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Studies from human cells, rats, and zebrafish have
documented that hyperglycemia (HG) induces the de-
methylation of specific cytosines throughout the genome.
We previously documented that a subset of these
changes become permanent and may provide, in part,
a mechanism for the persistence of complications re-
ferred to as the metabolic memory phenomenon. In this
report, we present studies aimed at elucidating the
molecular machinery that is responsible for the HG-
induced DNA demethylation observed. To this end,
RNA expression and enzymatic activity assays indicate
that the ten-eleven translocation (Tet) family of enzymes
are activated by HG. Furthermore, through the detection
of intermediates generated via conversion of 5-methyl-
cytosine back to the unmethylated form, the data were
consistent with the use of the Tet-dependent iterative
oxidation pathway. In addition, evidence is provided that
the activity of the poly(ADP-ribose) polymerase (Parp)
enzyme is required for activation of Tet activity because
the use of a Parp inhibitor prevented demethylation
of specific loci and the accumulation of Tet-induced
intermediates. Remarkably, this inhibition was accom-
panied by a complete restoration of the tissue regener-
ation deficit that is also induced by HG. The ultimate
goal of this work is to provide potential new avenues for
therapeutic discovery.

Diabetes mellitus (DM) currently affects 285 million
individuals worldwide, and this is projected to increase

to 439 million by 2030 (1). Evidence from the laboratory
(2–7) and large-scale clinical trials (8–18) has revealed
that diabetes complications progress unimpeded via
the phenomenon of “metabolic memory” (MM), even
when glycemic control is pharmaceutically reestablished
(19,20). Epigenetic mechanisms are the primary method
that confer the ability of cells and organs to “memorize”
previous environmental conditions and, hence, are as-
sumed to be significant mechanisms supporting MM.
Variations in “normal” DNA methylation are correlated
with many aspects of DM, including susceptibility (21–
23), insulin resistance (24), diabetes complication devel-
opment (25), and early detection (26–28). Very recently,
a comprehensive genomic DNA methylation profiling of
type 2 DM islets revealed that CpG loci displayed a signif-
icant hypomethylation phenotype and may provide in-
sight on diabetic islets and disease pathogenesis (29).
The first report demonstrating a cause-and-effect rela-
tionship between hyperglycemia (HG) and altered DNA
methylation documented that genomic hypomethylation
was induced within the liver of type 1 DM rats as early as
2 weeks after HG onset (30). Pirola et al. (31) examined
human primary aortic endothelial cells exposed to high
glucose (24 h) in vitro and performed a more comprehen-
sive analysis of histone acetylation and DNA methylation.
In this study, they observed significant alterations in
DNA methylation patterns and showed that induced
methylation changes localized to regions within 5 kBs of
transcriptional start sites. They also observed broad
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changes to H3K9/K14 acetylation and reported that re-
gionalized hyperacetylation correlated well with DNA
hypomethylation and HG-induced gene induction. How-
ever, these studies did not examine MM to determine the
persistence of these changes.

We recently reported the use of a zebrafish model
where an induced HG state (DM) can be subsequently
resolved such that the fish return to euglycemia (MM) (7).
This model provides a unique opportunity to examine
HG-induced changes within a wide variety of tissues as
the fish transverse through the normal, DM, and MM
states. Importantly, this model is useful for the study of
important regulatory systems underlying the DM and
MM states and defining the molecular relationship be-
tween the two. We have used this model to document
that the complications of impaired limb (caudal fin) re-
generation and impaired skin wound healing continued
after restoration of euglycemia. Moreover, through meth-
ylated DNA immunoprecipitation, followed by sequencing
experiments, we documented that HG induces specific
cytosine–phosphate–guanine (CpG) island demethylation
that persists for most loci in the MM state. When these
data were viewed within the context of global gene ex-
pression, a correlation of CpG island DNA demethylation
changes and altered expression was observed. Therefore,
the persistence of the HG-induced tissue regeneration
capacity correlated directly with induced DNA demeth-
ylation, and this correlated with persistent gene expression
alterations in the MM state. From this we concluded that
the epigenetic DNA methylation mechanism may be partly
responsible for the MM phenomenon.

