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Neodymium isotope evidence for glacial-
interglacial variability of deepwater transit time in
the Pacific Ocean
Rong Hu 1,2 & Alexander M. Piotrowski2

There is evidence for greater carbon storage in the glacial deep Pacific, but it is uncertain

whether it was caused by changes in ventilation, circulation, and biological productivity. The

spatial εNd evolution in the deep Pacific provides information on the deepwater transit time.

Seven new foraminiferal εNd records are presented to systematically constrain glacial to

interglacial changes in deep Pacific overturning and two different εNd evolution regimes occur

spatially in the Pacific with reduced meridional εNd gradients in glacials, suggesting a faster

deep Pacific overturning circulation. This implies that greater glacial carbon storage due to

sluggish circulation, that is believed to have occurred in the deep Atlantic, did not operate in a

similar manner in the Pacific Ocean. Other mechanisms such as increased biological pump

efficiency and poor high latitude air-sea exchange could be responsible for increased carbon

storage in the glacial Pacific.
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Being volumetrically the largest ocean basin and most enri-
ched in nutrients, Pacific deep water stores the largest
amount of dissolved inorganic carbon in the Earth’s ocean-

atmosphere system today and may have been an even larger
carbon reservoir during the glacial periods1–3. One of the central
questions is how the Pacific Ocean circulation linked to atmo-
spheric CO2 concentration over glacial–interglacial (G–I) cycles.
Previous studies in the Atlantic Ocean have attributed the
enhanced respired carbon storage at the Last Glacial Maximum
(LGM) to an increase in the residence time of deep Atlantic
waters4,5, but few studies have focused on the past variability of
Pacific deep ocean circulation and the results are still
controversial3,6–11. One of the reasons is that foraminifera tests, a
primary archive of past ocean chemistry, are poorly preserved in
the deep Pacific due to the presence of more corrosive deep
waters. The partial dissolution of foraminifera calcite might
complicate the reliable reconstruction of foraminifera-based
geochemical proxies (such as δ18O, δ13C, Δ14C, Cd/Ca), which
otherwise would provide valuable information about the past
nutrient and ventilation states of the deep oceans. These proxies
are also controlled by a combination of high latitude air-sea
exchange, biological production, and ocean circulation, and thus
have difficulty in distinguishing whether the increased CO2 sto-
rage in the glacial deep Pacific was the result of reduced air-sea
exchange in the Southern Ocean or sluggish deepwater
circulation.

Neodymium isotope has been demonstrated to be an effective
proxy to trace the mixing in the global deep ocean12–14. However,
unlike north–south convection structure in the Atlantic, there is
no deepwater formation in the North Pacific today, and the deep
Pacific basin is exclusively ventilated by northward-flowing Lower
Circumpolar Deep Water (LCDW). The strong linear relation-
ships between seawater Nd isotope compositions and oxygen/
phosphate concentrations in the deep Pacific12,15 support the
dominant role of LCDW advection and the presence of an
external (i.e. not from a particular water mass) radiogenic Nd
source which is added to the deep ocean in a nearly spatially
homogenous way similar to nutrients, but not a link with the
biological processes per se15. In this regard, the accumulation of
external Nd input to the deep water might be time-dependant and
the large-scale spatial Nd isotope gradients are likely to be asso-
ciated with the deep Pacific circulation rate.

To better constrain the temporal and spatial Nd isotope evo-
lution in the deep Pacific, Nd isotope work on seven sediment
cores within a range of water depth between 600 and 4000 m
from the southwest Pacific (SWP) and eastern/western equatorial
Pacific (EEP/WEP) over the last and penultimate glacial max-
imum (30 and 160 ka) are presented in this study and compared
with another 10 εNd records throughout the deep Pacific (Fig. 1
and Supplementary Table 1). Although different archives have
been applied to extract seawater Nd isotope signatures in paleo-
ceanographic reconstructions12, to avoid possible operational bias
for the spatial εNd gradients, the εNd records investigated and
compiled here are processed under a uniform technique, i.e.
foraminifera with Fe-Mn coatings13, which is demonstrated to
reliably record the Nd isotope signatures of porewater/bottom
water in the Pacific12,15. On this basis, the detrital influence on
porewater εNd is examined and controlling factors of Nd isotope
evolution from different regions and different depths are sum-
marised. Building on the hypothesis of time-dependant accu-
mulation of external Nd on the LCDW pathway, a simple
box model is used to quantitatively estimate the transit time
over the past 160 ka. These results will have important
implications on how the strength of the overturning circulation
is linked to carbon storage in the deep Pacific Ocean over G–I
cycles.

