9E-02
Host cell membrane 7.78 1.8E-03 2.5E-02
Cortical endoplasmic reticulum 6.12 1.4E-03 2.2E-02
Growing cell tip 5.34 3.8E-04 7.5E-03
Transforming growth factor beta receptor homodimeric
complex

5.29 1.6E-04 3.9E-03

Actin cap 5.03 5.4E-04 9.4E-03
Extrinsic to external side of plasma membrane 4.25 3.1E-03 4.2E-02
Mitochondrial outer membrane translocase complex 4.19 3.6E-04 7.3E-03
MLL5-L complex 3.75 2.2E-04 4.7E-03
Cell tip 3.65 3.4E-03 4.5E-02
GO, Gene Ontology; FDR, False discovery rate
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critical gene sets. To investigate potential enrichment
of 5hmC among specific gene regulatory programs,
genomic coordinates of the high 5hmC CpGs were
tested for gene set enrichment using the Genomic
Regions Enrichment of Annotations Tool (GREAT).
GREAT uses the genomic coordinates of each loci
included in the input to associate these coordinates
with individual genes [52]. In total, 3949 unique
genes were associated with the genomic coordinates
covered by the high 5hmC CpG loci (Supplementary
Data 3). CpG loci measured on the 450K array were
used as the background test set in these analyses. The
ten most enriched gene sets with FDR Q-values
<0.05 from each of the; i) biological process,
ii) molecular function, and iii) cellular process gene
ontology analyses are presented in Table 2. Results
for all gene sets significant at FDR < 0.05 are pro-
vided in Supplementary Data 4. The most enriched
gene set in the biological process analysis was for
lactate oxidation (fold enrichment; 28.3, hypergeo-
metric FDRQ-value; 0.03, Table 2). Among themost
enriched gene sets were also those relating to pro-
duction of interleukins, function and activity
of various immune cell types, and several
biosynthetic processes including D-serine synthesis
(Table 2). Interestingly, enrichment of the prolactin
signaling pathway gene sets suggests potential invol-
vement of 5hmC in regulating breast milk produc-
tion (Table 2). Enrichment of molecular function
gene sets relating to interleukin binding and
D-serine biosynthesis activity further supported the
results observed in the analyses of biological process
gene sets. Enrichment was also observed for several
molecular function gene sets related to binding and
activity of TGF-beta (Supplementary Data 5), sup-
porting the observation that five of the high 5hmC
CpGs were located within the gene body of TGFBR2
(Supplementary Data 5). Consistent with recent
findings that 5hmC may be involved in the regula-
tion genome stability, the most strongly enriched
gene set in the cellular process ontology analysis
was related to the replication fork protection com-
plex (fold enrichment; 28.3, hypergeometric FDR
Q-value; 0.02, Table 2). In addition, several of the
enriched cellular process gene sets related to cell tip
and membrane regulation (Table, Supplementary
Data 6).

Concordant with the hypothesis that 5hmC may
participate in tissue-specific regulation of critical

gene sets, several studies have observed a positive
relationship between 5hmC abundance and tissue-
specific gene expression. To explore the relation of
5hmC and gene expression in normal breast tissue,
we utilized transcriptomic data from 292 normal
breast tissue samples collected through the GTEx
(Genotype-Tissue Expression) project. Median
expression values across all 292 samples were
used to assign individual transcripts to ‘high’
(median expression ≥50th percentile) or ‘low’
(median expression <50th percentile) expression
groups: and these groups were then tested for
enrichment of genes associated with high 5hmC
CpGs. We observed a significant positive enrich-
ment for genes associated with high 5hmC loci
among transcripts assigned to the ‘high’ expression
group (OR, 2.1; 95% CI, 1.95–2.27; P-value, 2.1E-
11; Supplementary Table 2). These results suggest
that 5hmC localizes to actively expressed genes in
normal breast tissue. To further interrogate the
relationship between 5hmC abundance and gene
expression in normal breast tissue, we measured
transcript levels of four genes with known func-
tions in breast tissue and multiple high 5hmC CpG
loci. Generally, 5hmC was positively correlated
with expression across the measured transcripts
(Figure 4(a), Supplementary Data 8), while
5mC showed mostly negative correlations with
gene expression (Figure 4(b), Supplementary
Data 8). Among the most statistically significant
correlations were those of cg23267550 and
cg01915609 with RAB32 expression for both
5hmC and 5mC (Figure 4(d,e)). The remaining
four high 5hmC CpGs associated with RAB32
demonstrated positive correlations between
5hmC and gene expression, while exhibiting nega-
tive correlations between 5mC and gene abun-
dance, but did not reach statistical significance
(Figure 4(a,b)). All six of the high 5hmC CpGs
associated with RAB32 were located in the within
1500 bp of the TSS (TSS1500), at CpG island shore
regions (Figure 4(c)). Across the transcripts mea-
sured for breast cancer tumor suppressor
RASSF1A, there was evidence for positive correla-
tions between 5hmC and expression for three
CpG-expression relationships, while almost all of
the tested CpGs showed negative correlations
between expression and 5mC (Supplementary
Data 8). Although several studies have suggested
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roles for 5hmC in the regulation of alternative
splicing, we did not observe dramatic modification
of 5hmC-gene expression correlations by tran-
script-specific expression of RASSF1 and
DNMT3A (Supplementary Data 9).

