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Abstract
Perception of sound categories is an important aspect of auditory perception. The extent to

which the brain’s representation of sound categories is encoded in specialized subregions or

distributed across the auditory cortex remains unclear. Recent studies using multivariate pat-

tern analysis (MVPA) of brain activations have provided important insights into how the brain

decodes perceptual information. In the large existing literature on brain decoding using

MVPAmethods, relatively few studies have been conducted onmulti-class categorization in

the auditory domain. Here, we investigated the representation and processing of auditory cat-

egories within the human temporal cortex using high resolution fMRI and MVPAmethods.

More importantly, we considered decoding multiple sound categories simultaneously through

multi-class support vector machine-recursive feature elimination (MSVM-RFE) as our MVPA

tool. Results show that for all classifications the model MSVM-RFEwas able to learn the func-

tional relation between the multiple sound categories and the corresponding evoked spatial

patterns and classify the unlabeled sound-evoked patterns significantly above chance. This

indicates the feasibility of decoding multiple sound categories not only within but across sub-

jects. However, the across-subject variation affects classification performance more than the

within-subject variation, as the across-subject analysis has significantly lower classification

accuracies. Sound category-selective brain maps were identified based onmulti-class classi-

fication and revealed distributed patterns of brain activity in the superior temporal gyrus and

the middle temporal gyrus. This is in accordance with previous studies, indicating that infor-

mation in the spatially distributed patterns may reflect a more abstract perceptual level of re-

presentation of sound categories. Further, we show that the across-subject classification

performance can be significantly improved by averaging the fMRI images over items, be-

cause the irrelevant variations between different items of the same sound category are re-

duced and in turn the proportion of signals relevant to sound categorization increases.
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Introduction
Perception of sound categories is fundamental to our everyday life. One of the core aspects of
auditory perception is to abstract discrete categories from continuous physical features when
stimuli are grouped into distinct but meaningful categories [1]. Categorization requires mini-
mizing within-category and maximizing between-category differences, which is a more abstract
representation of sound similarity. By doing so, continuous physical variations between
stimuli are overruled such that seemingly distinct stimuli may be considered as the same cate-
gory. Several attempts have been made to investigate the brain’s representation of sound cate-
gories [1–3]. Several studies supported a hierarchically organized object-processing pathway
along anteroventral auditory cortex [3, 4], while others stressed the importance of distributed
representations of auditory objects [2, 5]. The extent to which the representation and process-
ing of auditory categories are encoded in specialized subregions or distributed across the audi-
tory cortex remains unclear.

Recent functional magnetic resonance imaging (fMRI) studies have applied different statis-
tical methods to brain decoding and have provided important insights into how the brain de-
codes perceptual information [5–11]. Multivariate pattern analysis (MVPA) has drawn
increasing attention in fMRI studies [10–13]. Whereas traditional univariate approaches exam-
ine only one location (voxel) at a time, MVPA extracts information from many brain locations
(voxels) simultaneously, thereby examining the full spatial pattern of brain responses. In the
study of the representation of visual-object categories in the ventral temporal cortex, it has
been demonstrated that MVPA is sensitive to changes in distributed activation patterns in ab-
sence of changes in overall activation level [14]. MVPA approach has been taken to reveal sub-
tle differences in overlapping sound representations [2, 5]. However, these studies have either
largely focused on binary classification, or they tended to examine visual perception [5–9]. In
the large existing literature on brain decoding using MVPA methods, there is a relative lack of
studies on multi-class categorization in the auditory domain. The rich variety of auditory cate-
gories in real life creates a need for decoding strategies to consider multiple categories simulta-
neously. Multi-class MVPA models permit the use of more than two categories. Hence, in this
work we study decoding multiple sound categories simultaneously in the human temporal cor-
tex using high resolution fMRI and multi-class MVPA models.

In fMRI studies of auditory functions, there are data analysis challenges because the sound
signal is continuous and changes with time. The recognition of sound objects requires continu-
ous listening and continuous processing of its cognitive meaning. This may cause the hemody-
namic responses to be less informative for discriminating between different auditory stimuli.
In addition, McDermott et al. showed that both visual and auditory processing require summa-
ry statistics but visual processing is spatial while auditory processing is temporal [15–17]. Sum-
mary statistical measures in vision occur over spatial regions of the visual field while auditory
effects involve pooling information over time [15, 18]. One fundamental study in speech per-
ception combined fMRI technology with a statistical pattern recognition method (support vec-
tor machine-recursive feature elimination, SVM-RFE) to demonstrate the feasibility of
decoding speech content and speaker identity [5]. Their analysis, however, was restricted to bi-
nary classification and did not consider decoding multiple auditory objects simultaneously. In
everyday life a person experiences a large number of auditory objects, creating a need for de-
coding strategies to generalize across multiple auditory objects and different individuals. In
most human decoding studies to date, decoding algorithms have been trained on each partici-
pant individually and/or for a fixed set of mental states, which is a highly simplified situation
compared to real-world applications [5, 6, 9, 10]. The extent to which MVPA decoding models
can be generalized to different circumstances, such as multiple sound categories, different
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subjects, and different sound exemplars within the same sound category, is currently not well
understood [9, 10].