Results
Deglacial εNd records in the Equatorial Pacific (0–30 ka). Two
Nd isotopic records spanning the last 30 ka were measured on the
EEP intermediate-depth core V21-30 and deep WEP core V28-
239 (Fig. 2 and Supplementary Tables 2–3). Both foraminiferal
and detrital Nd isotopic records of V21-30 are presented. The
foraminiferal εNd record shows a continually increasing trend
from glacial values −1.6 ± 0.2 at 24.8 ka to +0.1 ± 0.2 at 6.4 ka,
and then the Nd isotope values start to stabilize at ~−1 to ~0 in
the late Holocene. However, the detrital Nd isotope compositions
are much more radiogenic (~0 to+ 4.5) and evolved differently
from the foraminiferal record. The largest radiogenic shift (+2.7
εNd units) in detrital Nd isotopes occurred from 12.4 ka to 10.9
ka, followed by a steadily εNd decreasing trend during the
Holocene, when the foraminiferal εNd was in a continuous
increasing evolution. Another discrepancy in these two records
can be seen during the last glacial period when there was a rapid
detrital εNd elevation from +0.6 ± 0.2 at 28.2 ka to+ 1.8 ± 0.2 at
27.2 ka, followed by a sharp decline to +0.2 ± 0.2 at 26.7 ka, while
the foraminiferal Nd isotope compositions showed a negative
shift from −0.9 ± 0.2 to −1.4 ± 0.2. On the other hand, the for-
aminiferal Nd isotope compositions of the western equatorial
core V28-239 are less radiogenic and showed little variability
(−3.0 to −3.6, average εNd=−3.4 ± 0.2) across the last 30 kyr
(Fig. 2d).

Nd isotopic records spanning the last glacial (0–160 ka). Four
foraminiferal Nd isotopic records over the last 160 ka are mea-
sured on two intermediate SWP sites (SO136-38 and CHAT16K)
and two deep EEP sites (ODP1241 and ODP846), along with
eight εNd data points from RC13-114 due to limited sample
availability for this core (Fig. 3 and Supplementary Tables 4–8).
The Nd isotope compositions of the four foraminiferal records
vary with core locations, with more radiogenic εNd values farther
north. For example, the most southerly core SO136-38 on
Campbell Plateau had the least radiogenic εNd values in this
study, which varied between ~−7 during interglacial times (MIS 1
and 5) and ~−5.5 during glacial periods (MIS 2 and 6). To the
north of Chatham Rise, the intermediate-depth core CHAT16K
had much more radiogenic εNd values (average=−3.6 ± 0.3) and
less variability than SO136-38. The εNd values of ODP846 in the
deep EEP also did not vary much over the past 160 ka and were
generally about 1 εNd unit higher than CHAT16K, with an
average εNd value of −2.6 ± 0.4. Although there are only eight εNd
data points for RC13-114 over the past 160 ka, these εNd data
(average=−2.6 ± 0.4) match well with the nearby record of
ODP846, confirming that they are recording the εNd signals of the
same water mass. The most northern site ODP1241 in the EEP
showed the most radiogenic foraminiferal εNd values in this study,
ranging between −1.5 and +1, with less radiogenic εNd signatures
during glacial periods (MIS 2 and 6). Unlike the foraminiferal Nd
isotope record, the Nd isotopes of the detrital fractions did not
change following G–I cycles. Instead, the least radiogenic detrital
Nd isotope composition (−2.1 ± 0.2) occurred at 135 ka, whereas
the most radiogenic signal appeared at late Holocene (+4.4 ± 0.2)
and MIS 4 (+3.3 ± 0.1).

