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Abstract

Recent research comparing mental models theory and causal Bayes nets for their ability to

account for discounting and augmentation inferences in causal conditional reasoning had

some limitations. One of the experiments used an ordinal scale and multiple items and ana-

lysed the data by subjects and items. This procedure can create a variety of problems that

can be resolved by using an appropriate cumulative link function mixed models approach in

which items are treated as random effects. Experiment 1 replicated this earlier experiment

and analysed the results using appropriate data analytic techniques. Although successfully

replicating earlier research, the pattern of results could be explained by a much simpler

“shallow encoding” hypothesis. Experiment 2 introduced a manipulation to critically test this

hypothesis. The results favoured the causal Bayes nets predictions and not shallow encod-

ing and were not consistent with mental models theory. Experiment 1 provided qualified sup-

port for the causal Bayes net approach using appropriate statistics because it also

replicated the failure to observe one of the predicted main effects. Experiment 2 discounted

one plausible explanation for this failure. While within the limited goals that were set for

these experiments they were successful, more research is required to account for the pat-

tern of findings using this paradigm.

Introduction

Conditionals, which are typically rendered in English as if p then q (where p is called the ante-
cedent and q is called the consequent), are essential to human inference. Conditional sentences

are used to express a variety of relations, such as causation (if you turn the key, then the car
starts), deontic regulations (if you are drinking beer, you must be over 18), and property attribu-

tion (if it’s a raven, then its black). Conditionals allow us to think hypothetically about what

would (or should) happen in the world should certain conditions expressed in the antecedent,

p, obtain. Conditionals therefore also underpin much of our decision-making. Much of what

we know about reasoning with conditionals has come from the investigation of causal
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conditionals. That is, conditionals like if you turn the key the car starts, where the antecedent is

the cause of the effect described in the consequent. Such reasoning does not seem to be

accounted for well by the material conditional of standard logic, in which if p then q is true if p
is false or q is true, otherwise it is false. This situation has led to the development of psychologi-

cal theories that deviate more or less from standard logic. The two main theories in this area

are mental models theory [1, 2, 3] and the new paradigm, probabilistic approach [4, 5, 6, 7, 8].

Recently, these two theories were compared for their ability to account for discounting and

augmentation inferences with causal conditionals [9, 10, 11, 12]. Discounting occurs when there

are two possible causes of an effect. So, if you know the lights went out and then discover that

there was a power cut this discounts the fuse blowing as the cause of the lights going out. Aug-

mentation occurs when two effects have a common cause. So, if you don’t know whether some-

one has chickenpox, knowing that they have spots increases the likelihood that they have a fever

because these effects are correlated by their common cause, having chickenpox. The evidence

from two experiments [9] was most consistent with the probabilistic approach. This approach

appealed to causal model theory [13, 14, 15] in which it is assumed that causal Bayes nets [16,

17, 18, 19] provide the mental representations that underpin causal conditional reasoning.

In the experiments we report here we first resolve some of the limitations of these experi-

ments [9]. The analysis of the data was inadequate on two levels. Multiple items were used and

analyses by participants and items reported. However, this approach does not avoid the prob-

lem of language as a fixed effect fallacy [20]. Such data is better analysed using appropriate

mixed effect models [21] where both participants and items can be treated as random effects.

Moreover, the response variable in Experiment 2 in [9] was on an ordinal three point scale but

the data were averaged over items and analysed assuming a continuous ratio scale. Both of

these limitations argue that the results of these previous experiments may be artifacts of using

inappropriate data analytic methods.

We have two goals for the experiments we report in this paper. First, we attempt to replicate

the results in [9] comparing causal models and mental models theories using appropriate data

analytic methods. In particular, we replicate their Experiment 2 and analyse the data using

more appropriate cumulative link function mixed effects models [22, 23]. Second, the results

of our first experiment and Experiment 2 in [9] could be explained by what we call the “shal-

low encoding hypothesis” which we discuss in the introduction to our second experiment.