Until recently, CpG methylation has been viewed as a
stable epigenetic modification that could only be reversed
passively through DNA replication, presumably via a re-
duction of DNA methyltransferase activity. However, this
idea has been challenged because active cytosine demeth-
ylation is associated with several stages of development,
neuronal memory, differentiation of pluripotent stem
cells, and several human disorders (32–35). A number of
DNA demethylation mechanisms, which share compo-
nents, have been proposed, and all require further mod-
ification of 5-methyl-cytosine (5mC) at the amine group
or at the methyl group (Fig. 1) (33,34). In the first of these,
the growth-arrest and DNA damage-inducible (Gadd45)
family acts as an adapter to recruit the Aid/Apobec
(activation-induced cytidine deaminase/apolipoprotein
B mRNA-editing enzyme) complex, which deaminates
5mC and converts it to thymine (Fig. 1). The other two
proposed mechanisms are initiated by the ten–eleven
translocation family (Tet1,2,3) of Fe(II)/2-oxoglutarate-
dependent dioxygenases, which oxidize 5mC to produce
5-hydroxymethyl-cytosine (5hmC) (36,37).

Once 5hmC is formed, two separate pathways may be
taken to convert 5hmC back into cytosine. In the first,
iterative oxidation by the Tet family of enzymes leads to
5-formyl-cytosine (5fC), followed by 5-carboxy-cytosine
(5caC) (Fig. 1). In the second, 5hmC is deaminated by the

Gadd45/Aid/Apobec complex to form 5-hydroxymethyl-uracil
(5hmU) (38). In all of these mentioned mechanisms,
thymine DNA glycosylase (Tdg), a base excision repair
enzyme, removes the modified base leaving an apurinic/
apyrimidinic site. Concomitantly, when thymine or 5hmU
are to be excised, Tdg appears to act in concert with
Gadd45 and methyl CpG–binding domain protein 4
(Mbd4) (35). Lastly, the apurinic/apyrimidinic site is
recognized and repaired by the base excision repair or
nucleotide excision repair machinery, resulting in the
replacement of an unmodified cytidine (32,34). In this
report, we demonstrate that the Tet family of enzymes is
activated by HG, which correlates with activated DNA
demethylation. In addition, we provide evidence that the
poly(ADP-ribose) polymerase (Parp) family of enzymes
may initiate the demethylation cascade/s.

RESEARCH DESIGN AND METHODS

Zebrafish Husbandry, HG Induction, and Fasting Blood
Glucose Determination
All procedures were performed following the guidelines
described in “Principles of Laboratory Animal Care” (Na-
tional Institutes of Health publication No. 85-23, revised
2011) and the approved institutional animal care and use
committee animal protocol 08-19. The maintenance of
zebrafish (Danio rerio) stocks, the induction of HG, and
fasting blood glucose (FBG) determinations were per-
formed as previously described (7,39,40).

Fish were anesthetized by placing them in 1:1000
2-phenoxyethanol for 1–2 min. For intraperitoneal injec-
tion, an insulin syringe with a 28.5-gauge needle was used
to deliver 0.3% streptozotocin (S0130; Sigma-Aldrich) so-
lution in 5 mmol/L citrate buffer (pH 5.0) to a dose of 350
mg/kg (70–150 mL, dependent on weight). Control fish
were injected with a like volume of citrate buffer.

Figure 1—Illustration shows the known activated DNA demethyla-
tion pathways intermediates and their supporting enzymatic ma-
chinery. BER, base excision repair.
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Although HG is detected within 24 h of the first
injection, to induce a prolonged state of very high HG, the
zebrafish require a frequent injection induction phase,
followed by weekly maintenance injections as follows:
week 1: three injections (day 1, 3, and 5); week 2: one
injection (day 12); week 3: one injection (day 19). Blood
glucose levels were determined by fasting a subset of each
group for 24 h before blood collection. At this point, the fish
were killed, and blood was collected after excision of the
zebrafish head at the level of the anterior heart. Blood (1–2
mL) was collected from each fish, and glucose levels were
determined via the QuantiChrom Glucose Assay (DIGL-200,
BioAssay Systems) (40).