Discussion
The detrital εNd values of V21-30 varied between 0 and +5
(Fig. 2c) and those of ODP1241 varied between −3 and +5
(Fig. 3c) during the studied time periods, indicating a dominant
proximal source of central American arcs/Galapagos hotspot to
this region16,17. The consistency of decreased detrital εNd in the
equatorial Pacific18–20 during the glacial periods is in accordance
with globally higher continental dust loads21 from Asia, South
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America and/or Africa. From the perspective of Nd isotopes, the
detrital sources of our EEP cores can thus be divided into two
endmembers: one from young volcanic arcs with radiogenic εNd
signatures (average εNd=+ 7)22 and the other from old con-
tinental particles with unradiogenic εNd signatures (average

εNd=−10)23. The variation in detrital εNd records of V21-30 and
ODP1241 can be regarded as reflecting changing proportions of
inputs from these two endmembers.

The foraminiferal Nd isotopic composition of the youngest
material of V28-239 (−3.3 ± 0.1) matches well with that of nearby
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Fig. 1 Modern hydrography and core locations in the Pacific Ocean. a Map showing intermediate and deep water circulation and locations of the sediment
cores from this study (red circles) and other Pacific sites (black squares) for comparison (Site locations and sources please refer to Supplementary
Table 1). White filled symbols denote cores showing South Pacific-regime Nd isotope evolution patterns, while the open symbols represent cores showing
North Pacific-regime patterns (see text). SAF: Subantarctic Front, ACC: Antarctic Circumpolar Current, LCDW: Lower Circumpolar Deep Water, AAIW:
Antarctic Intermediate Water, NPDW: North Pacific Deep Water, NPIW: North Pacific Intermediate Water. b Western Pacific zonal section of dissolved
oxygen (colour) and salinity (contours) along the dark grey dotted line from A to B in Map a. c Eastern Pacific zonal section of dissolved oxygen (colour)
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seawater value (−3.4 ± 0.4)24, while those of V21-30 (−0.6 ± 0.3)
and ODP1241 (+0.4 ± 0.2) are slightly more radiogenic than
ambient seawater signatures (Supplementary Table 10), probably
associated with the potential dissolution of detrital fractions after
deposition in the EEP15. In this case, a quantitative examination
of the potential detrital contamination to porewater Nd isotopic
signatures over time (see details in the Methods) is beneficial for
reliable interpretation of the variation in foraminiferal εNd
records.

Our calculation shows the modelled εNd-pw G–I change from
detrital contribution can explain only one third of the actual
measured foraminiferal εNd G–I change in our parameter setting
(Supplementary Figs. 1, 2), which is barely analytically significant.
The magnitude, timing, and direction of change in the for-
aminiferal εNd records still cannot be produced in the εNd-pw
records even when we force the detrital contamination to match
the core-top and LGM foraminiferal εNd values (Supplementary
Fig. 3). Further support for a global rather than local control on
our foraminiferal εNd records comes from the resemblance of our
foraminiferal εNd records to benthic δ18O (Figs. 2, 3), which is a
proxy for deep water temperature and global ice volume. This
would not be the case if the εNd records were controlled by local
sediment input. We thus suggest that the foraminiferal εNd
variability in our records mainly reflect evolution of bottom water
Nd isotopes.

Recent review of seawater and archive εNd values exhibits
gradual latitudinal trends in the Atlantic and Pacific at depths

