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Abstract

Background: Invasive candidiasis is an important cause of fungal infections in 

immunocompromised patients, including premature infants. The S-type lectin, galectin-3 (gal3), is 

increasingly recognized for its role in antifungal host defense. This study tested the hypothesis that 

tissue gal3 expression is affected by disseminated infection with Candida albicans and that 

supplementation with gal3 will provide a benefit in this setting.

Methods: To determine the expression of gal3 at the tissue level in response to disseminated 

infection with C. albicans, adult and neonatal mice were infected using previously established 

models. End points were chosen that reflected substantive tissue fungal burden but before 

mortality.

Results: No differences in gal3 were detected in tissues of adult animals relative to uninfected 

controls. In neonatal animals, gal3 concentration was lower in the spleen of infected animals 

compared to uninfected. Pretreatment of neonatal mice with recombinant gal3 was associated with 

reduced mortality and reduced fungal burden in the kidney, spleen and lung at 24 hours following 

infection.

Conclusion: These findings suggest that gal3 has an active role in host defense against 

candidiasis and that neonatal animals can benefit from supplementation with this lectin in the 

setting of disseminated candidiasis.
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INTRODUCTION

Disseminated candidiasis remains an important problem among the immunocompromised. 

Premature infants are among those at risk, and Candida albicans is the etiological agent in 

up to 70% of cases. (1) Despite antifungal treatment, mortality is common and 

neurodevelopmental impairment occurs in the majority of survivors. (1, 2) The susceptibility 

of these infants is likely through mechanisms that differ from other populations at risk. (3) 

Identifying the complex host defense mechanisms against these infections that may be 

amenable to modification in favor of the host will advance insight of patient susceptibilities 

and hasten the development of novel therapeutics.

The host immune system responds to invading pathogens via recognition of specific 

pathogen associated molecular pattern (PAMPs). Fungal PAMPs are generally components 

of the carbohydrate rich cell wall and include mannan and beta-glucan structures. These 

PAMPs are identified by pathogen recognition receptors (PRRs) which are found in a wide 

assortment of effector cells and involve a variety of receptor types including toll-like 

receptors (TLRs), integrins, and lectin receptors. (4, 5)

The S-type lectin receptor, galectin-3 (gal3), is one of a family of β-galactoside-binding 

lectins, and has an increasingly apparent role in infection and inflammation. (6, 7) Among 

its complex and diverse functions, it is involved in the host response to fungi, in part through 

its recognition of β-(1-2)-linked oligomannans, which are a component of the carbohydrate-

rich cell wall in C. albicans. (8, 9) Gal3 is expressed at cell surfaces, extracellular matrix and 

in cell secretions by activated macrophages and damaged cells. (10, 11) It plays an important 

role in differentiating nonpathogenic from pathogenic fungi. (12, 13) By recognizing similar 

antigenic elements on a microbe and host cell, but only targeting the microbe; it helps the 

immune system target those microbes which otherwise would have evaded the immune 

system due to molecular mimicry. (14-16)

Previous studies have supported a role for gal3 in host defense against disseminated 

candidiasis. (17, 18) Mice deficient in gal3 had a higher mortality than wild-type mice when 

infected via tail vein with C. albicans. In addition, the fungal burden was higher on day 3 

and the distribution of fungal elements in the kidneys was more diffuse in gal3 deficient 

mice. (17) A potential role for gal3 in susceptibility of preterm infants to candidiasis was 

suggested by the observation that term and preterm infant express lower gal3 expression in 

cord blood as compared to adults; and their gal3 expression correlates directly with 

gestational age. (19) To test the hypothesis that a deficient gal3 response contributes to the 

susceptibility of premature infants to disseminated candidiasis, murine models were used in 

the current study to compare the tissue gal3 response in adult and newborn mice infected 

with C. albicans. We also explored whether supplementation of gal3 could attenuate disease 

in disseminated neonatal candidiasis.
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METHODS

Growth, maintenance, and preparation of organisms

C. albicans strain SC5314 was used throughout this study. Yeast cultures were maintained on 

yeast extract, peptone, dextrose (YPD) plates (1% yeast extract, 2% peptone, 2% dextrose, 

2% agar). Yeast for injection were prepared by growth for 16 h at 37°C with vigorous 

aeration in YPD broth. Cells were collected by centrifugation, washed in sterile, hospital 

grade-saline, enumerated by hemacytometer and adjusted to the desired concentration for 

injection as described below.