This experiment introduces a critical manipulation that may distinguish this hypothesis from

causal model theory.

We first introduce causal model theory as it applies to conditional reasoning and introduce

the predictions it makes for the experimental paradigm used in [9]. We then do the same for

mental models theory. We then introduce Experiment 1 which replicates Experiment 2 in [9]

and analyses the date using cumulative link function mixed effects models.

Causal Model Theory

The two examples we used to introduce discounting and augmentation can be expressed using

pairs of conditional sentences. For discounting the conditionals are:

If the fuse blows ðpÞ then the lights go out ðqÞ

If there is a power cut ðrÞ then the lights go out ðqÞ
ðAÞ

For augmentation the conditionals are:

If someone has fever ðpÞ then they have chickenpox ðqÞ

If someone has spots ðrÞ then they have chickenpox ðqÞ
ðBÞ
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In (A), the conditionals are causal, that is, p and r are the causes of the effect q. In contrast,

in (B) the conditionals are diagnostic, that is, p and r are the effects of the cause q. It has been

known for some time that there are profound differences between the causal (or predictive)

and diagnostic cases [24]. This is clear for (A) and (B). According to deductive logic, they

should produce similar inferences but the causal structures they suggest are very different.

According to causal model theory, the pairs of conditionals in (A) and (B) are mentally repre-

sented as different causal Bayes nets [12, 13] that lead to different inference patterns not pre-

dictable by deductive logic alone.

Causal Bayes nets (CBNs) treat the causal dependencies that people believe to be operative

in the world as basic [16, 17]. These dependencies are represented as edges in a directed acyclic

graph (see Fig 1). The nodes represent Bayesian random variables. They also represent the rele-

vant causes and effects, with the arrows running from cause to effect, i.e., the arrows represent

causal direction. Nodes that are not connected represent variables which are conditionally

independent of each other. The parents of a node are those that connect to it further back

down the causal chain. These networks have probability distributions defined over them that

partly rely on the dependency structure. So for example, in Fig 1A, the joint distribution over

the three variables, Pr(p, q, r) = Pr(p)Pr(r)(q|p, r), whereas in Fig 1B it is Pr(q)Pr(p|q)(r|q).
Integration rules determine how the multiple parents of a node combine, e.g., the noisy-OR

rule (see, Fig 1A). Suppose, in Fig 1A p and r represent the fuses blowing and power cut respec-

tively as in (A). These are independent causes of the lights going out (i.e., q). The probability of

the lights going out is,

Prðq ¼ 1jp; rÞ ¼ 1 � ð1 � WaÞPi¼p;rð1 � WiÞ
indðiÞ

ð1Þ

Where, for example, ind(p) = 1 if the fuses blow and 0 if they do not.Wi is the probability of q
given cause i (in the absence of alternative causes a). Thus, the weights,Wi, are causal powers

[25].Wa is the weight attributed to alternative causes of q, other than p and r, which are

assumed to be present in the causal background. If this were a deterministic system,Wr =

Wp = 1, and there are no other causes of the lights going out (i.e.,Wa = 0), then Eq 1 is equiva-

lent to logical inclusive OR. It gives probability 1 unless both causes are absent when it gives

probability 0, that is, if the fuses have not blown and there has not been a power cut, then the

lights are on.

This view commits one to more than probability theory [16, 17]. A recent review [18] sum-

marises the additional assumptions made in Bayes nets, which are mainly about making infer-

ence tractable. The most important assumption in this respect is the causal Markov property

that causes "screen off" their effects so that inferences about any effect variable depend only on

its direct causes and not on any of the other effects or indirect causes. For example, having

chickenpox causes fever and spots. If it is known that someone has chickenpox then these

Fig 1. A. Common effect structure with a noisy-OR integration rule. B. Common cause structure.

doi:10.1371/journal.pone.0167741.g001
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effects are independent, i.e., manipulating one, e.g., using a cold compress to reduce fever, will

not affect the other, the patient will still have spots. Moreover, if someone is known to have

chickenpox these effects are independent of any of the causes of having chickenpox. While

there are detractors of the Bayes net approach [26, 27], it is argued in [18, p. 111] “that the

approach helps us to understand real causal systems and how ordinary people think about cau-

sality.” They may also help us to understand how people reason with conditionals.