below 600m, corroborating the effectiveness of Nd isotopes to
distinguish between northern/southern sourced water contribu-
tions in the intermediate and deep waters12. The comparison of
Pacific seawater εNd with the conservative tracer like salinity
clearly demonstrates the presence of an external Nd source to the
Pacific which has a radiogenic composition (Fig. 4), consistent
with models of the Nd oceanic cycle25,26. The Nd isotopic com-
positions of deepwater below 3 km are the result of adding the
external radiogenic Nd along the LCDW advection over time.
Clear local influence is limited in deep waters compared with
waters above 3 km. The increased scatter observed in εNd-salinity
crossplot when moving from deep towards shallower waters is
likely caused by the addition of external Nd dominantly from the
upper ocean/continental margins rather than from the
bottom27,28. Another line of evidence comes from the observation
of consistent εNd evolution patterns and similar εNd values
between adjacent sites in our study. For example, the for-
aminiferal εNd record of SO136-38 is almost identical to that of
Y9 (Fig. 5b, 6b) despite the geographic distance of >260 km
between the two sites, because both are recording the SO AAIW
at ~1.3 km depth29. Likewise, the foraminiferal εNd compositions
of RC13-114 closely match those of ODP846 during the last 160
ka (Fig. 3d) although they are more than 1400 km apart in dis-
tance and have different εNd in surrounding detrital compo-
nents18, because both cores are bathed in NPDW at ~3.3–3.4 km
depth in the EEP. Rather than showing ‘exceptional disparities
between adjacent sites’28, as would be expected from localized
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sedimentary inputs, these spatial and temporal data argue against
a benthic input control on the Nd isotopic compositions of the
deep ocean and paleo-records27,28. These records show that,
despite external sources of Nd to the Pacific, the deep water mass
hydrography plays the most important role in regulating the
spatial εNd pattern and changes through time.

All the currently available foraminiferal Nd isotope records in
the open Pacific which cover 0–30 ka and 0–160 ka are compiled
in Fig. 5, 6, respectively, and unfortunately there are no such
records in the open North Pacific. Except CHAT10K and
CHAT16K on the northern Chatham Rise, it is clear that all the
South Pacific εNd records show more radiogenic εNd during glacial
periods (Fig. 5b, 6b), suggesting reduced contributions of North
Atlantic Component Water (NACW)30. Moreover, the εNd values
converged vertically at the G–I transitions (MIS 6/5 and MIS 2/1)
in the South Pacific implying a breakdown of ocean
stratification6,7 and a larger contribution of shoaled glacial
NACW29 or Ross Sea bottom water (RSBW)7 to the upper Pacific
ocean. Since the glacial LCDW and SO AAIW inflow have higher

εNd values than interglacials, a more radiogenic εNd signature
during glacial periods would be expected for the North Pacific if
the glacial ocean had a circulation regime similar to the modern
one9,11. However, unlike Y9 and SO136-38, the intermediate-
depth core CHAT16K situated on the northern Chatham Rise
saw a relatively smooth εNd pattern over the past 160 ka, likely
reflecting the εNd signatures of Tasman AAIW which circulates
around the South Pacific gyre and mixes its εNd signatures with
recirculating southward NPDW and possible Indonesian inputs,
although a modification due to local exchange with materials
from North Islands could not be excluded30. Similarly, the
deeper sediment core CHAT10K located close to the North Island
and outside the main flow path of the deep western boundary
current probably reflects modification by local exchanges30.
Therefore, it seems the cores located on the main south-to-north
flowpath (i.e. in the ‘S-Pac’ domain of Fig. 4) in the South Pacific
exhibit a similar εNd evolution pattern to the Atlantic or Southern
Ocean cores as a result of changing propagation of NACW, with a
possible influence of RSBW.
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In contrast, the higher than modern glacial εNd patterns of
LCDW/AAIW in the South Pacific are not transferred down-
stream to the North Pacific29. Instead, the cores there, along with
those in the South Pacific but at shallower depths away from

intense northward-flowing currents (such as CHAT10K and
CHAT16K), show similar or even less radiogenic glacial εNd
signatures (Fig. 5a, 6a). This is not likely to be caused by the input
of Nd from increased glacial dust with unradiogenic εNd, because
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Nd budget models suggest that a 2 to 3-fold increase in the
Northern Hemisphere dust loads during the ice ages21 would not
affect seawater εNd in the deep Pacific Ocean25,31. Based on dis-
tinct evolution patterns, the Pacific εNd records can hereby be
classified into two types: ‘S-Pac regime’ and ‘N-Pac regime’.
Shallower cores in the ‘N-Pac regime’ (such as V21-30 and
ODP1241) are prone to local modification resulting in more
radiogenic εNd compositions in the porewater than ambient
seawater, while εNd of slowly circulated deepwater is dominantly
modified by the accumulation of external Nd input along the
flowpath. The spatial εNd gradients below 3 km can therefore be
linked with deep water transit time in the Pacific.