Finally, to explore the potential relationship
between 5hmC and breast-specific gene expression
programs, we utilized Locus Overlap Analysis
(LOLA) to test genomic coordinates of high 5hmC
CpGs for enrichment among known transcription

factor-binding sites (TFBS) and regulatory regions in
breast cell line data from ENCODE and the cistrome
collection. Across three breast cancer cell lines from
the cistrome collection enrichment of 5hmC was
observed for 15 TFBS including estrogen receptor 1,
ESR1 (FDR <0.05, Supplementary Figure 7,
Supplementary Data 10). Binding sites for other tran-
scription factors involved in the regulation of breast-
specific regulatory programs were also observed,
including PGR (progesterone receptor), FOXA1, and

CpG Transcript Chr:Pos
Genomic 
context

CpG island 
context

cg02664328 RAB32 6:146864186 TSS1500 Shore
cg01892997 RAB32 6:146864209 TSS1500 Shore
cg18987220 RAB32 6:146864247 TSS1500 Shore
cg23267550 RAB32 6:146864352 TSS1500 Shore
cg01915609 RAB32 6:146864388 TSS1500 Shore
cg24744430 RAB32 6:146864390 TSS1500 Shore
cg26279021 TWIST1 7:19158349 TSS1500 Shore
cg27334919 TWIST1 7:19158378 TSS1500 Shore
cg14391419 TWIST1 7:19158647 TSS1500 Shore
cg10126205 TWIST1 7:19158664 TSS1500 Shore
cg19854901 RASSF1 3:50376216 TSS1500/Body Shore
cg24049629 RASSF1 3:50376475 TSS1500/Body Shore
cg17742416 DNMT3A 2:25499619 Body Shore
cg23009818 DNMT3A 2:25499764 Body Island
cg00050692 DNMT3A 2:25524877 Body OpenSea
cg20702417 DNMT3A 2:25538295 5'UTR OpenSea
cg17207266 DNMT3A 2:25562957 5'UTR Shore
cg05896193 DNMT3A 2:25563141 5'UTR Shore

a

dc

b

E

5mC5hmC

Figure 4. 5hmC is positively associated with gene expression. Spearman correlation coefficients of the relationship between 5hmC
(a) and 5mC (b) abundance and gene expression at high 5hmC CpGs associated with candidate genes of interest. Colors denote the
methylation-expression relationship of CpGs associated with the genes denoted on the x-axis. Bubble size corresponds to statistical
significance (-Log10 P-value) associated with the correlation coefficient. (c) Genomic annotation for the 18 high 5hmC CpGs tested for
correlations between methylation and gene expression. (d and e) Scatter plots of subject-specific 5hmC or 5mC beta-values for
cg01915609 (d) and cg23267550 (e) against Log2 expression values for RAB32. Regression line indicated in blue with 95% confidence
bands in gray.
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GATA3 (Supplementary Figure 7). Enrichment of
5hmC was observed among TFBS from the
ENCODE project collection revealed enrichment
among c-Fos binding sites in normal-like MCF10A
cells stably transformed through forced expression of
the Src oncoprotein, and maintain a transformed epi-
genetic landscape [53]. Further enrichment of 5hmC
was observed among GATA3 binding sites in ER+
breast cancer cell line MCF-7 cells (Supplementary
Data 10) andH3K4me1-marked regions in T47D cells
from the cistrome-epigenome collection, suggesting
enrichment among active and poised enhancers
(Supplementary Data 10). Collectively, these data
demonstrate a positive relationship between 5hmC
abundance and gene expression in breast tissues,
and suggest 5hmC may coordinate expression of
breast-specific gene regulatory programs in normal
and potentially malignant breast tissues.

Normal breast tissue 5hmC is enriched among
genomic regions related to breast carcinogenesis

Epigenetic deregulation is an early event in carcino-
genesis. Substantial deviation from DNAmethylation
patterns in normal breast tissue has been observed in
premalignant lesions as well as in advanced disease
[36,37]. Although 5hmC tends to be depleted in pro-
liferating cells [27,28], recent studies have suggested
5hmC may be involved in the regulation of cancer-
related phenotypes [30,43,54,55]. To assess the poten-
tial contribution of 5hmC to breast carcinogenesis, we
utilized available data describing regulatory regions
present in variant human mammary epithelial cells
(vHMECs), proliferative clones of HMECs that
invariably result during cell culture, and share several
phenotypes with premalignant breast cancers.
Specifically, we identified chromatin states (defined
using the core 15-state ChromHMM model) that
were non-overlapping between parental HMECs and
variant HMECs (that is, chromatin states lost or
gained during the progression from HMEC to
vHMEC). We observed a substantial enrichment of
CpG loci with high normal breast tissue 5hmC among
several states associated with active chromatin regions
(Figure 5(a)). In particular, enhancer regions (both
genic and non-genic enhancers) as well as regions
annotated as having weak transcription, flanking an
active TSS, and regions flanking an actively tran-
scribed state, demonstrated enrichment for 5hmC

(Figure 5(a)). Active TSSs, strongly transcribed
regions and ZNF gene/repeats regions represented
exceptions to this trend, demonstrating depletion for
5hmC (Figure 5(a)). Among the chromatin states
associated with transcriptional inactivity, all seven
were depleted for 5hmC, with the strongest depletion
observed for regions of heterochromatin (OR, 95%
CI, 0.11 (0.05–0.21); Figure 5(a)). Similar patterns of
enrichment for normal breast tissue 5hmC were
observed for chromatin states either lost or gained
during the progression from HMEC to vHMEC
(Supplementary Figure 8). These data suggest sites
with high 5hmC in normal breast tissue are enriched
among regions of transcriptionally active chromatin
that may become altered during transformation, indi-
cating dysregulation of 5hmC abundance at these loci
may contribute to this process.