Parp Inhibition Protocol and Fin Regeneration
Experiments
Parp activity was inhibited by an intraperitoneal injection
of 1,5-isoquinolinediol (I138, Sigma-Aldrich), which has
been previously used in DM rat studies (3 mg/kg) (41).
Several different injection regimens were used (data not
shown), and we determined for the studies presented here
that the best course was to administer the inhibitor
(6 mg/kg) 24 h after the streptozocin (STZ) injection
during the induction phase. As such, inhibitor injections
were performed at days 2, 4, and 6 relative to the begin-
ning STZ injection as day 1. During the maintenance
phase of DM, two injections per week were given at
days 10, 13, 17, and 20. The tissue regeneration capacity
was determined at day 22 by the procedures that we have
previously published (40).

DNA, RNA, and Protein Extractions
In this study, samples were generated from 20 pooled fins,
and at least three independent samples were prepared for
each condition. The DNA and RNA samples were generated
as we have previously described (7). Nuclear extracts of
proteins were prepared via the EpiQuik Nuclear Extraction
Kit (Epigentek, Farmingdale, NY) following the manufac-
turer’s protocol without exception. For the initial homoge-
nization step, the samples were placed in a 2-mL Dounce
homogenizer, where 20 strokes with the A pestle was fol-
lowed by 20 strokes with the B pestle before the remainder
of the procedure was performed.

DNA, RNA, and Protein Assays
We have previously described the techniques used for
quantitative (q)-RT-PCR and genome-wide DNA methyl-
ation analysis (7). As in our previous report, the DNA
methylation sequencing procedure was performed by
Arraystar (Rockville, MD). During preliminary founda-
tion experiments, suitable reference genes (Supplemen-
tary Table 1) were identified, and each oligomer pair
was tested to ensure that the amplification efficiency
was ;100% (data not shown). In all cases, the three sta-
ble reference genes listed were used for normalization in
each experiment. The DDCt method (42) was used to de-
termine the relative expression difference in the experi-
mental samples compared with controls (43). Each sample

was assayed in triplicate (technical replicates), and an av-
erage was generated. These values from three samples were
used to generate the mean for each gene at each time
point, and comparison with control samples yielded the
fold-change reported. The sequence of the primers used
for the RT-PCR studies is listed in Supplementary Table
1. The MethylFlash Hydroxymethylated DNA Quantifica-
tion Kit (Colorimetric) and MethylFlash 5-Formylcytosine
(5-fC) DNA Quantification Kit (Colorimetric; Epigentek)
were used for the quantitation of 5hmC and 5fC, respec-
tively. A total of 200 ng input DNA was used for the de-
tection of 5hmC, and 500 ng input DNA was used for the
detection of 5fC. As above, each sample was assayed in
triplicate (at a minimum), and the 5mC derivative content
reported is the average for at least three samples.

The effect of 1,5-isoquinolinediol on the methylation
status of several loci we have previously reported (7) was
examined via a methylated DNA immunoprecipitation,
followed by q-PCR (Me-Dip-qPCR). Briefly, triplicate ge-
nomic DNA samples of control, DM, and DM and 1,5-
isoquinolinediol were sonicated with a Branson Sonifier
(Fisher Scientific, Pittsburgh, PA), such that .90% of the
fragments were,500 bp. The samples were normalized by
performing q-PCR (SYBER Green, Life Technologies Corpo-
ration, Carlsbad, CA) with primer pairs to three different
genes (abhd12, uba2, and uhfr1). The samples were con-
sidered normalized once Ct values were within experimen-
tal error for each of the primer sets. Methylated DNA was
then isolated from each normalized sample via immuno-
precipitation using the MethylMiner kit (Life Technologies
Corporation). The capture reaction protocol for 1 mg was
followed without exception, and the methylated DNA was
eluted via the single-fraction elution procedure.