The spatial εNd gradients between South and North deep
Pacific (ODP1123 and ODP846) decreased from ~4–5 εNd units
in MIS 1, 3 and 5 to ~2–3 εNd units during MIS 2, 4 and 6
(Fig. 7c), indicating a reduction in the external Nd input along the
advection of LCDW. The diminishment of εNd modification by
the radiogenic external Nd on the northward-flowing deepwater
has homogenised the spatial Nd isotope signatures during the
glacial times. Weathering of continental margins and volcanic
islands/arcs in the ‘Ring of Fire’ surrounding the Pacific Ocean
supplies the external source of radiogenic Nd to the deep water
through boundary exchange32 or particle dissolution33. Changes
in its weathering rate through time are thought to affect the
external Nd flux into the ocean. During glacial periods, chemical
weathering rate of oceanic islands under colder conditions
(assuming average 1.7 ± 1 °C cooling for the global surface ocean
during the LGM34) would be expected to be slightly decreased
(~4–15%)35, while this could be partly balanced by small increase
in cation weathering flux by enhanced exposure of island area
available for weathering36. The counteracting effect thus likely
results in negligible G–I variation in continental chemical

weathering rates36,37. Rather, our data are more consistent with
faster Pacific overturning circulation reducing the spatial εNd
gradients during the glacial periods.

To carry out a quantitative estimation of changes in the deep
Pacific transit time in the past, a box model is developed here (see
details in the Methods). Our study provides a first crude esti-
mation for the deep Pacific transit time, which varied between
350 and 1200 years over the last 160 ka (Fig. 7d). The averaged
deepwater transit time at late Holocene (4–5 ka) is ~950 ± 130
years, in agreement with the modern tracer observation38,39. The
deep Pacific transit time in glacial times (MIS 2,4 and 6) was
systematically shorter compared to interglacials (MIS 1, 3 and 5),
with fastest circulation during peak glacial periods. Deep water
δ13C has been traditionally regarded as a ventilation tracer, and
the spatial gradients have shed light on water mass ageing. When
LCDW travels across the Pacific, it progressively accumulates
nutrients and depleted δ13C through the remineralization of
sinking organic matter, as well as mixing with the overlying
waters. The similarity between the Δδ13C846–1123 and our
ΔεNd846–1123 records (Fig. 7) lends support for our interpretation
on the deepwater circulation rates in the Pacific. This inter-
pretation is also supported by sortable silt evidence of ODP1123
in the SWP8, but interestingly conflicts with bulk leachate εNd
records located along formerly glaciated active volcanic margins
in the Gulf of Alaska10, a geological environment where local
detrital control has been substantiated28,40. Although there are
uncertainties in our simplified model, sensitivity tests show that
the pattern of faster Pacific overturning circulation during glacial
stages is still maintained over the last 160 ka (Supplementary
Fig. 4).

The hypothetical Pacific overturning circulation states during
the interglacial and glacial stages are synthesized in Fig. 8.
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Compared with the interglacial state, a faster Pacific overturning
circulation is inferred during glacial times, probably driven by
enhanced formation and export of AABW8,41 and/or a northward

expansion of RSBW7 into the Pacific due to increased sea-ice
production and brine rejection42,43. The Nd isotopes from S-Pac
regimes also support a reduced water mass mixing between
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LCDW and AAIW during glacials29, likely associated with
reduced diapycnal mixing in a more stratified ocean44. The
shoaling of NADW in the North Atlantic would lead to more
NACW restricted to the upper cell which made their way to the
Pacific basin via the eastward flowing ACC. Based on benthic
carbon isotopes and radiocarbon evidence, the water mass geo-
metry in the glacial South Pacific was not greatly different to the
modern state6,9. The water mass boundary between the LCDW
and UCDW/NPDW remained at ~3.5 km, while the lower
boundary of AAIW may have been slightly shoaled to 1.2 km45.
The potential increased carbon stock in the deep Pacific inferred
from low oxygenated deep water2,46 would probably not be
related to reduced circulation strength, but rather indicating
lower oxygen concentration in the Southern Ocean46,47, in
accordance with depleted radiocarbon observations3,48. We con-
clude that a faster but less ventilated overturning circulation
might have operated in the glacial Pacific Ocean, and mechanisms
such as increased biological pump efficiency and poor high lati-
tude air-sea exchange49 may be responsible for atmospheric CO2