In addition to differences in chromatin organiza-
tion, extensive alterations between histologically nor-
mal and premalignant or invasive lesions have been
observed at the level of DNA methylation [36,37].
However, due to technical constraints, prior work
comparing DNA methylation profiles between such
tissues has been unable to distinguish 5hmC from
5mC. We sought to investigate whether high 5hmC
loci identified in normal breast tissue weremore likely
to be altered in breast tumors than other CpG loci.
First, at the same 3876 high 5hmC CpG loci we
identified in normal breast tissue, we compared
DNA methylation between normal (n= 95) and inva-
sive-breast tissue (n= 753) from donors in the TCGA
project. Of the 3572 CpG loci available for testing,
1712 (47.9%) were differentially methylated between
normal and invasive tissue in limma models adjusted
for subject age and adjusted for multiple testing using
Bonferroni correction (Figure 5(b)). 1072 (62.6%) of
the significantly differentially methylated loci had
negative regression coefficients, suggesting 5hmC is
more commonly lost from high 5hmC loci during
breast cancer development, consistent with the obser-
vation that 5hmC is depleted in cancer tissues [27,28].
Next, using randomly selected CpGs in the normal
versus tumor comparison we created a null P-value
distribution (see methods and Supplementary
Figure 8) and observed that the P-values for high
5hmC CpGs as a distribution were significantly
lower (Kolmogorov–Smirnov test, P < 0.05, Table 3,
Supplementary Figure 10A). In analyses stratified by
intrinsic breast cancer subtype (luminal A, luminal B,
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HER2, basal, and normal-like) we observed signifi-
cantly lower P-values for differential methylation of
high 5hmC CpGs between normal and tumor tissues
from luminal A, luminal B, HER2, and basal-like
breast cancers (Table 3, Supplementary Figure 10(b–
f)). This effect appeared strongest in analyses of lumi-
nal A and basal-like breast cancers (Table 3,
Supplementary Figure 10(b–f)). P-values obtained
from an identical analysis using only tumor samples
classified in the normal-like subtype showed no sig-
nificant difference from that of randomly selected
CpGs. As extensive changes in DNA methylation
have been observed to occur in ductal carcinoma
in situ (DCIS) [36], we repeated the procedure
above using DNA methylation data from adjacent
normal (n= 11) and DCIS tissue samples (n= 28)
obtained from the New Hampshire Mammography
Network (NHMN). In the comparison of DCIS to
normal DNA methylation analysis, high 5hmC
CpG sites identified in normal breast again had
a distribution of P-values significantly lower than

randomly selected CpGs (P= 0.017, Table 3,
Supplementary Figure 11). Together these results sug-
gest 5hmC dysregulation may contribute to breast
cancer development, and an appreciable fraction of

Tumor (n = 753) vs Normal (n = 95) 
Differential DNA methylation 

62.6% CpGs 
(P<0.05)

37.4% CpGs 
(P<0.05)

a Non-overlapping ChromHMM states 
between HMEC and vHMECs

OR (95% CI) P-value

0.65 (0.45-0.91) 1.1E-02
1.72 (1.52-1.93) 2.3E-17
2.37 (1.43-3.70) 7.5E-04
0.67 (0.51-0.88) 2.1E-03
1.36 (1.22-1.52) 2.8E-08
3.51 (2.88-4.25) 8.4E-28
2.35 (2.11-2.62) 1.5E-45
0.00 (0.00-0.68) 7.9E-03
0.11 (0.05-0.21) 2.2E-24
0.28 (0.10-0.62) 2.2E-04
0.18 (0.06-0.39) 1.3E-08
0.68 (0.49-0.92) 1.1E-02
0.50 (0.40-0.62) 1.3E-12
0.53 (0.46-0.61) 1.1E-23
0.71 (0.62-0.80) 5.9E-09

b

Depletion Enrichment

Figure 5. Normal breast tissue 5hmC is enriched among regions relevant to breast carcinogenesis. (a) Forest plot of high 5hmC CpG
enrichment among non-overlapping ChromHMM states between parental HMECs (E027) and variant HMECs (vHMECs, E028).
Cochran-Mantel-Haenszel tests to calculate odds ratios (ORs) of 5hmC enrichment, and 95% confidence intervals (95% CIs), with
the 450K background set of CpGs used as the background, while controlling for CpG island context (islands, shores, shelves, open
seas). Numerical values for odds ratios and P-values are provided in the adjacent table. No lower bound is presented for the
enrichment of 5hmC among ZNF/Rpts as no high 5hmC CpG sites were identified that overlapped regions annotated as ZNF/Rpts. (b)
Volcano plot shows results from 3572 age-adjusted multivariable linear (limma) models of differential methylation across normal
(n = 95) and tumor tissue (n = 753) for each of the high 5hmC CpGs. Red points demonstrated statistically significant differential
methylation status across normal and tumor tissues after correction for multiple testing. Dashed red line indicates the Bonferroni
significance threshold for 3572 tests (P = 1.3E-05).