In this study, we investigated the representation and processing of auditory categories with-
in the human temporal cortex using high resolution fMRI and MVPA methods. More impor-
tantly, we considered decoding multiple sound categories simultaneously through multi-class
classifiers as our MVPA tools. We first built multi-class MVPA models for each subject sepa-
rately to predict which of seven sound categories the subject heard. This within-subject analysis
allowed us to explore spatially distinct patterns of sound category selective activity in the
human temporal cortex. We then built multi-class (all seven sound categories) classifiers across
subjects. In this procedure, a classifier learned to distinguish the neural patterns evoked by
each sound category based on the data from a subgroup of the subjects and was then tested on
the data from a subject that was not part of that subgroup. In this across-subject analysis, we
asked whether there are consistent brain activity patterns across subjects and how results from
pattern analysis are generalized across different subjects. Categorical perception of sounds re-
quires a more abstract representation of sound similarity. The formation of the category
boundary requires perceptual invariance of sets of objects classified as belonging to the same
category and ignorance of irrelevant differences in some aspects. Not all sound exemplars are
equivalent in regard to category membership. Therefore, we explored the effects of category
membership on brain activity patterns and decoding accuracy.

Materials and Methods

Ethics statement
The study was approved by Northwestern University’s Institutional Review Board and written
informed consent was obtained from all participants.

Participants
Six right-handed monolingual English speakers (mean age, 22.5 years; 4 female) from North-
western University were recruited for the functional imaging study. They had no history of
neurological disorders and reported normal hearing. Similar sample size was used in several
other high resolution fMRI studies for examining human brain decoding [1, 2, 5, 19, 20].

Stimuli
Seven sound categories were used, including English speech (EN), non-English speech (NE),
non-speech vocal (VC), animal (AN), mechanical (MC), music (MS), and nature sounds (NT).
These were cognitive categories, which are abstract and likely differ along multiple dimensions,
rather than perceptual categories which, via identification and discrimination tasks, show clear
hallmarks of categorical perception (such as speech consonants). Each category consisted of six
different sound items (sound exemplars), i.e. a total of 42 tokens (stimuli) were used (Table 1).
Stimuli were one second in duration, taken from websites (AN, MC, MS, and NT) and original
recordings (EN, NE, and VC). All stimuli were resampled to 44.1 kHz and normalized to the
same intensity level and fundamental frequency using the Praat and Level 16 software [21, 22].

To ensure sound quality and identification accuracy, a behavioral pilot study was done on
ten volunteers who did not participate in the scanning sessions. They were asked to describe
what they heard in a short sentence and to score the sound quality on a scale from one (the
worst) to seven (the best) after listening to each stimulus. All subjects, except one who could
not recognize most sounds, were able to correctly identify individual stimuli. Results from this
pilot study were used for the process of stimuli construction and selection. As shown in

Decoding Multiple Sound Categories Using fMRI

PLOS ONE | DOI:10.1371/journal.pone.0117303 February 18, 2015 3 / 19



Table 1, the averaged sound quality scores for each category ranged between 4.4 and 5.0, indi-
cating adequate quality of the sound stimuli. In addition, after the scan, all subjects who partici-
pated in the fMRI scanning were asked and confirmed that they were able to accurately
categorize individual stimuli.

Experimental design and fMRI acquisition
A slow event-related design with an average inter-stimulus-interval (ISI) of 15 seconds was
adopted. A slow event-related design with a long ISI permits time-course estimates of the BOLD
response to single presentations of sounds by measuring the impulse response of the stimuli.
Each of the seven functional runs consisted of 42 stimulus trials in which each sound stimulus
was presented only once. The sequence of stimuli was pseudo-randomized across runs.