drawdown in the deep Pacific Ocean during glacial periods. Our
results here thus put constraints on ocean circulation models to
better simulate the atmospheric CO2 change through past G–I
cycles.

Methods
Sediment cores. Foraminiferal Nd isotopes are measured on seven new cores in
this study, including two from the SWP, one from the WEP and four from the EEP.

CHAT16K and SO136-38 (at ~1.4 km water depth) are located to the north and
south of the Chatham Rise, recording the signatures of two different AAIW types,
i.e. Tasman AAIW and SO AAIW (also termed as AAIWN and AAIWs

9),
respectively (Fig. 1a). The age model of the northern site CHAT16K is slightly
modified by retuning the Uvigerina peregrine δ18O record9 to LR04 stack50. New
εNd measurements on CHAT16K is performed, extending the existing deglacial
record30 to 160 ka. The age model of the southern site SO136-38 is constructed by
correlating δ18O profile of Globorotalia inflata51 to a new global planktonic δ18O
stack52.

The western equatorial core V28-239 was raised from the Solomon Plateau at a
water depth of 3490 m. The age model is developed by tuning Globigerinoides
sacculifer δ18O record53 to the planktonic δ18O stack52.

Four sediment cores in the EEP were taken from water depth between 617 and
3436 m, with foraminiferal Nd isotopes analysed on all the cores and detrital Nd
isotopes on two sites (ODP1241 and V21-30). The shallowest core V21-30 is
situated in the modern oxygen minimum zone, with an average sedimentation rate
of 13 cm ka−1 over the past 30 ka based on radiocarbon age54. The age model of
ODP124155 is modified by measuring 4 new 14C dates (Neogloboquadrina
dutertrei > 300 µm) for the upper 60 cm of Hole B (Supplementary Table 9).
Deeper cores ODP846 and RC13-114 are bathed at similar water depths (~3.3–3.4
km), and their foraminiferal εNd compositions are compared to check the reliability
of this archive in recording water mass εNd signatures.

Nd isotope measurements. Nd isotopes are measured on both foraminifera (for
all the seven cores) and detrital fraction of the bulk sediments (for EEP cores V21-
30 and ODP 1241). The former is used to trace the porewater Nd isotope changes,
whereas the latter is used to identify changes in provenance and inputs of litho-
genic materials.

Foraminifera for each sample were prepared following a routine protocol13. In
brief, 30–100 mg planktonic foraminifera of each sample were handpicked from
>63 μm fraction. All clays were removed by ultrasonication after the foraminiferal
tests were broken open. The physically cleaned foraminifera were then dissolved in
1M acetic acid.

For detrital analysis, 3–5 g sediment was repeatedly decarbonated overnight
using a buffered acetic acid solution until the lack of CO2 production indicating no
carbonate remained. Then the decarbonated samples were MilliQ water rinsed and
leached twice with a 0.02M solution of hydroxylamine hydrochloride in 25% (v/v)
acetic acid. The residues were then MilliQ rinsed, dried and soaked in 10%
peroxide to remove organic matter. After drying down again, the detrital samples
were sequentially digested by the mixture of concentrated HNO3 and HF for at
least 48 h at 110 °C and by aqua regia for another 24 h at 80 °C.