Table 3. Statistical comparison of P-value distributions obtained
in differential methylation analyses between tumor/DCIS and
adjacent normal tissues.

Kolmogorov-Smirnov
test

Cohort n (cases) n (normal) D-statistic P-value

TCGA (invasive-
disease)
All subtypes 753 95 0.032 4.6E-02
Luminal A 399 95 0.090 7.1E-13
Luminal B 134 95 0.073 1.2E-08
HER2 41 95 0.057 2.2E-05
Basal 129 95 0.120 < 2.2E-16
Normal-like 27 95 0.027 1.5E-01

NHMN (DCIS) 10 28 0.036 1.7E-02

Two-sided Kolmogorov–Smirnov (KS) tests were used to compare
P-value distributions from a randomly generated CpG set (see
Methods) with those obtained from differential methylation analyses
in the indicated data sets. TCGA, The Cancer Genome Atlas; NHMN,
New Hampshire Mammography Network.
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the changes may occur early in the carcinogenic
process.

Discussion

While the distribution and functions of 5mC in
various cellular contexts have been studied at
depth, much less is known about the importance of
other cytosinemodifications. Traditional approaches
utilizing DNA BS treatment to distinguish between
cytosine and 5mC have been limited, as they are
unable to disambiguate 5mC from its oxidized
forms, limiting the utility of existing datasets for
investigations of epigenetic regulation. Here, we per-
formed tandem BS and oxBS treatment of DNA
from normal breast tissue coupled with 450
K arrays for DNA methylation to estimate relative
5mC and 5hmC proportions and construct
a genome-wide map of 5hmC in breast tissue.
5hmC was generally depleted compared with 5mC
as expected, but specific loci with recurrent 5hmC
across individual samples were identified. Regions
containing abundant 5hmC were enriched among
enhancers and transcriptionally active chromatin
regions and depleted in transcriptionally repressed
areas of the genome. Furthermore, we provide evi-
dence suggesting deregulation of 5hmC at these loci
may contribute to breast carcinogenesis. Together,
our findings provide insight into the distribution and
potential functions of 5hmC in mammary tissues,
while providing the research community with a rich
foundational resource upon which to further study
the importance of 5hmC in a tissue-specific context.

Previous studies have observed a lack of obvious
correlation between levels of 5mC and forms of oxi-
dized cytosine in individual tissues [4,56]. Such find-
ings suggest the abundance of oxidized cytosine may
be subject to a higher-order regulation in a tissue-
specific context. Indeed, active DNA demethylation
controls various cellular processes such as somatic cell
reprogramming [57,58], chromatin accessibility
[13,15,59], and numerous processes involved in cell
fate specification [60–62]. Enrichment of 5hmC
among enhancers [8,9,49], open chromatin[8], and
gene bodies [8,43,49,63] observed in multiple cell
types supports the proposal that 5hmC is
a functional epigenetic mark involved in positive reg-
ulation of gene expression. Consistent with these find-
ings, we found 5hmC enrichment among introns,

enhancers, and regions with transcriptionally active
chromatin. Furthermore, we observe a depletion of
high 5hmC loci among CpG island regions, while an
enrichment at CpG island shore regions, consistent
with previous findings [8,24], as well as models sug-
gesting the presence of 5hmC at CpG island shore
regions prevents methylation encroachment of pro-
moter CpG islands in cancer[30]. Consistent with
prior studies, We also observe significant enrichment
of high 5hmC CpGs among CpG island shelf and
open sea regions [8,24]. While these findings suggest
5hmC may serve a regulatory role in shelf and open
sea regions, themechanistic properties of its functions
in these regions are likely distinct from that observed
at CpG island shore regions. Among repetitive DNA
elements, we observed an enrichment of breast tissue
5hmC among SINE and LINE repeats, while relatively
depleted at satellite, low complexity, and simple
repeats. Similarly, embryonic stem cells (ESCs) have
been reported to show an enrichment of 5hmC
among SINE and LINE repeats, while additionally
demonstrating enrichment at LTR and satellite
repeats[11]. In brain tissues, 5hmC is enriched
among both SINE and LTR elements, while depleted
at LINE and satellite repeats[25]. Despite growing
appreciation for transposable elements as direct
contributors to gene regulatory networks [64], the
tissue-specific functions of these elements are poorly
understood. 5hmC-facilitated mobilization of trans-
posable elements that serve productive functions in
tissue-specific regulatory networks presents
a plausible explanation for the enrichment of 5hmC
among specific repeat elements, therefore, future stu-
dies leveraging the genomic distribution of 5hmC
may contribute to elucidating roles of specific regula-
tory elements in gene regulation. Furthermore, future
work should also aim to address how repeat element-
mediated regulation of gene function is impacted by
the global decrease in total 5hmC content observed in
cancer [9,55,65]. Mobilization of repetitive DNA ele-
ments due to loss of 5mC is known to contribute to
carcinogenic processes [66,67], therefore understand-
ing the function of 5hmC during these processes is
required to more completely understand the roles of
repetitive elements in cancer.