Animal models

All animal studies were reviewed and approved by the Lifespan Institutional Animal Care 

and Use Committee, which oversees the animal care facility where animals were housed for 

this study. For adult experiments 4-8 week-old wild-type female BALB/c mice were 

obtained from Charles River Laboratories (Shrewsbury, MA). They were maintained in 

standard animal facility conditions with unlimited access to food and water. Mice were 

randomized to receive either 1 × 105 cfu of C. albicans or vehicle (sterile saline) by tail-vein 

injection of 200 μl. Animals were euthanized 48 hours post infection.

For neonatal experiments timed-pregnant 4-6 week-old BALB/c mice were obtained. 

Pregnant dams were maintained in individual cages with unlimited access to food and water. 

Mice were monitored to determine the date of parturition. On day 2 following delivery, pups 

were randomized to receive intraperitoneal (i.p.) injections in 20 μl of either 5 × 106 cfu of 

C. albicans or vehicle (sterile saline). Animals were euthanized 24 hours post infection. In a 

subsequent experiment, pups were delivered and randomized to receive 5 μg carrier-free 

recombinant mouse gal3 (R&D Systems, Minneapolis, MN) or saline in 20 μl i.p. injection 

prior to infection with C. albicans as described above. This dose of gal3 was selected 

because it far exceeds the physiologic concentration of gal3 in mouse pups and would 

therefore maximize the likelihood of detecting an effect should one exist. The timing of 

infection with C. albicans following gal3 administration was as short as possible given the 

logistics of administration and allowing for a short recovery period between i.p. injections. 

These pups were monitored closely every 3-8 h for signs of illness and were euthanized if 

moribund. Surviving pups were euthanized at 72 h following infection. To better elucidate 

the kinetics of dissemination, a time-course experiment was also performed. Pups (n=5 per 

treatment group for each time point) were administered gal-3 or saline and infected as 

described above, and then euthanized at 24 and 36 hours after infection.

In all experiments, at the time of death or euthanasia, organs (kidney, liver, spleen, lung, and 

brain) were harvested and serum was collected from individual mice. In neonatal mice, sera 

were pooled from animals in the same group because of low volumes from individual pups. 

Organs were homogenized by a FastPrep-24 Instrument (MP Biomedical, Inc., Solon, OH) 

using Lysing Matrix D (Qbiogene; MP Biomedical, Inc.) in 1-mL sterile saline, and 

appropriate dilutions were plated on YPD containing streptomycin (100 μg/ml) and 

ampicillin (50 μg/ml). Colonies were enumerated after an overnight incubation at 37°C. 
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Fungal burden was expressed as the colony forming units (CFU)/ml/gram of harvested 

organ.

Quantification of Galectin-3, Chemokines and Cytokines

Gal3 levels were quantified using a commercially available gal3 Mouse ELISA kit (Abcam, 

Cambridge, MA) according to the manufacturer’s instructions. Cytokines and chemokines in 

tissue homogenates were quantified using the Bio-Plex Pro™ Mouse Cytokine 23-plex 

Assay according to the manufacturer’s instructions and analyzed using a Bio-Plex 200 

instrument (Bio-Rad, Hercules, CA). The following analytes were interrogated: Eotaxin, G-

CSF, GM-CSF, IFN-γ, IL-1α, IL-1β, IL-2, IL-3, IL-4, IL-5, IL-6, IL-9, IL-10, IL-12 (p40), 

IL-12 (p70), IL-13, IL-17A, KC, MCP-1 (MCAF), MIP-1α, MIP-1β, RANTES and TNF-α.