The common effect structure in Fig 1A is the mental representation or interpretation of (A).

The common cause structure in Fig 1B is the mental representation or interpretation of (B). All

of the predictions for these experiments rely only on the qualitative pattern of independence

relations embodied in the structures of the networks depicted in these figures. For the common

effect structure (Fig 1A), the causes p and r are independent, i.e., Pr(p|r) = Pr(p), because p and

r have no common parent. So, the probability of the fuses blowing (p) is independent of power

cuts (r). However, they are not independent if the effect is known to have occurred, i.e., Pr(p|r,
q) 6¼ Pr(p|q). Indeed, it is easily proven that Pr(p|r, q)< Pr(p|q) [28]. That is, if it is known that

the lights went out, then the probability that the fuses blew is less when it also is known that

there was a power cut. Consequently, discounting is predicted. For the common cause structure

(Fig 1B), the effects p and r are independent given q, i.e., Pr(p|r, q) = Pr(p|q). That is, given it is

known that someone has chicken pox then the probability of having a fever (p) is independent

of having spots (r). However, they are not independent if the cause is not known to have

occurred, i.e., Pr(p|r) 6¼ Pr(p). Indeed, it is easily proven that Pr(p|r)> Pr(p) [28]. That is, if it is

not known whether someone has chicken pox, then the probability that they have a fever is

greater when it is known that they have spots. Consequently, augmentation is predicted.

In [9], participants were presented with pairs of conditional sentences like (A) and (B). For

the common effect structure ((A) and Fig 1A), using causal conditionals (CE), they were then

presented with the following information:

CEC q Present (C) CENC q Absent (NC)

The lights go out (q). There is a power cut (r)
There is a power cut (r)

In Experiment 2 in [9], after being told that there was a power cut participants were asked

whether this fact decreases, increases, or has no effect on the likelihood that the fuse has blown

(r). According to causal model theory, in the consequent (here the effect) present condition

(C), participants should say the probability that the fuse has blown decreases. Whereas in the

consequent absent condition, participants should say that there is no change. For the common

cause structure ((B) and Fig 1B), using diagnostic conditionals (EC), participants were then

presented with the following information:

ECC q Present (C) ECNC q Absent (NC)

They have chickenpox (q). They have spots (r)
They have spots (r)

According to causal model theory, in the consequent (here the cause) present condition,

participants should say the presence of spots has no effect on the probability they have a fever

(p). Whereas in the consequent absent condition, participants should say that this probability

increases. We now derive predictions for the mental models theory.

Mental Models

Mental models represent the possible states of affairs in the world that are admitted by the

truth of a conditional statement. These correspond directly to the rows of a truth table in
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which the conditional is true. Previous work in mental models on naive probabilities assumed

that each truth table case was equally probable [29]. The same assumption was made in deriv-

ing predictions in [9].

A p q .25 B p q .33 (3)

p ¬q .25 ¬p q .33

¬p q .25 ¬p ¬q .33

¬p ¬q .25

(3) shows the consequences of this assumption (“¬” = not). (3A) represents all four possible

true and false arrangements of two propositions, fuse blows (p) and lights go out (q). These are

assumed to be equiprobable. Each possibility is therefore assigned a probability of .25. On

learning that, if p then q is true, the case where the conditional is false is ruled out. That is, the

case in which the fuse blows is true (p) and the light go out is false (¬q) is no longer possible.

This results in the mental model in (3B). With this case removed the probability mass has to be

redistributed maintaining equiprobability. For the modus ponens inference, the categorical

premise asserts that the fuse blows is true. This further rules out the bottom two possibilities in

(3B). Therefore, the probability mass all moves to the first row. As this case is now the only

possibility, the lights go outmust be true, i.e., Pr(q) = 1.