The resultant DNA was precipitated overnight at
280ºC and resuspended in 60 mL water. Two microliters
were used as the template in triplicate q-PCR reactions.
The primers used are listed in Supplementary Table 2 and
were generated from the Zv8 genome build. The reactions
were normalized to an 18S reference sequence, the values
obtained from triplicate samples were averaged, and the
SE was determined. Examination of Tet enzyme activity
was performed by using the Epigenase 5mC-Hydroxylase
TET Activity/Inhibition Assay Kit (Colorimetric; Epigentek)
with the nuclear extracts generated above. Again, each
sample was assayed in triplicate at a minimum.

Statistical Analysis
Student t test and ANOVA analysis were used where ap-
propriate and are indicated in the figure legends.

RESULTS

HG Induces the Expression of Enzymes in the DNA
Demethylation Pathways
This study was initiated by examining the HG effects on
expression levels of several enzymes reported to play a role
in DNA demethylation. Here, HG was induced in a group of
fish, and within 24 h FBG levels increased from ;60 mg/dL
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to 120 mg/dL, and by 1 week these levels increased to;315
mg/dL, which was maintained throughout the duration of
the study. At 24 h, 1, 2, and 3 weeks after induction, trip-
licate samples were used for RNA isolation and gene expres-
sion analysis. In all cases where statistical changes existed
between control and experiment groups, the values for
P were ,0.001. At 24 h after induction, there were no
statistically significant changes in the expression of any of
the genes assayed. In contrast, the data indicate that HG
induces the expression of the tet family and, gadd45 mem-
bers by 1 week and that these levels remain elevated
throughout the experimental time course (Fig. 2). The ex-
pression of tdg is similar for weeks 2 and 3, but no increase
was observed after week 1. In contrast, we could not detect
transcriptional increases for the abopec family members or
the T-to-G–specific binding protein mbd4. To firmly estab-
lish a link between HG and tet expression, Tet enzyme
activity was determined in protein extracts from control
and week 2 DM fish. In control fish samples, Tet activity
was virtually undetectable (0.0023 6 0.0012 ng/min/mg),
but this increased dramatically to 1.42 6 0.113 ng/min/mg
in samples from week 2 DM fish (n = 8, P, 1E-8). As a result
of these data, we examined the contribution that the tet
family of enzymes may play in HG-induced demethylation.

HG Induces 5mC Demethylation Intermediates
Consistent With Tet Enzyme Activity
As seen in Fig. 1, the initial steps of demethylation pro-
duce 5hmC if the pathway proceeds via the Tet family of
enzymes. Triplicate groups of control or DM fish were

generated, and genomic DNA was isolated from pooled
fins at 24 h, 1 week, 2 weeks, or 3 weeks after induction
(Fig. 3A). These samples were then examined for the pres-
ence of 5hmC; at all time points, control fish had low but
detectable levels of 5hmC (0.1066 0.023 ng/0.2 mg), and
no significant differences were observed in DM fish after
24 h (data not shown). However by 1 week, DNA ex-
hibited significant (P , 0.0001) increases in the 5hmC
content (1.13 6 0.19 ng/0.2 mg). These levels continued
to increase until 2 weeks (3.58 6 0.19 ng/0.2 mg), at
which time the levels were maintained, but no further
increase was observed at 3 weeks (3.64 6 0.26 ng/0.2
mg). In all cases, the FBG levels were determined for these
fish, and as we previously reported, HG was induced
within the first 24 h and then maintained throughout
the duration of the experiment (40).

Next, studies were performed to determine if 1) itera-
tive oxidation, 2) deamination first, or 3) both pathways
(Fig. 1) were subsequently used for demethylation. 5hmC
is converted into 5fC in the next step of the iterative
oxidation pathway, and as such, the above samples were
examined for the presence of 5fC. In parallel with the
5hmC data, there was no statistical difference in the
5fC content at any time point for control fish or for
fish 24 h after induction (data not shown). However, at
the later time points, increases in 5fC content were ob-
served within 1 week of HG (compare control, 0.26 6
0.13 ng/0.5 mg vs. 1 week, 1.25 6 0.23 ng/0.5 mg) were
further increased at 2 weeks (3.1 6 0.45 ng/0.5 mg), and
maintained at 3 weeks (3.45 6 0.22 ng/0.5 mg; Fig. 3B).