Representation of multiple transcriptional co-
(activators) and chromatin regulators, some of
which hold established functions in breast tissue,
among the genes with greatest 5hmC abundance
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suggests involvement of 5hmC in breast tissue-
specific gene expression control. Gene set enrich-
ment analyses of those genes containing the most
abundant 5hmC suggested a potential function for
5hmC in regulation of immune cell activity, TGF-
beta regulation, and cell motility. Additionally, we
provide preliminary data suggesting 5hmC is asso-
ciated with the expression implicating actively
transcribed genes in normal breast tissues. While
we did not observe evidence implicating 5hmC in
the regulation of alternative splicing, studies that
more comprehensively profile transcript levels in
breast tissue will be required effectively explore
this relationship. Collectively, these findings reveal
a unique distribution of 5hmC in normal breast
tissue that warrants further study.

Although decrease of total 5hmC content has
been observed invariably over a wide range of
cancers [28,55,65], the contribution of locus-
specific changes in 5hmC levels to cancer patho-
genesis is not well understood. Emerging evidence
suggests changes in 5hmC abundance regulates
oncogenic processes in cancer, as has been
observed in pancreatic ductal adenocarcinoma,
glioblastoma, and breast tumor initiating cells
[43,68–70]. The identification of several oncogenes
and tumor suppressor genes associated with sev-
eral CpG loci with abundant 5hmC in normal
breast tissues supports the hypothesis that dereg-
ulation of 5hmC could contribute to oncogenic
processes. Of particular note, the gene associated
with the greatest number of high 5hmC CpGs,
SEPT9, a member of the septin family of cytoske-
letal polymers, has been suggested to function as
both a tumor suppressor and oncogene across
several cancer types [71], including breast cancer
[72–74]. Production of several SEPT9 isoforms
with distinct functions may provide an explana-
tion as to why opposing roles in oncogenic pro-
cesses have been described [48,75]. Promoter
methylation status of isoform Sept9_i2 currently
forms the basis for a blood-based screening test for
colorectal cancer[76]. Recently, downregulation of
Sept9_i2 via promoter hypermethylation was
observed in breast cancer cell lines [75], suggesting
potential tumor suppressive functions.
Concordantly, Sept9_i2 promoter hypermethyla-
tion is also detectable in circulating tumor DNA
of breast cancer patients [77]. Given our

observation that SEPT9 contains several high
5hmC CpG loci, further studies to resolve the
relative distributions of 5mC and 5hmC among
promoter regions of SETP9 isoforms in breast
cancer are warranted. Furthermore, our findings
that normal breast tissue 5hmC is enriched among
enhancer regions in vHMEC cells, suggests main-
tenance of enhancer-specific 5hmC may be
required for maintenance of their premalignant
characteristics. While these results are encoura-
ging, it should be noted the vHMECs likely do
not holistically represent the epigenetic landscape
of premalignant breast cancer, and future work
should attempt to validate these findings in other
models of early breast cancer. Additional evidence
that 5hmC contributes to disease-relevant pro-
cesses was obtained from our observation that
normal breast 5hmC is enriched among estrogen
receptor alpha (ESR1) binding sites in multiple
breast cancer cell lines. In addition to ESR1, itself
a critical determinant of estrogen therapy treat-
ment response in ER+ breast cancer [78], our
findings that 5hmC is enriched among binding
sites for FOXA1, GATA3, and the RAR family
transcription factors, all known to function coop-
eratively with ESR1 in normal and malignant
breast tissue [79–81], further supports the notion
that locus-specific maintenance of 5hmC contri-
butes to breast cancer pathogenesis. Whether CpG
loci within these regulatory regions are subject to
locus-specific increases in 5hmC or are protected
from 5hmC loss during carcinogenesis will require
more detailed interrogation of 5hmC at these loci
across normal and malignant tissues. Furthermore,
our observation that the high 5hmC CpGs identi-
fied in this cohort are enriched among differen-
tially methylated loci between normal and
malignant tissue from several intrinsic breast can-
cer subtypes, as well as differentially methylated
loci between normal and pre-invasive tissues (duc-
tal carcinoma in-situ), supports the hypothesis that
alterations in 5hmC contribute to breast cancer
pathogenesis, and that a portion of these altera-
tions may occur in early stages of carcinogenesis.
Given the findings that TET1 is commonly down-
regulated in hormone receptor-positive breast can-
cers [82,83], yet overexpressed in triple-negative
breast cancers (TNBCs) [84], it will be important
for future work to examine the directionality of
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this phenomenon at the level of individual genes
to assess the contribution of 5hmC dysregulation
to cancer-related processes. More generally, total
genomic 5hmC in breast tumors has also been
observed as a poor prognostic indicator [38], sug-
gesting that 5hmC abundance may also contribute
to tumors progression. Studies profiling 5hmC at
base-resolution in tumors with available follow up
and outcome data are required to further explore
this relationship, and the resource detailed in this
manuscript provides a healthy reference popula-
tion that should be leveraged in such studies.