Mental Models, Discounting and Augmentation

According to mental models theory, people recode (A) as if the fuse blows (p) OR there is a
power cut (r), then the lights go out (q) [30]. People, therefore, construct the mental model in

(1’).

Fuse blowing Power cut Lights off (1’)

Fuse blowing ¬Power cut Lights off
¬Fuse blowing Power cut Lights off
¬Fuse blowing ¬Power cut Lights off
¬Fuse blowing ¬Power cut ¬Lights off

In (10), the left to right ordering represents the cause to effect temporal order. In mental

models theory, (B) is recoded as: if someone has chicken pox (q), they have a fever (p) AND

spots (r) [31]. People, therefore, construct the mental model in (20).

Chicken Pox Fever Spots (2’)

¬Chicken Pox Fever Spots
¬Chicken Pox Fever ¬Spots
¬Chicken Pox ¬Fever Spots
¬Chicken Pox ¬Fever ¬Spots

Deriving predictions proceeds as follows (assuming equiprobability). Take (10) for the

consequent absent condition, Pr(r) is the proportion of models in which r is true. That is,

those where there is a power cut is true divided by the number of models, i.e., 2/5. Pr(r|p)
requires excluding all the models in which p (fuse blowing) is false and re-calculating the pro-

portion of models in which r is true in the remaining models, i.e., 1/2. The degree of dis-

counting or augmentation is the difference, that is, 1/2 − 2/5 = 1/10. So augmentation is

predicted. Consequently, when it is not known whether the lights go out mental models the-

ory predicts that people should say that the probability that there was a power cut increases

after they learn that the fuse blew. This prediction contrasts with causal model theory, which

predicts no change. If we do the same calculation for the consequent (i.e., the effect) present

Discounting and Augmentation in Causal Conditional Reasoning
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condition, then Pr(r|q) =½ and Pr(r|p,q) = ½. That is, there is no difference. Consequently,

when it is known that the lights go out, mental models theory predicts that people should say

there is no change in the probability that there was a power cut after they learn that the fuse

blew. This prediction contrasts with causal model theory, which predicts discounting,

Now take (20) for the consequent absent condition. Pr(r) is the proportion of models in

which has spots is true divided by the number of models, i.e., 3/5. Pr(r|p) requires excluding all

the models in which p (has fever) is false and re-calculating the proportion of models in which

r is true in the remaining models, i.e., 2/3. The degree of discounting or augmentation is the

difference, that is, 2/3 − 3/5 = 1/15. So, augmentation is predicted. Consequently, when it is

not known whether someone has chickenpox, mental models theory predicts that people

should say that the probability that someone has spots increases after they learn that she has a

fever. This prediction is consistent with causal model theory. If we do the same calculation for

the consequent (i.e., the cause) present condition, then Pr(r|q) = 1 and Pr(r|p, q) = 1, i.e., there

is no difference. Consequently, when it is known that someone has chickenpox, mental models

theory predicts that people should say there is no change in the probability that someone has

spots after they learn that she has a fever. This prediction is also consistent with causal model

theory.

An important element of mental models theory is that people rarely represent the complete,

or “fleshed out” mental models of some premises, as in (10) and (20). Rather they initially repre-

sent the premises in a reduced form, known as an initial mental model, which excludes the

false antecedent models and does not show false cases. Consequently, the initial mental models

of (10) and (20) are as follows:

Fuse blowing Power cut

Fuse blowing

Power cut

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

Lights off

Lights off

Lights off

ð1@Þ

. . .

And,

Chicken Poxj j Fever Spots ð2@Þ

. . .