Statistical Analysis

Gal3 concentration in tissues was analyzed by ANOVA and inter-group comparisons were 

made by the Student-Newman-Keuls Method. Differences in fungal burden were analyzed 

using a negative binomial model to account for the variability in these data. Survival analysis 

was by log-rank test. Cytokine/chemokine expression was compared in gal3-treated and 

control animals by t-test. Sigma plot version 13.0 and SAS 9.3 (SAS Institute, Cary, NC) 

were used for statistical calculations. P values < 0.05 were considered significant.

RESULTS

Galectin-3 response to disseminated candidiasis in adult mice

Adult mice were injected via tail-vein with C. albicans or with vehicle (sterile saline) and 

were euthanized 48 h after infection. Fungal burden and gal3 were measured in tissue 

homogenates and gal3 was also measured in serum. The infective dose and time point were 

selected to represent a time when the infection would be well established but before the 

onset of mortality, based on previous work with this model. Fungal burden was highest in 

kidney followed by the spleen, which was consistent with previous experiments (Figure 1A). 

Despite differences in fungal burden, the concentration of gal3 in serum, kidney, liver, 

spleen, lung and brain was very similar among infected vs uninfected animals (Figure 1B).

Galectin-3 response to disseminated candidiasis in neonatal mice

Two-day-old mouse pups were injected intraperitoneally with C. albicans or with vehicle 

(sterile saline), euthanized at 24 h, and fungal burden and gal3 were measured in tissue 

homogenates. Gal3 was also measured in a single pooled serum sample from all the pups in 

each group. As with the adult model, the infective dose and time point were selected to 

represent a time when the infection would be well established but before the onset of 

mortality, based on previous work with this model. Fungal burden was highest in spleen and 

liver, which is characteristic of this model (Figure 2A). Overall, gal3 expression was similar 

among infected vs control pups, with the exception of the spleen, where gal3 expression was 

significantly reduced in infected relative to control pups (p=0.04).
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Effect of supplementation with recombinant galectin-3 in neonatal mice infected with C. 
albicans

The reduction in gal3 in spleens of mouse pups infected with C. albicans together with the 

previous observation that gal3 deficient mice have increased susceptibility to C. albicans 
infection (17) led us to hypothesize that supplementation with gal3 may afford an advantage 

to infected neonatal mice. To test this hypothesis, mouse pups were injected intraperitoneally 

with recombinant gal3 or vehicle followed by infection with C. albicans 2 hours later. 

Animals were closely observed following infection and surviving animals were euthanized 

at 72 hours. Organs were harvested at the time of death or at 72 hours when they were 

euthanized. Treatment with recombinant gal3 led to a significant decrease in mortality 

(100% to 60%) with an increase in median survival from 36 to 70 h as compared to control 

(Figure 3, p=0.02). Uninfected pups that received only gal3, had no signs of illness. Fungal 

burden at the time of death is depicted in Figure 4. Although trends toward reduced fungal 

burden with gal3 treatment could be identified, the only significant reduction in fungal 

burden at the time of death was seen in the lungs (median 8.7 × 104 cfu/g in gal3 group vs. 

1.1 × 105 cfu/g in control, p=0.048).

Determination of tissue fungal burden at the time of death (or euthanasia) represents a 

heterogeneous sample in terms of time from infection. These data are therefore unlikely to 

capture the kinetics of disease progression, particularly considering the difference in survival 

curves between gal3-treated and control animals (Figure 3). To better delineate the kinetics 

of infection, the experiment was repeated and groups of animal were euthanized at specific 

time points following infection. Fungal burden in each tissue at 24 hours and at 36 hours are 

depicted in Figure 5. One animal from each group assigned to the 36 hour time point died 

prior to 36 hours and was excluded. Significant reductions in fungal burden were noted in 

the kidney, spleen and lung at 24 hours. The reduction in the kidney was still noted at 36 

hours, but the lung had increased fungal burden in the gal3 group at 36 hours. Fungal burden 

in the brain was not detectable in the majority of animals at these time points. As expected, 

the fungal burden at the time of death (Figure 4) was greater in all tissues examined than was 

seen at these time points.