After dissolution, all samples underwent a two-step ion chromatographic
separation (Eichrom TRUspec and Eichrom LNspec resin) to isolate and purify Nd.
The isotopic ratios of Nd were analysed on a Nu Plasma or Thermo Neptune Plus
multi-collector inductively-coupled plasma mass spectrometer (MC-ICP-MS) in
the Department of Earth Sciences at the University of Cambridge. Procedural

blanks for foraminiferal and detrital samples were negligible (less than 0.3% and
0.07‰, respectively) and were therefore not corrected for. Instrumental mass bias
was corrected by applying an exponential mass fractionation law using 146Nd/
144Nd of 0.7219 and each sample was bracketed with the concentration-matched
reference standard JNdi-1, the measured composition of which was corrected to the
accepted value of 143Nd/144Nd= 0.512115. The external reproducibilities (2σ) of
Nd isotope measurement during each analytical session are given by repeated
measurements on concentration-matched JNdi-1 standards. The average 2σ
external reproducibility for 20 ng of Nd is ~0.2 (on Neptune Plus) and ~0.5 (on Nu
Plasma) εNd units, while larger errors for some samples reflect low Nd abundance
due to small sample sizes.

Examination of detrital influence on porewater εNd records. The influence of
detrital dissolution to porewater εNd for V21-30 and ODP1241 over the studied
periods is estimated via a binary mixing model: the εNd of the sedimentary pore-
water (εNd-pw) is determined by a mixing of seawater derived Nd (authigenic) and
lithogenic particulate Nd (old continental and young volcanic arc material). The
relationship is expressed as follows:

εNd�pw ¼ εNd�au ´ Fau þ εNd�vol ´ αvolFvol þ εNd�cont ´ αcontFcont
Fau þ αvolFvol þ αcontFcont

ð1Þ

All the parameters and their values used in this model are shown in
Supplementary Table 10. In fact, modern oceanic Nd isotope budget has been
constrained in many previous studies25,56, which allows us to estimate the
authigenic Nd flux (Fau) to the sea floor. A mean authigenic Nd flux in the Pacific
Ocean (Fmean) is calculated based on Nd residence time (τ= ~500 yr)25 as follows:

τ ¼ Cd ´ ρV ´MNd

Fmean ´A
ð2Þ

Using the parameters in Supplementary Table 10, we obtain a mean authigenic
Nd flux (Fmean) in the Pacific of ~2.76 × 10−5 g m−2 yr−1. This number is in
agreement with previous INDOPAC box estimation using 10-box model25. Settling
particles are considered to be the main flux of particulate material to the seafloor.
The authigenic Nd flux thus varies with different particle fluxes, resulting in higher
flux in the marginal region and much lower flux in the pelagic central Pacific
region56. The adopted Fmean should be taken as the lower limit of authigenic flux
for our EEP cores and thus is a conservative estimation.

Given a rich carbonate (~60–80%) and low diatom contents (<10%) of V21-30
and ODP1241 in our studied intervals17,57, the lithogenic Nd flux (Flitho) composed
is taken as the non-carbonate sedimentary flux when a detrital Nd concentration
(Cp) is applied:

Flitho ¼ DBD ´ LSR ´ 1� XCaCO3ð Þ ´Cp ð3Þ

Linear sediment rate (LSR) is calculated based on the age model. Constant dry
bulk density (DBD= 0.63 g cm−3), low-resolution CaCO3% data points of
ODP1241 are from the initial IODP report (~60–70%)17, and the rest CaCO3% are
extrapolated based on exponential relationship with measured coarse fraction%55.
The shallower core V21-30 has high CaCO3%, and the contents of MIS 1 and MIS
2 are represented by the measurements of core-top= 70%58 and LGM= 77%59,
respectively. The core-top and LGM Nd concentrations for the detritus of
ODP1241 (Cp) we measured are very similar (15.0 and 14.8 ppm, respectively), and
thus a constant value of 15 ppm is taken for both cores for simplicity.