The ellipsis “. . .” indicates an implicitmodel containing the other possibilities which can be

made explicit when fleshed out to produce the representations in (10) and (20). The brackets (“|

|”) indicate that these true cases are exhausted and there are none in the implicit model. A

great deal of the explanatory power of mental models theory derives from the postulation of

these truncated initial representations. However, as argued [9], it is quite complex to incorpo-

rate them into simple calculations of naïve probabilities. In particular, how the implicit model

and the possibilities it may contain figure in the calculation is problematic. We refer the reader

to [9] where the predictions of initial mental models are clearly laid out: there should be no

effects of whether the conditionals are causal (A) or diagnostic (B) or whether the consequent

clause (q) is known or not.

It has recently been argued [32] that the application of the mental models theory of naive

probability to discounting inferences in [9] was not faithful to the theory. The following cita-

tion identifies the issue [29, p. 68]: “Each model represents an equiprobable alternative unless

individuals have knowledge or beliefs to the contrary, in which case they will assign different

probabilities to different models.” We continue to compare causal model theory to the

Discounting and Augmentation in Causal Conditional Reasoning
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predictions of mental model theory with naïve probabilities for two reasons. First, we have pre-

viously argued that allowing different probabilities to be assigned to different models means

there is little distinctive left in the mental models approach to probability [9, 33]. On this view,

(10) is simply the full joint probability distribution over p, q, and r, with the three missing cells

of the contingency table assigned a probability of 0. But this is just to tacitly agree that naïve

probabilities in mental models cannot account for simple discounting inferences and that a

full probabilistic theory of inference is required.

Second, just allowing different probabilities to be assigned to different models does not

allow mental models theory to predict discounting inferences. Only assigning just the right

probabilities will achieve this. The probabilities that would need to be assigned are those that

respect the independence constraints embodied in the causal model representations, e.g., the

lack of direct connection between nodes p and r in Fig 1A depicts that they are independent.

However, unlike causal models, mental models theory lacks the representational resources to

express these constraints on these probabilities. This is analogous to logical languages which

differ in expressibility. For example, propositional logic lacks the ability to express quantifica-

tion (all, some) which requires predicate logic. That is, symbols and rules for the composition

of quantifiers need to be added to propositional logic to express quantified claims. Similar

principled additions would be required in mental models formalism to express the required

independence relations. However, no such proposals have been forthcoming. In mental mod-

els, without the graphical representation of causes and how they constrain probability assign-

ments, it is simply a matter of serendipity as to whether the right probabilities are attached to

models.

Predictions

The predictions of causal model theory (CM), fully fleshed out mental models (FM), and initial

mental models (IM) are shown in Fig 2. In the rest of this paper, we will refer to the four condi-

tions in the experiments using the abbreviations shown in this figure. So, for example, the

causal conditional case when the consequent is known to have occurred will be designated

CEC; the case when the consequent is not known to have occurred will be designated CENC;

and similarly for the diagnostic (EC) rules.

In Experiment 1, we replicated Experiment 2 in [9]. We included a pre-test to evaluate the

interpretation of the conditionals used and we used an appropriate cumulative link mixed

Fig 2. The predictions of the three theories: A: Causal Models (CM); B: Fully fleshed out mental

models FM); C: Initial mental models (IM). The dashed lines with square markers are the predictions for the

diagnostic conditionals (EC) and the full lines with circular markers are the predictions for causal conditionals

(CE) when the consequent is present (C) and when it is absent (NC). y = 0 is where participants say there is

no change, y = 1 is where participants say the likelihood goes up, y = -1 is where participants say the

likelihood goes down, using the response procedure in Ali et al’s (2011) Experiment 2. Intermediate values are

possible because of averaging over many items and participants.

doi:10.1371/journal.pone.0167741.g002
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models approach [22, 23] to analyse the data. The experimental hypotheses tested in Experi-

ments 1 were as follows (derived directly from Fig 2):

1. According to CM, there should be main effects of both causal direction (causal (CE) vs.

diagnostic (EC)) and consequent (present (C) vs. absent (NC)). According to FM, there

should only be a main effect of consequent and according to IM there should be no effects

of causal direction or consequent.