To provide a broad assessment of alterations in the inflammatory response associated with 

gal3 supplementation, a multiplex cytokine/chemokine assay was performed on the kidney 

and spleen at 24 and 36 hours to capture the time points that showed reduced fungal burden 

with gal3 treatment. No statistically significant differences were found for any of the 23 

proteins measured at either time point (data not shown). Three proteins showed a trend 

toward lower levels in the spleens harvested at 24 hours in gal3-treated mice relative to 

untreated; G-CSF (mean 499 pg/ml vs. 1812 pg/ml, p=0.057), KC (mean 203 pg/ml vs. 416 

pg/ml, p=0.077) and MIP-1α (mean 21 pg/ml vs. 203 pg/ml, p=0.089). At the 36 hour time 

point splenic concentrations of each of these proteins had decreased in the control animals 

and were more similar between gal3-treated and control animals.

DISCUSSION

Disseminated candidiasis is a life threatening complication among immunocompromised 

patients. These infections occur in the setting of severe illness requiring intensive care, in 
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patients with malignancy and undergoing chemotherapy, and in bone-marrow transplant 

units (20). The importance of the neutrophil in host defense is apparent since neutrophil 

dysfunction is associated with increased risk, either due to neutropenia or functional 

impairments in neutrophil effector mechanisms (21). Our focus has been on prematurity as a 

risk factor for disseminated candidiasis. The characteristics of this patient population that 

put them at risk are likely to be unique relative to other immunocompromised patients, and 

therefore potentially informative in the development of strategies to reduce risk. The 

observation that infections caused by the non-albicans species, C. parapsilosis, are more 

common in premature infants than in other populations at risk may be one manifestation of 

this unique host-pathogen interface (22). Additionally, despite the known importance of 

neutrophil dysfunction, preterm infants are rarely neutropenic when they develop these 

infections. Further, studies of ex vivo neutrophils isolated from cord blood of term and 

preterm infants found no differences in either phagocytosis or the capacity to generate an 

oxidative burst when co-incubated with C. albicans or C. parapsilosis (23). These findings 

were the basis for the hypothesis that premature infants manifest risk for disseminated 

candidiasis due to alterations in the developing immune system that indirectly impact 

neutrophil function. Gal3 is one such candidate. In a variety of experimental settings, gal3 

has been shown to be a chemoattractant and to function as an opsonin (24, 25). In regard to 

neutrophil function, exogenous gal3 improves migration, phagocytosis, and the production 

of reactive oxygen species and cytokines (26-30). In a mouse model gal3 deficient mice 

infected with a low-lethal dose of C. albicans or with C. parapsilosis had more severe 

disease manifestations than wild-type mice (17). Finally, we and others have found reduced 

gal3 concentrations in infant serum relative to healthy adults (17, 19).

In the current study, we sought to examine the gal3 response to disseminated candidiasis in 

adult and infant mice at the tissue level. There are important differences between the adult 

and neonatal models employed in this study. The overall goal was to examine gal3 

expression at a time point in each model when they would have substantial fungal burden but 

before death. The intraperitoneal route was used in neonatal mice because it more closely 

mimics the mechanism of dissemination that occurs following peritoneal seeding of Candida 
with intestinal perforation in human preterm infants; an important and common route of 

infection in this population. This route is also technically more feasible. When adult animals 

are infected intraperitoneally, they clear the infection with limited dissemination and no 

mortality (31), so the intravenous route was used to ensure disseminated disease. Adults 

were euthanized at 48 h and neonates at 24 h based on experience with each model and our 

goal for measurable fungal burden and no mortality. Because of these limitations, however, 

comparisons between adult and newborn animals are unlikely to be meaningful, and we 

focused our analysis on infected vs. uninfected animals in each group.