Brain imaging was performed at the Center for Advanced MRI in the Department of Radiol-
ogy at Northwestern University using a Siemens 3T Trio. For each subject, seven high-spatial
resolution (1.7 mm × 1.7 mm × 2 mm) functional runs (215 volumes per run = 5 volumes x 43
trials, 10 minutes 45seconds = 15 seconds x 43 trials) were collected for two days using a stan-
dard echo-planar-imaging (EPI) sequence (TR = 3s, TA = 2s, TE = 20ms, 1 trial = 15 seconds =
5 repetitions of 2-second scan and 1-second silence). The initial 5 volumes of each run were
discarded to allow the MR signal to reach equilibrium. Each volume consisted of 32 contiguous
slices without a gap, covering the entire temporal lobe. During the functional runs, subjects lis-
tened to the stimuli that were presented via MR compatible insert earphones (Sensimetrics,
Inc, Boston) in the 1 second silent interval between two volume acquisitions. The sound stimu-
lus was presented in one of these five 1-second silences. The presentation of the stimuli in a si-
lent gap resulted in a clear perception of the acoustic stimuli and separation from the scanning
noise. An anatomical image covering the whole brain was also obtained using a high-resolution
T1-weighted sequence (1 mm × 1 mm × 1 mm).

Data pre-processing
Functional and anatomical images were analyzed with AFNI [23]. Functional images were pre-
processed for slice timing correction, rigid body motion correction, linear trend removal, tem-
poral high-pass filtering, coregistration to individual structural images, and normalization of
anatomical and functional data to Talairach space. No spatial smoothing was applied to pre-
serve the fine-grained spatial information from the high resolution functional MRI.

At each voxel, the stimulus response was obtained by a general linear model (GLM) with
one predictor coding for the stimulus [5, 24]. The estimated regression coefficient (i.e. beta)
was taken to present the stimulus response, and betas from all voxels were combined to form a
data matrix with columns of voxels and rows of stimuli responses of each voxel. This data ma-
trix was then used as the input data in our MVPA analysis.

Table 1. Stimulus categories and the quality score (QS) of sound exemplars averaged within each category.

Item # English Non-English Vocal Animal Mechanical Music Nature

1 Bill Bengali_M Pain Duck Gunshot Violin Ocean

2 Dan Bulgarian_F Baby cry Bird Clock_tick Guitar Water

3 Josh Chinese_M Cough Cow Car_start Drum Hurricane

4 Jenny Hindi_F Giggle Frog Phone Cello Brook

5 Ann Kazakhstan_M Snore Horse Toilet Piano River

6 Mary Chinese_F Yawn Lamb Typing Saxophone Wind

QS 4.6 4.6 4.6 4.5 4.5 5.0 4.4

doi:10.1371/journal.pone.0117303.t001
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MVPA analysis
To examine multi-class categorization of auditory objects, we followed the general framework
of MVPA. A popular MVPA algorithm SVM-RFE was presented. Then the multi-class exten-
sion of SVM-RFE was introduced. In addition, we considered several other support vector ma-
chine (SVM) based approaches and their variants.

General framework of MVPA
Typical fMRI applications of MVPA require two basic stages, model training and model testing
[10, 25]. In the training stage, the MVPA model is built by learning a functional relationship
between brain response patterns and mental states (experimental conditions) using the training
data set. Experimental conditions are usually labeled as discrete values such as one or negative
one for binary outcomes. In the testing stage, the newly trained MVPA model is used to classify
the experimental conditions of an independent data set (test data) based on the brain patterns.
The model performance is evaluated in terms of classification accuracy.

The fMRI data is split into a training data set given by a matrix X 2 Rn×p and a testing data

set given by a matrix ~X 2 Rm�p, with corresponding labels Y 2 Rn×1 and ~Y 2 Rm�1 indicating
respective experimental conditions. In the context of classification of fMRI responses, n denotes
the training sample size,m denotes the testing sample size, and p denotes the number of voxels.
The MVPAmodel first learns a decision function (or discriminant function), denoted as f (X),
that is a scalar function of the input brain response patterns X. In the case of linear classification

of fMRI responses, new patterns ~X are classified according to the sign of the decision function:

f ð~x iÞ ¼ wT~xi þ b; ð1Þ
WhereWT is a 1× p weight vector and b is a bias term or threshold weight. The decision rule for
a binary classifier is:

~yi ¼ 1 ; ~xi 2 classðþÞ if f ð~x iÞ > 0;

~yi ¼ �1 ; ~xi 2 classð�Þ if f ð~x iÞ < 0;
ð2Þ

SVM-RFE
SVM-RFE is a popular MVPA model which can be used to identify brain response patterns
through training and testing a binary classifier. It has been extensively evaluated through both
simulated and real fMRI data [1, 5, 24, 26]. This algorithm can effectively reduce the di-
mensionality of fMRI dataset by iteratively eliminating voxels with the smallest rank under a
certain ranking criterion [27]. This algorithm proceeds with two sequential steps iteratively in-
cluding classifier construction (support vector machine) and recursive feature elimination.