2. According to CM, but not FM or IM, for the CEC condition (causal direction, consequent

present) the mean change rating should be less than in the ECC condition and below zero.

3. According to CM and FM, but not IM, for the ECNC condition (diagnostic direction, con-

sequent absent) the mean change rating should be higher than in the CENC condition and

above zero.

Experiment 1

This experiment replicated Experiment 2 in [9]. A separate group of participants (N = 18) also

pre-tested the materials. They were shown the display in Fig 3A and were asked to draw in,

using arrows, the appropriate causal connections, e.g., see Fig 3B. They then rated the strength

of the causal connections they had drawn in as in Fig 3B. The pre-test data was used to select

materials from an initial pool of 20 pairs of causal conditionals, as in (A), and 13 pairs of diag-

nostic conditionals, as in (B). We also embedded each pair of conditionals in a scenario, to

Fig 3. Materials for the pre-tests used in Experiments 1 and 2. Participants were shown the display in A

and invited to draw in arrows for causal relations and rate the strength of the relation (SR) on a 1 to 4 scale, as

in, for example, B.

doi:10.1371/journal.pone.0167741.g003
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render the inference participants were being asked to make more realistic and intuitive. Pairs

of conditionals from the initial pool were excluded if:

1. The causal directions were not unidirectional.

2. For causal pairs (A), both causes failed to have a similar causal power, and for diagnostic

pairs (B), the common cause failed to have a similar causal power for both effects.

Method

Participants. These experiments were conducted in accordance with the Declaration of

Helsinki and were approved by the local ethics committee of the Division of Psychology and

Language Science, University College London. All participants provided written informed

consent. No reward was offered. None had any prior knowledge of logic or of the psychology

of reasoning.

In the pre-test phase, 18 undergraduate students (3 male, 15 female) from University Col-

lege London volunteered to take part (mean age: 24.1 years, range: 18–53 years). These partici-

pants also pre-tested the materials used in Experiment 2. Participation in the pre-test excluded

a participant from the experimental phases. For the main experimental phase, a further 40

undergraduate UCL students (5 male, 35 female) volunteered to take part (mean age: 20.5

years, range: 18 to 25 years).

The sample size was determined using prospective Bayesian power analysis [34, 35] and the

results of Experiment 2 in [9]. A sample size that could lead to similar effect sizes to Ali et al

(2011) was sought. In Experiment 2 in [9], the mode of the effect size for the CEC condition

was -2.32 SD units [-3.30, -1.54] ([] = 95% HDI, i.e., Highest Density Interval); for the ECNC

condition it was 2.76 SD units [1.91, 3.71]. The respective means were -.63[-.76, -.50] and .74

[.64, .85]. Simulated data were generated using the modes of the mean and SD for the CEC

condition because the effect size was smaller. An N of 68 was used to simulate the data, which

is the total number of participants in the experiments in [9]. A region of practical equivalence

(ROPE) for the effect size was set to .75 SD units. This was set high so as to have sufficient

power to detect large effects like those observed in [9]. The analysis showed that a sample size

of 40 would provide a .93 (credible interval = .88 to .98) probability that the 95% HDI for the

effect size would fall outside the ROPE.

Design. The experiment had two phases. In a pre-test phase, the initial pool of conditional

statements was assessed. The main experimental phase was a 2 × 2 design with conditional

(CE, EC) and consequent (C, NC) as within-subjects factors and with likelihood rating (see

Procedure) as the dependent variable. There was a further phase where a single rating of the

co-occurrence of p and r. We do not analyse these data here as they proved to be

uninformative.

Materials. The materials (supporting information S1A and S1B Appendix) were pre-

tested in paper booklets as shown in Fig 3A. The relevant causes and effects for the causal and

diagnostic conditionals were randomly placed in the three locations shown in Fig 3. In the

experimental phase, the conditionals were embedded in appropriate scenarios and were pre-

sented on PowerPoint. S1A and S1B Appendix show the pairs of conditionals that survived the

exclusions based on the pre-test. The scenarios are available on request but an example causal

scenario is as follows:

“You are meeting a friend in town and know he is planning to drive there. You know that:

If there is an accident on the main road, then he is caught in a traffic jam.