While we are encouraged by the consistency of
our findings with previously published work, our
measurements of 5hmC are aggregates across
breast tissue cell types, which could introduce
noise into our data. Though we addressed this
issue using a reference-free cell type deconvolution
method, we recognize that larger studies will pro-
vide more precise estimates of cell type propor-
tions and their potential variation across donors.
Furthermore, while we did not observe significant
clustering of individuals in this cohort-based on
5hmC levels, larger studies will be required to
explore population-level variability in the abun-
dance and distribution of 5hmC in a tissue-
specific manner. Finally, while not providing the
level of coverage achieved by next-generation
sequencing-based (NGS) technologies, the array-
based approach used here provides a versatile bal-
ance between sample throughput, coverage, and
cost, enabling effective population-scale profiling.
Importantly, the 450 K array provides diverse cov-
erage over unique genomic features, including
CpG islands and their associated regions (shores,
shelves, and open seas), promoters, enhancers,
gene bodies, untranslated regions, MHC regions,
and repetitive sequences [85,86]. For future
research, both array- and NGS-based approaches
will be valuable for improving our understanding
of the tissue-specific distribution and function of
5hmC in human tissues.

Conclusions

In this work, we analysed data from tandem pro-
cessed BS and oxBS-treated methylation arrays to
produce a genome-wide map of 5hmC and 5mC in
normal breast tissue. Identification of multiple

transcriptional (co)-activators and chromatin-
modifying genes containing elevated levels of
5hmC, including several breast-specific TSGs, sug-
gests 5hmC may be involved in the regulation of
key transcriptional programs in normal breast tis-
sue. Consistent with previous findings, 5hmC was
highly enriched among regulatory regions asso-
ciated with transcriptionally active chromatin,
while depleted among regions associated with
gene repression. Additionally, we provide evidence
that dysregulation of 5hmC in breast tissue may
contribute to carcinogenesis. These findings
extend our understanding of epigenetic regulation
in normal breast tissue and provide a reference
that can be used in future studies investigating
the roles of 5hmC in normal and diseased breast
tissue.

Methods

Study population

Fresh-frozen disease-free breast tissue samples
(n = 18) were obtained at autopsy from 17 distinct
deceased female donors with no histological evi-
dence of disease, sourced from the National Disease
Research Interchange (NDRI). Cause of death varied
between donors, however, was generally unrelated to
the presence of any chronic conditions, which were
generally absent among donors with the exception of
two individuals diagnosed with diabetes, one indivi-
dual diagnosed with bladder cancer, and one indivi-
dual diagnosed with pancreatic cancer, neither of
whom received chemotherapy or radiation treat-
ment. Median time from death to an autopsy was
approximately 5.3 h, with a range of 0–11 h among
donors. No relationship was observed between
time to autopsy and total 5hmC content.
Samples from pre-invasive lesions (ductal carci-
noma in-situ, DCIS, n=40) and adjacent-normal
were obtained through the New Hampshire
Mammography Network (NHMN) and has
been described previously [37], while data from
tumor (n=753) and adjacent-normal tissue (n =
95) samples was sourced from The Cancer
Genome Atlas (TCGA) project. Intrinsic breast
cancer subtype status (luminal A, luminal B,
basal, HER2, and normal-like, described pre-
viously [87]) of TCGA subjects were obtained
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using the PanCancerAtlas_subtypes function,
available from R package TCGAbiolinks [88].
All study donors from the NHMN and TCGA
projects provided written informed consent at
the time of surgery.

DNA extraction, conversion, and methylation
profiling

DNA extraction was performed with the QIAmp
DNeasy tissue kit (Qiagen) according to the man-
ufacturer’s instructions. DNA conversion and
methylation profiling have been described pre-
viously. Briefly, the quantity and quality of breast
tissue DNA were determined with the Qubit 3.0
fluorometer (Life Technologies). Tandem bisulfite
and oxidative bisulfite conversion were performed
using the TrueMethyl® kit v.1.1 (Cambridge
Epigenetix) protocol optimized for Infinium
HumanMethylation450 arrays (450 K, Illumina,
Inc., San Diego, CA), with an input of 4ug per
sample. Genomic DNA was then sheared to ~10
kb fragments using g-TUBE (Covaris) and purified
with the Gene-JET PCR Purification kit (Thermo
Scientific). oxBS conversion was then performed
with 1.4ug of sheared DNA according to the
TrueMethyl protocol, and 1.05ug for bisulfite con-
version using manufacturer recommended mass
and volume. ssDNA was recovered and quantified
with Qubit and processed on Illumina 450
Kmethylation arrays at the UCSF genomics core
facility.

RNA extraction and nanostring gene expression

RNA extraction was performed using the RNeasy
Mini tissue kit (Qiagen) according to the manu-
facturer’s instructions. Qubit 3.0 was used to
determine RNA quality and quantity prior to
expression profiling. Absolute expression quantifi-
cation was performed using the nCounter Analysis
System (NanoString Technologies). Transcripts
selection was performed in conjunction with pre-
viously published work [43], and limited to genes
with known functions in breast tissue and an
appreciable abundance of 5hmC, as well as being
amenable to probe design for the nCounter assay.
Epigenetic enzymes TET1, TET2, TET3, DNMT3A
(transcript variants 2, 3, 4), DNMT3B, and

DNMT1 were also selected for gene expression
profiling. Platform-associated variation was nor-
malized using the nSolver Analysis software
(NanoString, V2.6). Expression of candidate tran-
scripts of interest was normalized to that of house-
keeping genes PUM1, BUSB, TBP, ACTB, and
SDHA. Normalized gene expression data from
this experiment are available in Supplementary
Data 7.