SVMs are presently one of the best-known classification techniques with computational ad-
vantages. Intuitively, an SVM searches for a hyperplane, to which the distance from the closest
samples of each of two classes is maximized [28]. The decision rule of linear binary SVM fol-
lows the formula (2). The mechanism of SVMs is to minimize the following optimization
problem:

Minimize J wð Þ ¼ 1
2 kwk2 þ C

Xn

i¼1

xi,

Subject to yi[w
T xi + b]� 1- ξi, ξi � 0, i = 1, . . ., n.

Here, C is a predefined parameter for balancing training accuracy and model generalization.
Often there does not exist a hyperlane that can perfectly split two classes. Therefore,
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misclassification is allowed during model training. Slack variables ξi are introduced to measure
the degree of misclassification of the data Xi.

Recursive feature elimination (RFE) is an iterative procedure for backward voxel elimina-
tion. It is commonly believed that in fMRI studies only parts of the brain are involved in certain
information perception, thus MVPA models aim to identify a subset of voxels that can effi-
ciently and effectively represent different processes of the stimulus of interest. RFE is such a
voxel elimination strategy and can be summarized as below:

1. Train the classifier (optimize the weightsWi with respect to J(W))

2. Compute the discriminative weights (the ranking criterion) for all features (Wi
2)

3. Remove the features with the smallest ranks.

Multi-class SVM-RFE
SVM-RFE was originally designed for binary classification. In the present study, we wish to
build a multi-class classification model for decoding multiple sound categories simultaneously
based on the brain activities in the auditory cortex of the temporal lobe. Hence, after data pre-
processing using AFNI, we applied an extension of SVM-RFE, namely multi-class SVM-RFE
(MSVM-RFE), for decoding multiple sound categories [29].

We considered all voxels in the temporal lobe from both hemispheres to form initial multi-
voxel patterns. The voxelwise stimulus response was estimated by a GLM where the stimulus
was coded as one predictor. For this analysis, stimulus responses were estimated for each of
seven functional runs separately.

The entire data set was split into two parts, a training set and a test set. For each splitting,
data from the training set was used to train a classifier to compute voxel discriminative weights,
and then data from the independent test set was used to test the trained classifier for evaluation
of classification accuracy. By convention [27], half of the voxels with lower discriminative
weights were eliminated in the RFE step in each iteration. Within the training step, cross vali-
dation was used to find the optimal number of voxels to be included in the model which
yielded the smallest cross validation error. For within-subject analysis, the classifier was trained
for each subject separately, with data from five functional runs as the training set and the other
two runs as the test set. The process was repeated five times, each with a random choice of data
splitting on the seven functional runs. For across-subject analysis, data from each individual
subject was left out once as a test set while data from all other subjects was treated as a training
set. Classification accuracies calculated from test sets were averaged over all repetitions. The se-
lected voxels were mapped back to the brain template as a discriminative map for
each classification.

To investigate the brain’s representation of sound categories, we constructed sound catego-
ry-selective maps. Similar to univariate contrast analysis, category-selective maps are often de-
fined based on the results of binary classification algorithms [3]. For example, the English-
selective map can be defined as the conjunction of six discriminative maps related to the En-
glish category, which are obtained through the binary classifications of English versus each of
the other six sound categories. In this study, we made use of multi-class classification to find
category-selective maps. For example, the English-selective map is defined as the significant re-
maining voxels in a comparison between 7- (all) and 6-class (without English) classifiers. We
combined the selected voxels from all subjects and mapped these voxels, which consistently
survived in the RFE selection for more than one repetition and more than one subject, back to
the brain template as category-selective maps.
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Other MVPA methods
As SVM-RFE is one of many possible support vector machines, we also examined two other
SVMmodels including L2-regularized L1-loss support vector classification [30] and Crammer-
Singer multi-class SVM [30]. Although an SVM is often understood as a method of searching
the maximum-margin hyperplane, it can also be formulated as a hinge loss function plus a
L2-norm regulation term. The so-called L2-regularized L1-loss support vector classification is a
support vector machine with a L2-norm regularization scheme and a L1-norm loss function.
The Crammer-Singer multi-class SVM is a support vector machine that can classify multiple
classes without voxel selection ability [31]. Since fMRI data is high dimensional, we also consid-
ered the application of penalized linear discriminant analysis (PLDA), one advanced statistical
method commonly used in high dimensional data analysis [32]. Linear discriminant analysis is
a classical method for dimension reduction and classification, which aims to maximize the ratio
of between-class variance over within-class variance. PLDA is a general approach for penalizing
the discriminant vectors in Fisher’s linear discriminant analysis in a way that leads to greater in-
terpretability. The results from these methods will be compared in the next section.