If there are road works on the main road, then he is caught in a traffic jam.

Discounting and Augmentation in Causal Conditional Reasoning
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While waiting for your friend to arrive you receive a text message saying he is caught

in a traffic jam.

You wonder whether there is an accident on the main road. (Pr(p|q))
You now remember that there are road works on the main road.

Do you now think it is more, equally or less likely that there is an accident on the

main road? (Pr(p|q, r) >, =,< Pr(p|q)?)

You arrive early and so do not know whether or not your friend is caught in a traffic jam.

However, you still wonder whether there is an accident on the main road. (Pr(p))
You now remember there are road works on the main road.
Do you now think it is more, equally or less likely that there is an accident on the main

road? (Pr(p|r)>, =,< Pr(p)?)

The text in bold is the consequent known condition (C). When the consequent was not

known (NC) this text was replaced by the text in italics. As in Experiment 2 in [9], participants

were asked for an ordinal change rating of whether pwas “more likely” (+1), “equally likely”

(0), or “less likely” (-1) after being told that r had occurred (the number in brackets shows the

rating assigned to each category).

To provide as much variation as possible, within each condition, causal (CE) and diagnostic

(EC), participants performed the consequent task (C) with different materials to the not-con-

sequent task (NC).

Procedure. In the pre-test, participants were asked to draw arrows from the statements

that they thought were the causes to the statements that they thought were the effects. They

were then shown an example like Fig 4B but without strength ratings. They were then asked to

indicate how strong they thought the causal relationship was between a particular connection

on a scale of 0–4; (0 for a very weak causal relation, 1 for weak, 2 for average strength, 3 for

strong and 4 for very strong). One set of materials appeared per page of a booklet and the pages

of each booklet were randomized. At the end of the pre-test, participants were debriefed.

In the main phase of the experiments, participants were tested individually. The scenarios

were presented randomly on PowerPoint. Each scenario was presented on a separate coded

slide. A score sheet was also provided with the code of each scenario alongside the three

response options: "more likely", "equally likely" and "less likely". Participants circled their

Fig 4. The results of Experiments 1 and 2. Expt. 1 (EC-AND, CE-OR), means and 95% confidence

intervals (CIs) based on Model 3 in Table 1. Expt. 2 (EC-OR, CE-AND), means and 95% CIs based on Model

4 in Table 2.

doi:10.1371/journal.pone.0167741.g004
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response. At the end of the Experiment, participants were thanked for their participation and

debriefed as to the purpose of the experiment.

Results and Discussion

Pre-test. The pre-test data was coded so that 0 = no causal relation, i.e., no causal link

inserted into the diagram (see Fig 3). Consequently, the causal rating scale was rescaled to a

six-point scale from 0 to 5. There were two target causal relations in each of the 33 pairs of con-

ditionals tested. For CE these were p! q and r! q and for EC they were q! p and q! r.
For each causal direction, there are four further possible non-target links, for CE: q! p and

q! r and for EC: p! q and r! q. If the mean of the causal ratings for any of the non-target

relations differed significantly from zero that pair of conditionals was excluded. In addition, if

for any scenario the mean causal ratings differed between the target relations, that pair of con-

ditionals was excluded. Standard t-tests were used, which allow the null to be rejected quite

easily [36] and so are a conservative test option. If the null is rejected for any one of these anal-

yses, that pair of conditionals was excluded. The exclusions left ten scenarios in the causal and

seven in the diagnostic condition. Consequently, all materials retained after the pre-test had

two unidirectional causal links and each pair was equally sufficient for their effect(s).