Figure 2—HG induces gene expression changes in DNA demethylation machinery enzymes. Quantitative reverse transcriptase results
(with SE) are presented graphically as the fold increase when compared with controls for weeks 1–3, respectively: Gaa (gadd45 aa): 2.016
0.25, 2.35 6 0.36, and 2.12 6 0.34; Gab (gadd45 ab): 1.98 6 0.34, 4.82 6 0.29, and 4.35 6 0.35; A2a (apobec2a): 1.20 6 0.11, 0.98 6
0.23, and 0.906 0.37; A2b (apobec2b): 0.856 0.11, 1.136 0.12, and 1.126 0.24; Mbd4 (mbd4): 0.946 0.26, 1.126 0.13, and 0.986 0.11;
T1 (tet 1): 8.34 6 0.22, 5.34 6 0.41, and 5.12 6 0.09; T2 (tet 2): 5.87 6 0.34, 6.13 6 0.12, and 6.23 6 0.08; T3 (tet 3): 5.32 6 0.26, 5.32 6
0.36, and 5.45 6 0.37; and Tdg (tdg): 1.01 6 0.27, 3.46 6 0.24, and 3.23 6 0.34. Each gene at each time point was compared with the
appropriate control, and a Student t test was performed to determine statistical significance. *P < 0.001 (indicating statistically significant
changes existed).
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The other pathway that 5hmC may follow is deamination
by the Aid/Apobec enzymes, yielding as an initial step
5-hydroxymethyl-uracil (5hmU; Fig. 1). Despite repeated
attempts to detect 5hmU with antibodies from a variety
of vendors that could detect commercially purchased
5hmU, we were not able to detect this derivative in control
or DM samples (data not shown).

Parp1 Inhibition Prevents DNA Demethylation
A recent study reported that Parp1 activity is necessary
for the upregulation of Tet1 expression, which in turn, is
responsible for the initiation of active demethylation in
mouse primordial germ cell DNA during development
(44). We therefore determined the role that Parp plays in
the HG-induction of DNA demethylation. We took advan-
tage of the temporal window observed between HG in-
duction and the induction of DNA demethylation by
injecting control and DM fish with an inhibitor of the
Parp enzymes. Subsequent to this, DNA was extracted

and examined for its 5hmC content. As can be seen in
Fig. 4A, DM induced the conversion of 5mC into 5hmC
(compare control: 0.099 6 0.033 ng/0.2 mg vs. DM:
3.51 6 0.32 ng/0.2 mg), which was completely prevented
by the inclusion of the Parp inhibitor 1,5 isoquinolinediol
(DM and Parp inhibitor: 0.073 6 0.039 ng/0.2 mg). In
addition, the 1,5 isoquinolinediol treatment had no
effects on HG because the doubly treated group had sim-
ilar FBG levels as DM fish (;315 mg/dL for both groups;
data not shown).

To further support these data, we examined the effect
that Parp inhibition had on loci that we used in our
previous study (7) via a MeDip-qPCR approach. These
included loci that are unaffected by HG, remaining fully
methylated (abhd12, map1b) or fully unmethylated (uba2,
rac3a), and more importantly, loci that are demethylated
in response to HG (uhrf1, grtp1a, gcat, hnrnpa0). As
expected, the loci that are not affected by HG exhibit
equal amounts of methylation, as indicated by equal

Figure 3—HG induces the formation of Tet enzyme activity inter-
mediates. A: Graphic representation of the 5hmC genomic content
(ng/0.2 mg); control (C): 0.106 6 0.023, W1 (week 1): 1.13 6 0.19,
W2 (week 2): 3.58 6 0.19, W3 (W3): 3.64 6 0.26 (n = 18 for C, W1,
and W2; n = 16 for W3). B: Graphic representation showing the time
course of 5fC formation (ng/0.5 mg) induced in fin tissue DNA.
Control (C): 0.26 6 0.13, W1: 1.25 6 0.23, W2: 3.1 6 0.45, and
W3: 3.45 6 0.22 (n = 18 for C, W1 and W2; n = 16 for W3). P <
0.0001. In both studies, a Student t test was performed to deter-
mine statistical significance. *P < 0.0001 (indicating statistically
significant changes existed). In addition, a one-way ANOVA analy-
sis revealed that week 1 was statistically different than weeks 2 and
3 (P < 1.0 E-5 for both assays).