Results

Multi-class classification within subjects
In general, multi-class prediction is much harder than solving binary prediction [29]. This
problem becomes even more challenging in fMRI data due to the large number of voxels and
relatively small number of samples for each stimuli and category. We first explored the classifi-
cation performance of several multi-class MVPA models including MSVM-RFE, PLDA,
L2-regularized L1-loss support vector classification, and Crammer-Singer multi-class SVM. A
7-class classifier was built by using each of these statistical methods with five repetitions. As
shown in Fig. 1, MSVM-RFE achieved classification accuracies well above the other three mod-
els. The horizontal line marks the chance level. It should be noted that there are many more
available MVPA models in the literature. For our specific problem, the MSVM-RFE model is
chosen for analyzing the fMRI data.

To estimate and decode the distinct activation patterns elicited by different sound catego-
ries, we trained and tested the MSVM-RFE model for decoding all seven sound categories si-
multaneously within each subject. Fig. 2 shows the classification accuracies for the within-
subject analysis with the chance level marked by the horizontal line. The MSVM-RFE
model was able to learn the functional relation between the sound categories and the corre-
sponding evoked spatial patterns, and achieved classification accuracies for each subject signifi-
cantly above the chance level (p = 3 × 10-4 for subject 1, p< 1 × 10-4 for subjects 2, and 3,
p = 2.6 × 10-3 for subject 4, p = 1.7 × 10-3 for subject 5, and p = 1 × 10-4 for subject 6, one sam-
ple two-sided t test, n = 5). This demonstrates the feasibility of decoding multiple sound cate-
gories within subjects. From Fig. 2, we also observed some indication of variability in
classification performance across subjects.

To further explore the brain’s representation of sound categories, we constructed sound cat-
egory-selective maps. Fig. 3 shows selective brain maps for the English and Music categories
separately, both of which revealed distributed patterns of brain activity in the superior tempo-
ral gyrus (STG) and the middle temporal gyrus (MTG). The English-selective map which dif-
ferentiated English from the other six sound categories was widely distributed bilaterally in the
STG with the largest cluster (corresponding approximately to MNI coordinate -58, -30, -9) in
the left MTG. Panels (a1) – (a4) in Fig. 3 show the four largest clusters from voxels selected for
the English category in the left MTG (-58, -30, -9), the left STG (-65, -16, 4), the right STG (64,
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-27, 2) and the left MTG (-46, -53, 6) correspondingly. Panel (a5) shows the cluster on left
Heschl’s gyrus (-49, -16, 7). As shown in Panels (b1) – (b5), the five largest clusters for the
music-selective map were found in the right MTG (64, -37, -1), the right MTG (65, -41, 2), the
right STG (58, -24, 0), the right STG (47, 11, -9) and the left STG (-55, 9, 3), and the discrimi-
native patterns for music were widely distributed bilaterally in the superior temporal regions.
In the brain decoding literature, a distributed pattern of brain responses is not clearly defined.
In the domain of visual perception, the brain’s representation of visual-object categories was
found to be widely distributed, reflected by a distinct pattern of response across a wide expanse
of cortex [14]. The same type of category specific distributed pattern was observed in our study
as well as several other brain decoding studies in the auditory domain [2, 5]. Our results indi-
cate that representations of sound categories are widely distributed along the temporal cortex.
This is in agreement with previous studies, indicating that information in the spatially distrib-
uted patterns may reflect a more abstract perceptual level of representation of sound categories
[1, 2].

Multi-class classification across subjects
To investigate whether sound category-selective activity patterns are consistent across subjects
and how results from pattern analysis are generalized across individuals, we performed the
across-subject analysis. Because the within-subject classification accuracies obtained from

Fig 1. Comparison of seven-sound category classification accuracies obtained by four different MVPAmodels. Error bars represent one standard
deviation of the mean accuracy.