Data processing and statistical analysis

5-(hydroxy)methylcytosine estimation and quality
control
All data analysis was conducted in R version 3.3.1.
Data processing of raw signals from BS and oxBS-
treated samples has been previously described.
Briefly, normalization and background correction
were performed using the FunNorm procedure
available in the R/Bioconductor package minfi (ver-
sion 1.10.2). CpG sites located on sex chromosomes,
identified as cross-reactive in previous studies, or
associated with SNP sites were removed prior to
analysis to prevent confounding. After quality con-
trol, 387,617 CpGs were left for analysis. To perform
estimation of 5mC and 5hmC proportions in each
sample, we applied the recently developed OxyBS
algorithm, which uses a maximum likelihood-based
method and more appropriate statistical constraints
than previous methods to accurately predict methy-
lated and unmethylated proportions. Code used to
perform the estimation is available in R-package
‘OxyBS’ [45]. To identify CpG sites with the greatest
potential to be functionally relevant, we selected the
3876 CpGs among the top 1% median 5hmC value
across all samples. These CpGs are referred to as the
‘high 5hmC CpGs’ in the results section.

Enrichment analyses of high 5hmC CpG loci
To test for 5hmC enrichment among transcrip-
tional features, the UCSC_hg19_refGene file
(downloaded from the UCSC Genome Browser)
was used to define genomic regions as promo-
ters, introns, exons, or intergenic. Promoters
were defined as the ±2kb regions surrounding
transcription start sites (TSS). CpG loci present
on the 450 K array were then annotated to one
of these regions using the
annotateWithGeneParts() function from the
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R-package Genomation. Where CpG loci were
associated with more than one genomic regions,
the following precedence was applied: promo-
ter>exon>intron. The GenomicRanges R/
Bioconductor package was used to construct
contingency tables describing the overlap
between genomic coordinates of high 5hmC
CpGs and the described transcriptional features,
stratified by CpG island context. CpG island
shore, shelf and open sea regions were defined
according to published criteria [85,89,90].
Briefly, CpG island shores define loci located
within 2 kb of a CpG island, while CpG shelves
define loci located 2–4 kb from a CpG island.
CpG loci not located in island, shore, or shelf
regions are classified as occurring in open seas.
This approach resulted in four contingency
tables per enrichment test, each denoting the
overlap between high 5hmC CpGs and the geno-
mic feature within that specific CpG island con-
text. We then applied Cochran-Mantel-Haenszel
tests to obtain odds ratios (ORs) and P-values.
For all enrichment tests, CpG sites assayed on
the Infinium 450 K array were used as back-
ground. Genomic coordinates (hg19) of human
repetitive DNA elements from the RepeatMasker
database [91] were obtained using the UCSC
table browser. Repeats located in non-coding
RNA species were collapsed into one group for
enrichment analyses. To test enrichment among
specific chromatin states, genomic coordinates of
ChromHMM states from the core 15-state model
applied to breast myoepithelial cells (E027),
human mammary epithelial cells (HMECs,
E119), and variant human mammary epithelial
cells (vHMECs, E028) were downloaded in BED
file format from the NIH Roadmap Epigenomics
Project [50] website (https://www.ncbi.nlm.nih.
gov/geo/roadmap/epigenomics/). The core 15-
state ChromHMM model has been previously
described [51]. Briefly, ChromHMM,
a multivariate hidden markov model, was
trained on virtually concatenated data represent-
ing the core five chromatin marks (H3K4me3,
H3K4me1, H3K36me3, H3K27me3, H3K9me3)
from 60 high-quality epigenomes, to learn a 15-
state model applicable to all 127 consolidated
epigenomes profiled as part of the Roadmap
Epigenomic Project. The resulting 15-state

model consists of eight-active states associated
with gene expression (active TSS, TssA; flanking
active TSS, TssAFlnk; transcription at 5ʹ and 3ʹ
ends of genes, TxFlnk; strong transcription, Tx;
weak transcription, TxWk; genic enhancers,
EnhG; enhancers, Enh; Zinc finger genes/
repeats, ZNF/Rpts) and seven repressed states
(heterochromatin, Het; bivalent/poised TSS,
TssBiv; flaning bivalent TSS/Enhancer, BivFlnk;
bivalent enhancer, EnhBiv; repressed PolyComb
region, ReprPC; repressed PolyComb region
ReprPCWk; quiescent, Quies). Similarly, genomic
coordinates for available histone modifications
obtained through chromatin immunoprecipitation
sequencing (ChIP-seq) experiments for breast myoe-
pithelial cells, HMECs, and vHMECs were down-
loaded Roadmap Epigenomics Project website.
Enrichment of high 5hmC CpG loci among specific
chromatin states and histone modifications were
tested using the same approach described above for
transcriptional features. R/Bioconductor packages
IlluminaHumanMethylation450kmanifest, version
0.4.0, and IlluminaHumanMethylation450kanno.
ilmn12.hg19, version 0.2.1 to obtain relevant array
annotation data, including CpG island context.