Figure 4—Parp inhibition prevents both the accumulation of 5hmC
and the HG-induced fin regeneration deficit. A: The administration
of a Parp inhibitor (Parpi) prevents 5hmC formation (ng/0.2 mg).
Control (C): 0.099 6 0.033, DM: 3.51 6 0.32, Parpi: 0.007 6
0.003, and DM+Parpi: 00.073 6 0.039 (n = 8). *P < 1.0 E-6 (in-
dicating that only DM samples were statistically different from the
other samples by one-way ANOVA analysis). B: Parp inhibition pre-
vents the HG-induced impairment in fin regeneration. Control (C):
1006 1.3%, DM: 62.56 4.7%, Parpi: 99.36 5.2%, and DM+Parpi:
96.3 6 6.3% (n = 18 for all groups). *P < 5.0 E-5 (indicating that the
regeneration of only DM fish were statistically different from the
other samples by a one-way ANOVA analysis).
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q-PCR Ct values irrespective of the sample origin (Table 1).
In contrast, the Ct values for HG-affected loci are signifi-
cantly lower in the DM samples than in all others, thus
indicating that the inclusion of Parp inhibitor prevented
DNA demethylation.

In our previous work, we documented that HG causes
an impairment of tissue regeneration and that impair-
ment correlated with the induction of DNA demethyla-
tion (7). After observing that Parp inhibition appears to
prevent the tet-dependent pathway(s) of demethylation,
we examined if this inhibition also restored regenerative
capacity of the fin. As such, the rate of tissue regeneration
was documented for the fish used in the DNA extraction
experiment documented above. In these experiments, the
regeneration of control fish and fish injected with Parp
inhibitor and DM plus Parp inhibitor all exhibited normal
levels of regeneration (control: 100%, Parp: 99.25%, DM
plus Parp inhibitor, 96.29%; Fig. 4B and Supplementary
Fig. 1). This is in contrast with DM fish, which exhibited
a reduced fin regeneration rate (62.5%) similar to our
previous reports (40).

DISCUSSION

Epigenetic mechanisms are hypothesized to play a role in
the MM phenomena because they provide a mechanism
for continued altered gene expression without the presence
of the initiating HG stimulus (45). We and others have
reported that HG can induce site-specific DNA methyla-
tion, and we have also reported that these changes persist
even after euglycemia is restored in a zebrafish model of
type 1 DM (7). In this report we have revealed a role for
the Tet family of enzymes in HG-induced DNA demeth-
ylation. More specifically, we provide evidence that HG
induces the expression and activity of the Tet enzymes,
yielding known intermediates of the iterative oxidation
pathway leading to the demethylation of 5mC. In addition,
these studies have revealed that demethylation via this
pathway can be prevented through inhibiting the Parps.

We initiated this study by examining the HG effects on
expression of enzymes known to play key roles in each of

the DNA demethylation pathways. In regard to the
deamination first pathway, where 5mC is converted to
thymine, we observed increased expression for the
adaptor Gadd45 protein but no increase in the Aid/
Apobec complex or the Mbd4 protein. Mbd4 appears to be
critical for this pathway because it has been shown that
Mbd4 recognizes and excises mismatched bases paired
with guanine (G:X), where X is uracil, thymine, or 5hmU
(46). On the surface, these data might suggest that HG
may not induce this pathway; however, we cannot make
this conclusion without additional data regarding the
presence of T:G mismatches. Unfortunately, we were un-
able to pursue this pathway further because no efficient
means are available for examination of these processes or
the ability to examine Mbd4 activity specifically. The
other two pathways are both initiated by the Tet family
of enzymes, and our data clearly revealed an increase in
the expression of these enzymes within 2 weeks of hyper-
glycemic onset. This expression increase was supported by
the correlated increase in Tet enzymatic activity. In addi-
tion, the expression of the Tdg enzyme (a base excision
repair enzyme), which is responsible for removal of the
modified base in these pathways, is also increased.