doi:10.1371/journal.pone.0117303.g001
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subject 4 were significantly lower than accuracies obtained from any other subject (Fig. 2), we
excluded this subject from further analysis. One way to test whether there are consistent brain
response patterns across subjects is to train a classifier on data from multiple individuals and
test the classifier on data from a new individual [20]. Hence, in the across-subject analysis, we
iteratively left out the complete data of one subject. The model for classifying seven sound cate-
gories simultaneously was trained on four subjects and was tested on the left out subject. From
Fig. 4, we can see the prediction performance is significantly above chance (p = 7.3 × 10-3, one
sample two-sided t test, n = 5), which demonstrates the feasibility of decoding multiple sound
categories across subjects. This indicates that neural activity patterns in the human temporal
cortex reflect the categorical content of sounds and that these patterns share features across
subjects. The horizontal line represents the accuracy achieved from guessing. By comparing
Fig. 2 and Fig. 4, we can see that across-subject classification accuracies are significantly lower
than within-subject classification accuracies (p< 1 × 10-4, two sample two-sided t test, n1 = 25,
n2 = 5), indicating that a significant portion of the neural representation of the sound categories
is specific to the individual. This suggests that the across-subject variation affects classification
performance more than within-subject variation. Compared with the within-subject analysis,
across-subject generalization is more challenging due to the additional inter-subject variability.
The success of decoding strategies will also be dependent on whether it is possible to identify
functionally matching brain regions in different subjects.

Fig 2. Classification accuracies for seven-sound category classifiers built for each subject separately using MSVM-RFE. Error bars represent one
standard deviation of the mean accuracy.

doi:10.1371/journal.pone.0117303.g002
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Fig 3. Selective brain maps for (a) English and (b) Music categories based on MSVM-RFE classification results. Panels (a1) – (a4) show the four
largest clusters from voxels selected for the English category. Panel (a5) shows the cluster on the left Heschl’s gyrus. Panels (b1) – (b5) show the five largest
clusters from voxels selected for the Music category. For each panel, the axial, sagittal and coronal slices are centered at the corresponding cluster. The left
side of the brain is on the left side of the figure.

doi:10.1371/journal.pone.0117303.g003
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Multi-class classification on averaged items and subjects
Results from multi-class classification within and across subjects motivated us to further inves-
tigate effects of averaging over items and over subjects on classifier performance. All four sce-
narios and their relationship are summarized in Fig. 5.

The within- and across- subject analysis described in the previous two subsections are called
Cases WithinSub and AcrossSub, shown as Parts A and B of Fig. 5. To study the generalizabili-
ty across different sound exemplars (items) within the same sound category, we averaged the
fMRI images over items (Case AvgItem), leading to fMRI data on an “averaged item”. Averag-
ing over items in Case WithinSub leads to Case AvgItem (Part C of Fig. 5). Further, we aver-
aged the fMRI images over subjects to investigate the effect of averaging over subjects (Case
AvgSub), leading to fMRI data on an “averaged subject”. Averaging over subjects in Case With-
inSub leads to Case AvgSub (Part D of Fig. 5). For Cases WithinSub and AvgSub, the red rect-
angle in Fig. 5 only includes one subject, which indicates the classifier is within-subject. For
Cases AcrossSub and AvgItem, the red rectangle includes multiple subjects, which indicates
that the classifier is trained on data from a subgroup of the subjects and is then tested on data
from a subject that is not part of that subgroup (Fig. 5).

As described above, seven-sound category classifiers were built for each case. Averaged clas-
sification accuracies under each case are shown in Fig. 6. Classification accuracies under Case

Fig 4. Classification accuracies across subjects for all seven sound categories using MSVM-RFE. Based on within-subject analysis results, the data
from subject 4 was not included for the across-subject analysis. “leave sub1 out”means leaving subject 1 out. That means the model is trained on data from
the 2nd, 3rd, 5th, and 6th subjects and is tested on data from the 1st subject.

doi:10.1371/journal.pone.0117303.g004
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WithinSub are significantly higher than accuracies under Case AcrossSub. This suggests the
across-subject variation affects classification performance more than the within-subject varia-
tion. More intriguingly, it is found that classification accuracies under Case AvgItem are signif-
icantly higher than accuracies under Case AcrossSub (p = 0.0196, two sample two-sided t test,
n1 = 5, n2 = 5), though models built for these two cases are both across-subject multi-class clas-
sifiers. This suggests that averaging over items helps to improve classifier performance. Percep-
tual categorization of incoming sounds requires perceptual invariance of sets of sounds
classified as belong to the same category. By averaging the fMRI images over items, we reduce
the irrelevant variations between different items of the same sound category and in turn

Fig 5. The relationship chart of four different fMRI data analysis cases. (A) CaseWithinSub: Classifiers are trained and tested for each subject
separately; (B) Case AcrossSub: Classifiers are built across subjects, that is, leaving out the complete data of one subject for testing and using the data from
all other subjects for training; (C) Case AvgItem: fMRI data are averaged over items and classifiers are built across subjects on the averaged data; (D) Case
AvgSub: fMRI data are averaged over subjects and classifiers are built for this “averaged subject”. For each fMRI data analysis case, if a red rectangle
contains only one subject, it indicates a within-subject analysis. Otherwise, the analysis is done across subjects.

doi:10.1371/journal.pone.0117303.g005
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increase the proportion of signals relevant to sound categorization. This is reasonable in the
sense that data with more repetitions on items is more stable and suffers less from noise. By
comparing Case AvgSub and Case WithinSub, as expected, classification performance on the
“averaged subject” is close to the average of classification performance on individual subjects.