GTEX gene expression analysis

RNA-seq generated TPM (transcripts
per million) normalized read counts were down-
loaded from the Genotype-Tissue Expression
(GTEx) dataset portal (https://gtexportal.org/
home/datasets) and indexed to samples obtained
from normal breast tissues. Read counts were
log-transformed before median expression levels
for each transcript were calculated, and used to
calculate expression percentiles among all avail-
able transcripts. Transcripts were assigned to
‘high’ or ‘low’ expression groups based on
expression quartiles. To map transcripts to indi-
vidual 450K CpG loci, UCSC Refseq gene acces-
sions for each CpG, obtained from the
IlluminaHumanMethylation450kanno.ilmn12.
hg19 package, were mapped to hg19 Ensembl
transcript identifiers using the getBM() function
from the biomaRt R/Bioconductor package [92].
Expression data was restricted to transcripts
associated with CpG loci present on the 450
K array, to provide an appropriate background
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set for statistical analyses. Enrichment for tran-
scripts associated with high 5hmC CpG loci,
among highly expressed genes, was tested using
a Fisher’s exact test.

Preprocessing and quality control of TCGA and
GSE66313 datasets
DNA methylation data from the TCGA project
and NHMN (GSE66313) were subjected to the
preprocessing and quality control pipeline
described in Salas et al. [93]. Briefly, raw intensity
data files (IDATs) obtained using the 450
K microarray platform were imported and pro-
cessed using the RnBeads R package [94].
Methylation β-values for individual CpG loci
were calculated as the ratio of methylated probe
intensity divided by the total signal from the
methylated and unmethylated signal intensities,
plus an offset of 100 [95]. Background correction
was performed using methylumi-noob [96] and
normalized using a functional normalization pro-
cedure [97]. Probes designed against CpG loci on
sex chromosomes, non-CpG loci, or previously
documented as polymorphic or cross-reactive
were excluded from subsequent analyses [98].
Finally, the Greedycut hierarchical algorithm [94]
was applied to the remaining data to identify and
remove unreliable samples/probes. Briefly,
Greedycut iteratively produces a matrix of retained
and removed measurements each time the algo-
rithm is applied to data where probes/samples are
iteratively added/removed. Probes/samples with
the highest fraction of unreliable measurements
are removed from further analysis.

Analysis of CpG-specific associations
Differential methylation status between normal-
adjacent and tumor/DCIS tissue at individual CpG-
loci in the TCGA and NHMN data sets was deter-
mined by using multivariable linear models for
microarray data (limma) [99] to model logit-
transformed methylation β-values (M-values).
Models were adjusted for subject age, and
Bonferroni correction was used to adjust for multi-
ple testing. To determine if the proportion of high
5hmC CpG loci demonstrating significant differen-
tial methylation between normal and invasive
breast tissue was greater than would be expected
due to chance, we first took 1000 samples of

randomly selected CpG loci of identical size (n =
3572) and CpG island context to the high 5hmC
CpG loci. After ordering each randomly selected
CpG set according to P-value magnitude, a single
P-value distribution representative of a ‘null’ distri-
bution was generated by averaging P-values across
the 1000 sets. P-value distributions for the high-
5hmC loci and the set representative of the ‘null’
distribution were then compared using the
Kolmogorov–Smirnov test (Supplementary
Figure 8).

Cell-mixture deconvolution
Fluctuations in cell-type proportions between sam-
ples are a well-documented potential confounder in
studies of DNA methylation [100,101]. Reference-
free cell mixture deconvolution methods have been
recently developed and widely used [102], to infer
putative cell type proportions in studies of hetero-
geneous tissues where tissue-specific reference
DNA methylomes do not exist. We used the
RefFreeEWAS algorithm, implemented using
R-package RefFreeEWAS [47] to estimate putative
cell-types and their cellular proportions in each
sample. A variant of non-negative matrix factoriza-
tion, the RefFreeEWAS algorithm attempts to iden-
tify the major axes of cellular variation in DNA
methylation data and deconvolute these to methy-
lomes of the individual cell types. Using methyla-
tion proportions from BS-treated DNA, we selected
the 10,000 most variable CpG loci to determine the
optimal number of cell-types (K) that explain the
methylation data across all 18 samples. K = 2 was
identified as the optimal number of putative cell-
types. Finally, the full set of 387,617 passing the
quality control procedures described above were
used to obtain sample-specific estimates of the pro-
portions for each of the two putative cell-types.
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estimate 5hmC and 5mC proportions from the 18 normal
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breast tissue samples are available under accession
GSE100653 in the Gene Expression Omnibus (GEO)
(http://www.ncbi.nlm.nih.gov/geo/). Raw DNA methylation
data for DCIS and adjacent-normal tissue samples from the
NHMN is also available in GEO (GSE66313). Level 1 TCGA
breast (BRCA) intensity files derived from the 450
K platform were downloaded from the TCGA data portal
and are currently available through the National Cancer
Institute (NCI) Genomic Data Commons (GDC) data portal
(https://portal.gdc.cancer.gov/). Coordinates of DNase
hypersensitivity sites, histone modifications (derived from
ChIP-seq experiments), and ChromHMM states in breast
myoepithelial cells (E028), HMECs (E119), and vHMECs
(E027) were downloaded from the NIH Roadmap
Epigenomics Project [50] and are also available in GEO.
Specific GEO accession numbers from each Roadmap
Epigenomics experiment can be found at https://www.ncbi.
nlm.nih.gov/geo/roadmap/epigenomics/. All other data are
available within the article or Supporting Information.
R code used for all analyses is available in the ‘Normal-
Breast-5hmC’ repository on GitHub (https://github.com/
Christensen-Lab-Dartmouth).
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