We next examined DNA from the control and DM
groups for known intermediates of the demethylation
pathways. The common intermediate for the Tet-specific
demethylation pathway(s) is 5hmC, and the data pre-
sented here reveal that by 2 weeks of HG, 5hmC levels are
maximized and maintained at ;30-fold higher levels than
in control fish. These data correspond perfectly with the
caudal fin regeneration deficit we have previously
reported, in that at 2 weeks, the HG-induced deficit reaches
its maximum and is maintained in subsequent weeks (40).
After 5hmC formation, cytosine demethylation can pro-
ceed via two routes, either through deamination or itera-
tive oxidation, and each of these pathways produces
different intermediates. The next step in the iterative
oxidation pathway is the production of 5fC. We were
able to detect significant increases in this intermediate,
as expected, due to the increase in Tet enzyme activity,

Table 1—Parp inhibition prevents DNA demethylation as determined by q-PCR results

Locus Control DM DM+I I

abhd12 21.0 6 0.21 20.8 6 0.34 21.6 6 0.56 20.7 6 0.76

map1b 20.4 6 0.44 20.1 6 0.36 19.7 6 0.66 20.4 6 0.66

uba2 36.8 6 2.69 37.9 6 3.75 36.3 6 2.66 39.4 6 4.78

rac3af 38.9 6 4.20 40.9 6 2.33 40.3 6 3.56 40.6 6 4.14

uhrf1 21.0 6 0.41 36.3 6 2.45* 22.7 6 1.98 20.9 6 1.65

grtp1a 25.6 6 0.18 30.1 6 0.20* 24.9 6 0.38 25.2 6 0.65

gcat 24.8 6 0.21 29.0 6 0.17* 24.4 6 0.21 23.9 6 0.41

hnrnpa0 26.4 6 0.67 36.0 6 0.89* 27.4 6 0.67 27.6 6 0.97

The gene loci are indicated, and the average Ct values and their associated SE are reported for control, DM, DM plus Parp inhibitor
(DM+I), and Parp inhibitor (I) injected fish. Statistical significance was determined by a one-way ANOVA analysis. *P , 0.01 (indicating
statistically significant differences).
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and as such, our data are consistent with HG-induced
DNA demethylation proceeding, at least in part, via the
tet-dependent iterative oxidation pathway. Unfortunately,
we were unable to detect 5hmU in any of our samples and
cannot rule in/out the use of this pathway.

In the context of DM, Parp1 senses HG-induced DNA
damage and plays a pivotal role in stimulating the
molecular pathways that underlie all diabetes complica-
tions (20). This fact, coupled with the report linking
Parp1 activity and upregulation of Tet1 expression, led
us to hypothesize that inhibition of the Parp enzymes
may prevent Tet activity. When a known Parp enzyme
inhibitor was included in our experiments, the levels of
5hmC returned to normal. In addition, enzyme inhibition
also prevented the demethylation of several specific loci
examined. Several recent reports have documented that
Parp inhibition can ameliorate renal hypertrophy, podocyte
apoptosis, and peripheral neuropathy in animal models of
DM (47–49). When we examined the effect Parp inhibi-
tion had on tissue regeneration, we observed a complete
restoration of the regenerative capacity in DM fish that
were also treated with the Parp inhibitor. These data pro-
vide further evidence that Parp inhibition may provide
a therapeutic avenue for the prevention or reversal of
diabetes complications and also illustrates the usefulness
of the zebrafish model for small-molecule drug discovery
pertaining to DM.

From a mechanistic perspective, our data are consis-
tent with the HG induction of the Parp family of
enzymes, which in turn stimulates the Tet enzymes
leading to DNA demethylation and ultimately persistent
diabetes complications.
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