To further understand the relationship between the four cases, we performed conjunction
brain mapping of the voxels selected under Cases WithinSub and AvgSub, Cases WithinSub
and AvgItem, and Cases WithinSub and AcrossSub. Since Case WithinSub (within-subject
analysis) is the most common way for doing fMRI data analysis, we compared the selected vox-
els that are common and different between Case WithinSub and each of the other three cases.
Again, the revealed patterns of brain activity are distributed. Despite these differences, we
found that, more interestingly, the largest clusters (corresponding approximately to MNI coor-
dinate (-65, -15, -6), (-63, -13, -3), and (-63, -14, -4) in Fig. 7 parts (a), (b), and (c) respectively)
formed by selected voxels that are common between Case WithinSub and each of the other
three cases are approximately at the same brain locations, indicating that classification in these
cases appear to rely on similar brain areas (Fig. 7). Though accuracies do vary among the four
cases due to subject variation and other factors, the common voxels revealed in the conjunction
brain maps in Fig. 7 seem to be essential for successful classification. This also suggests that
multi-voxel patterns of BOLD responses evoked by auditory stimuli are informative and can be
used to decode multiple sound categories not only within but across subjects.

Fig 6. Mean accuracy comparison of seven-sound category classifiers under four different cases using MSVM-RFE. Error bars represent one
standard deviation of the mean accuracy.

doi:10.1371/journal.pone.0117303.g006
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Fig 7. Conjunction brain maps for common voxels between CasesWithinSub and each of the other three. Brain maps of the largest clusters formed
by selected voxels that are common between CasesWithinSub and AvgSub, CasesWithinSub and AvgItem, and CasesWithinSub and AcrossSub are
shown in parts (a), (b), and (c) respectively. The left side of the brain is on the left side of the figure.

doi:10.1371/journal.pone.0117303.g007
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Discussion

Item and subject variations
In this study, both item and subject variations are found to have significant effects on model
decoding performance.

One challenging question is the extent to which MVPA decoding strategies might be gener-
alized across different exemplars of the same sound category [9]. Perception of sound catego-
ries requires perceptual invariance of sets of sounds classified as belonging to the same
category, resulting in a more abstract representation of sound similarity [1]. Successful decod-
ing strategies should be able to increase the process of relevant information and decrease the
process of irrelevant information. This necessitates a certain degree of flexibility in MVPA
modeling so that the model ignores irrelevant variations between different items of the same
sound category and selects similar features as the basis of abstract representations of sound
categories. However, the ability of MVPA models to identify a distinctive brain response pat-
tern corresponding to one sound category depends on the selection of sound exemplars as be-
longing to this category. If a sound category is well represented by the chosen exemplars, the
generalization across different instances of the same sound category is facilitated. By
averaging the fMRI images over items, we reduce the irrelevant variations between different
items of the same sound category and in turn increase the proportion of signals relevant to
sound categorization. The averaged item seems to possess the greatest number of properties de-
fining this category, and hence could be considered as the most typical exemplar of this class.
Similar to the exemplar theory in the visual categorization literature, categorization is based on
a comparison of the stimulus with all previously categorized exemplars of all categories [33].
Having more sound exemplars in one sound category may help to improve model
decoding performance.

The same-category sounds, while highly variable, may show considerable acoustic similarity
compared with between-category sounds. In this scenario, MVPA models could potentially
be keying on physical rather than categorical differences during training. Similar to previous
studies [2, 3], all stimuli in this study were resampled to the same sampling rate and normal-
ized to the same intensity level and fundamental frequency. However, we cannot completely
rule out the role of acoustic variables because semantic and acoustic categories could be corre-
lated. Perfect normalization of acoustic differences would produce a set of identical stimuli
[3]. Hence, some acoustic variability across categories is expected. The relationships between
the sound categories and the acoustic features are complex. Previous work has established that
people categorize sound samples on the basis of semantic features rather than strictly perceptu-
al ones, which means that semantic properties are not directly reducible to causal physical pa-
rameters [34]. Although the perceived similarities among environmental sounds are strongly
determined by acoustic features, sound categorization is less well predicted by acoustic
features [35].