Adult animals infected intravenously did not manifest any differences in tissue 

concentrations of gal3 compared to uninfected animals at the infective dose and time point 

studied. Because this study interrogated gal3 expression at the tissue level rather than at the 

cellular or molecular level, a lack of change in gal3 with infection does not imply that the 

lectin lacks a role in the host response. On the contrary, a role for gal3 is well supported by 

the literature and is likely to be quite complex. A role for gal3 in discrimination between 

pathogenic yeast such as C. albicans and the non-pathogenic Saccharomyces cerevisiae was 
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suggested by a study of macrophage responses. TNF-α production was more strongly 

induced by C. albicans than S. cerevisiae and gal3 in association with TLR2 was required 

for this effect.(12) The importance of gal3 in fungal recognition and response in 

coordination with both TLR2 and dectin-1 was consistent in other experimental settings.(13, 

32) Studies of gal3 in neutrophils suggest that the effects of extracellular and intracellular 

gal3 may differ. Whereas exogenous gal3 augments recruitment, migration, phagocytosis 

and the production of IL-8 and reactive oxygen species, (18, 26, 30, 33) intracellular gal3 

has been shown to negatively regulate ROS-dependent killing of C. albicans induced by 

complement receptor 3 (CR3).(34) Using neutrophil adoptive transfer, this study also 

suggested that intracellular gal3 down-regulates neutrophil effector functions. Further, gal3 

deficient mice had reduced mortality and tissue fungal burden than wild-type animals as had 

also been seen in a previous study.(35) These outcomes in gal3 deficient mice are at odds 

with our results showing gal3 deficient mice to be more susceptible to mortality and higher 

fungal burdens than wild-type (17) and with the results of a study involving mannosylation 

mutants that also showed increased virulence of the wild-type strain in gal3-deficient mice 

following i.p. injection.(36) As suggested by the authors, the discrepant findings may reflect 

differences in the derivation of the knockout mouse strain and/or effect of different infective 

C. albicans strains, routes or doses. Our study employed a “low-lethal dose” that was 5 to 

10-fold less than that used in the other studies.

A number of additional studies of host defense against fungal pathogens have supported a 

positive role for gal3. A role for gal3 has been identified in generation of a protective Th-17 

response in experimental models of both candidiasis and crytococcosis (37, 38). It has also 

been shown to trigger TNF-α production by macrophages and contribute to a fungicidal 

effect (9). Similar to our studies with disseminated candidiasis in mice, gal3 deficient mice 

had increased mortality when infected with Cryptococcus neoformans (38). These mice also 

lacked the increase in IL-17/IL-23 cytokines that was seen in wild type animals.

The notion that exogenous gal3 may promote effector functions against candidiasis is well 

supported by our observations with the neonatal mouse model. Infection of mouse pups with 

C. albicans was associated with decreased expression of gal3 in the spleen. Because mouse 

pups were infected intraperitoneally, the spleen is likely to be an important route of 

dissemination in this model. This hypothesis is supported by the observation that the spleen 

bears the highest fungal burden, and by previous work with this model showing hyphal 

elements penetrating the spleen capsule by microscopy (39). These findings led us to 

speculate that C. albicans may deplete splenic gal3, leading to increased fungal burden and 

promoting dissemination, and that supplementation of gal3 may reduce disease. 

Administration of exogenous gal3 substantially reduced mortality in subsequent 

experiments. Futhermore, the reduction in mortality was associated with reduced fungal 

burden in kidney, spleen and lung at 24 hours after infection that persisted to 36 hours in the 

kidney. Together, these data suggest that gal3 supplementation delayed the progression of 

infection in these animals.