The lithogenic detrital Nd flux is composed of continental flux (Fcont) and
volcanic flux (Fvol):

Flitho ¼ Fvol þ Fcont ð4Þ

The proportions of old continental particles (Xcont) and volcanic (1-Xcont)
components over time can be further calculated based on a two-endmember
mixing model: the detrital εNd is determined by a mixing of Nd from old
continental particles (average εNd-cont=−10)23 and Central America/Galapagos
volcanic arcs (average εNd-vol=+ 7)22 as follows:

εNd�d ¼ εNd�cont ´Xcont þ εNd�vol ´ 1� Xcontð Þ ð5Þ

Fcont ¼ Flitho ´Xcont ð6Þ

The Nd dissolution factors (α) of the corresponding components are assumed
to be constant with respect to time25. The proportion of soluble Nd in marine
particles is thought to be highly variable60–63, but literature suggests that the
basaltic material is usually more reactive compared to continental/granitic
material64 and has been replicated in closed-system experiments65. αcont= 2%
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derived from laboratory experiment60 is commonly used in Nd budget
calculations26,56,66, while there is no common αvol so far in the literature, ranged
from < 0.4%67 to ~1.5–8.5%68 based on batch reactor experiments.

We have taken approach that first making the core-top εNd-pw value match the
measured foraminiferal εNd in Eq. (1). Assuming a constant authigenic Nd flux
(Fau= Fmean= 2.76 × 10–5 g m−2 yr−1), we obtain αarc= 3% for V21-30 and αarc=
9% for ODP1241, both of which are within the range of reported marine particle
dissolution factors. This means the discrepancy between the seawater and core-top
foraminiferal εNd for our EEP cores could be explained by detrital contamination of
2% continental particle dissolution and 3–9% volcanic material dissolution during
diagenesis after burial. The parameters are then applied back in time to derive the
εNd-pw records of both cores in Figs. 1c, 2c.

Considering the uncertainties of the parameters such as the true authigenic Nd
flux (Fau) and the wide range of dissolution factors of volcanic and continental
materials (αvol and αcont), a sensitivity test is performed by creating the same G–I
change in porewater εNd records artificially to see how the εNd-pw calculated
compared to our measured foraminiferal εNd through time (Supplementary Fig. 3).

Box model for estimating deep Pacific transit time. In this model, the deep
Pacific Ocean is treated as a box with LCDW exclusively ventilated from the
Southern Ocean, and the water mass εNd signatures are assumed to be gradually
modified in the process of northward LCDW advection by time-dependant accu-
mulation of external Nd input from a constant source15. To carry out such work
the basic principle for selecting the tracer is that it could have a residence time
comparable to the oceanic transit time, i.e. a few hundred years. In the upper, ocean
Nd isotopes is actively recycled by particles62,63, which will lead to short residence
time. In this regard, ODP1123 and ODP846 are chosen to calculate the deep transit
time from the northward-flowing LCDW in the SWP to the southerly return flow
in the EEP as regional/local influence on Nd isotope compositions for deep water
below 3 km and away from continental margins should be limited28,33. Assuming
steady state, the scavenged Nd has the same isotope composition as in-situ seawater
and the concentration of Nd (QNd) equals to the sum of Nd brought by the LCDW
inflow (QLCDW, which is supposed to be constant over time) and the accumulation
of external input over transit time (t). The reference flux of external input (fEI=
3.24 × 109 g yr−1) is averaged from previous model estimations for the Pacific
Ocean25,66, and the reference εNd value of external input (εNd-EI=+1) is adopted
from earlier model of oceanic Nd budget25. The εNd of the deep water along the
pathway over time can thus be calculated by the mass and isotope balance as
follows:

εNd�LCDW ´QLCDW þ εNd�EI ´ fEI ´ t ¼ εNd ´ QLCDW þ fEI ´ tð Þ ð7Þ

All the parameters and their values used in this model are shown in
Supplementary Table 10. The reliability of our calculation based on this equation is
supported by the ability to reproduce modern deepwater εNd distribution12.

Considering the uncertainties and the potential variability of the external Nd
input into the deep ocean over time, sensitivity tests have been performed varying
εNd-EI= 0, + 0.5, + 1, + 1.5, + 2 and fEI= 2.84, 3, 3.24, 3.4, 3.63 × 109 g yr−1,
respectively, for reconstructing the deep Pacific transit time during the last 160 ka
(Supplementary Fig. 4).

Data availability
The data reported in this paper are provided in the Supplementary Information.
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