Another challenging question is the decoding model generalizability across subjects. It is
known that there is not always precise spatial correspondence between homologous functional
locations in different individual brains, even when advanced alignment procedures are used
[9]. Such subject variation will necessarily obscure any across-subject generalization. Though
there are subject variations in anatomy and methodological difficulties in inter-subject co-
registration, neural similarities arose in terms of the locations and activation amplitudes of vox-
els utilized by the classifier to identify the category of a stimulus [36]. There are now a growing
number of studies in showing that MVPA can uncover invariant patterns of neural activity
across subjects [20, 37, 38].
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Localized versus distributed representation of sound categories
In the literature of fMRI studies on the brain’s representations of sound categories, previous
models suggest a hierarchical processing of auditory categories in the auditory cortices. In
these models, the superior temporal cortex is organized in specialized areas among which the
neural processing of a sound proceeds from the analysis of its low-level physical constituents to
higher perceptual dimensions. Several groups have used univariate approaches and identified
selective regions in the auditory cortex that potentially account for sound category differentia-
tion [3, 4, 39]. However, Staeren et al. found that representations of sound categories in the su-
perior temporal cortex are widely distributed [2]. In our study, sound category-selective brain
maps were identified based on multi-class classification and revealed distributed patterns of
brain activity along the temporal cortex. This is in agreement with previous studies, indicating
that information in the spatially distributed patterns may reflect a more abstract perceptual
level of representation of sound categories [1, 2]. This suggests that the brain’s representations
of sound categories could emerge from the joint encoding of information occurring in a set of
areas associated with not only higher-level but also lower-level auditory processing. Future re-
search should consider the interaction between semantic and physical properties of sound cate-
gories and their weighting of the properties in sound encoding, including how sounds within
the same semantic category with both different or the same acoustic features are represented,
and whether focal and distributed representations are related to categorical hierarchies.

The localized and distributed views of sound categorization may not be completely incom-
patible with each other. It is possible for one area to play a dominant role, while several differ-
ent areas offering complementary support. Kumar et al. argued the possibility of incorporating
the role of a pitch center within a distributed system for human brain pitch representation
[40]. Similar arguments may be made for sound category representation in the human brain.

We acknowledge that the sample size in our current study is relatively small, nevertheless
this sample size is consistent with similar studies reported in the literature [1, 2, 5, 19, 20]. We
believe our study demonstrates that it is possible to generalize sound categorization using fMRI
measures from one listener to another. However, we make no claim that the data we obtained
could be generalized to all listeners in the population. In addition, we acknowledge that our re-
sults are limited to the seven chosen sound categories and further research is needed to explore
how other sound categories are represented in the brain. Nevertheless, we included a number
of sound categories that can be found in the natural world. Thus, we believe that our results
speak to fundamental principles about sound category encoding in the brain.

Summary
In this study, we investigated the representation and processing of sound categories within the
human temporal cortex using high resolution fMRI and MVPA methods. Critically, we exam-
ined the benefits of using MSVM-RFE to decode multiple sound categories simultaneously. Re-
liable pattern classification is challenging due to multiple sound categories, the high
dimensionality of the dataset, and small sample sizes for each stimuli and category.

We have shown that for all classifications the model MSVM-RFE was able to learn the func-
tional relation between the multiple sound categories and the corresponding evoked spatial
patterns and classify the unlabeled sound-evoked patterns significantly above chance. This in-
dicates the feasibility of decoding multiple sound categories not only within but across subjects.
Sound category-selective brain maps were identified based on multi-class classification and re-
vealed distributed patterns of brain activity. Our across-subject analysis reveals that neural ac-
tivity patterns in the human temporal cortex reflect the categorical content of sounds and that
these patterns share features across subjects. However, the across-subject variation affects
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classification performance more than within-subject variation, as the across-subject analysis
has significantly lower classification accuracies than the within-subject analysis. Further, we
show that by averaging the fMRI images over items, the across-subject classification perfor-
mance can be significantly improved. After averaging the fMRI images over items, the irrele-
vant variations between different items of the same sound category are reduced and in turn the
proportion of signals relevant to sound categorization is increased. This necessitates a certain
degree of flexibility in MVPA modeling so that the model ignores irrelevant variations between
different instances of the same sound category and selects similar features as the basis of ab-
stract representations of sound categories. In addition, this study improves our understanding
of an important and unresolved question, i.e., the level to which MVPA decoding models can
be generalized across multiple sound categories, across different subjects, and across different
sound exemplars within the same category.
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