The mechanism by which gal3 provided benefit is likely multifactorial and is the focus of 

ongoing investigation. As a first step to characterize how gal3 impacts the early 

inflammatory response to infection, a wide array of cytokines and chemokines were assessed 
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in tissues showing differences in fungal burden. In general, the inflammatory profiles were 

similar. The majority of information regarding the inflammatory response to disseminated 

candidiasis in mice has come from adult animals infected via tail-vein, and data from 

newborn mice are extremely limited. Most relevant to the current study, evaluation of the 

early response to infection in adult mice has highlighted the importance of KC production 

and its association with progression of pathology in the kidney; the organ most consistently 

affected in this model (40). Given its role in neutrophil recruitment (41), it is likely that KC 

expression is important in recruiting leukocytes to the source of infection. The trend toward 

reduced KC and G-CSF associated with reduced fungal burden that we observed in the 

spleen at 24 hours suggests that the reduction in viable yeast may not be due to more 

efficient neutrophil recruitment or function but rather may reflect less stimulation for 

neutrophil recruitment. Because gal3 can directly bind to and kill C. albicans through 

recognition of β-1,2-linked oligomannans (9), this interaction represents one possible 

mechanism by which fungal growth may have been inhibited, reducing fungal burden and 

leading to less inflammatory stimulus. Given the multifaceted effects reported for exogenous 

gal3 on various components of the innate immune system, multiple mechanisms are possible 

and likely. Additional experiments focused at the cellular and molecular level within 

different tissues will better inform the mechanisms at play. Further, defining the timing at 

which administration of gal3 will alter the course of infection is an important element with 

potential clinical implications.
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Figure 1. 
Tissue fungal burden and galectin-3 concentrations in adult mice with disseminated 

candidiasis. Mice (n=7) were infected via tail-vein injection with C. albicans and euthanized 

at 48 h after injection. Panel A: Tissue fungal burden. Panel B: Mean gal3 concentration in 

tissue homogenates compared to animals receiving saline (n=10). Error bars represent 

standard deviation. No differences in tissue gal3 concentration were detected by ANOVA 

with inter-group comparisons by the Student-Newman-Keuls Method.
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Figure 2. 
Tissue fungal burden and galectin-3 concentrations in neonatal mice with disseminated 

candidiasis. Two-day-old mouse pups (n=14) were infected via intraperitoneal injection with 

C. albicans and euthanized at 24 h after injection. Panel A: Tissue fungal burden. Panel B: 

Mean gal3 concentration in tissue homogenates compared to pups receiving saline (n=14). 

Error bars represent standard deviation. Mean gal3 concentration was reduced in the spleen 

of infected pups relative to controls based on ANOVA with inter-group comparisons by the 

Student-Newman-Keuls Method (p=0.04).
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Figure 3. 
Survival curve of neonatal mice with disseminated candidiasis after pretreatment with 

recombinant galectin-3. Two-day-old mouse pups were given intraperitoneal injections of 

either saline or recombinant gal3, 2 h prior to infection with C. albicans. Uninfected pups 

receiving gal3 only were included as a control. Pretreatment with gal3 reduced mortality in 

infected compared to saline treated pups based on log-rank test (p=0.02).
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Figure 4. 
Tissue fungal burden in neonatal mice with disseminated candidiasis pretreated with 

galectin-3. Two-day-old mouse pups were given intraperitoneal injections of either saline or 

recombinant gal3, 2 h prior to infection with C. albicans (n=10 pups per group). Tissues 

were collected at the time of death or at 72 h in surviving animals. Fungal burden is depicted 

with the bars representing median values. P values were derived based on analysis using a 

negative binomial model to account for the variability in these data which are not normally 

distributed.
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Figure 5. 
Tissue fungal burden in neonatal mice with disseminated candidiasis at early time points 

following infection and pretreatment with galectin-3. Two-day-old mouse pups were given 

intraperitoneal injections of either saline or recombinant gal3, 2 h prior to infection with C. 
albicans (n=5 pups per group). Pups were euthanized and tissues were collected at 24 and 36 

h following infection. Fungal burden is depicted with the bars representing median values. P 

values were derived based on analysis using a negative binomial model to account for the 

variability in these data which are not normally distributed. NS – not significant.
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