Main experiment. Fig 4 Panel A shows the results of Experiment 1 (for the raw data see

supplementary material, S1 Experiment). Qualitatively they closely replicated the results of

Experiment 2 in [9]. The prediction of augmentation for the ECNC condition and discounting

for the CEC condition was confirmed. The pattern of errors was also replicated, that is, aug-

mentation-like behaviour for the ECC condition and discounting-like behaviour for the

CENC condition.

Our dependent measure, change rating (CR), is an ordinal variable (-1, 0, 1), so we analysed

the data using cumulative link mixed models with a probit link function (function clmm in

package ordinal implemented in R [22, 23]). We sequentially added participants and items as

random effects. We compared models that corresponded to the predictions of CM, FM, and

IM in Fig 2. These models are shown in Table 1. Model 1 corresponds to IM in which no

effects of causal direction (CE or EC) or consequent (C or NC) are predicted. Model 1 is the

null model which predicts the overall mean for all cells in the 2 × 2 design. Model 2 corre-

sponds to CM in which there are main effects of both causal direction (CD) and consequent

(C). For both Models 1 and 2, only a random intercept for participants was included. We

assessed differences between models using the likelihood ratio and the Bayes factor. The Bayes

Table 1. Cumulative link function models for Experiment 1.

Model Pars AIC BIC LR df BF

1. CR ~ 1 + (1|P) 3 1496.6 1510.2

2. CR ~ CD + C + (1|P) 5 1129.2 1151.8 371.57 2

3. CR ~ CD + C + (1|P) + (1|I) 6 1095.2 1122.3 36.00 1 5.3×1011

4. CR ~ CD + C + (1 + CD|P) + (1|I) 8 1090.8 1127.0 8.41 2 0.01

5. CR ~ C + (1 + CD|P) + (1|I) 7 1122.4 1154.0 33.59 1 1.7×10−14

Model 1 corresponds to IM (initial mental model); Model 5 corresponds to FM (fully fleshed out mental model); Model 2 corresponds to the CM (causal

model) (see Fig 2). Models 2, 3, and 4 correspond to CM with differing assumptions about the structure in the random effects. CR = Change Rating;

CD = causal direction; C = consequent. (1|x) = model includes an intercept for the random effect x, either P = participants or I = Items. (1 + CD|P) = model

includes an intercept and a slope for causal direction for the random effect of participants. Pars = Number of parameters; AIC = Akaike Information Criterion;

BIC = Bayesian Information Criterion; LR = Log Likelihood Ratio; df = degrees of freedom; BF = Bayes Factor. Each model is compared to the one above it

in the list using the likelihood ratio and the Bayes Factor.

doi:10.1371/journal.pone.0167741.t001

Discounting and Augmentation in Causal Conditional Reasoning

PLOS ONE | DOI:10.1371/journal.pone.0167741 December 28, 2016 11 / 23



factor (BF) is calculated using an approximation based on the Bayesian Information Criterion,

BIC, that is, BF = e(BIC(Model 1) − BIC(Model 2)) [37]. Model 2 provided a better fit to the data than

did Model 1, G2(2) = 371.57, p< .0001. The BF in favour of Model 2 is very high. We also

show the AIC, Akaike Information Criterion, which is another index of fit that does not penal-

ise a model for complexity (the number of parameters) as much as BIC. Model 3 also includes

an intercept for items and the BF shows that this model was 5.3×1011 times more likely to have

generated the data than Model 2 (G2(2) = 36.00, p< .0001). Consequently, there were random

effects of items that needed to be taken into account. Random slopes for either participant or

for items did not improve the fit. This is illustrated by Model 4 which produced a significantly

better fit according to the likelihood ratio (G2(2) = 8.41, p< .001) but was less likely to have

generated the data according to the Bayes factor (i.e., the BF in favour of Model 4 was less than

1). Model 5 corresponds to FM in Fig 2. FM, the fully fleshed out mental model, only predicts

a main effect of consequent. We included random intercepts for participant and item and a

random slope for participant because their inclusion led to significantly better fits for Model 4.

Model 5 provided significantly poorer fits, G2(2) = 33.59, p< .0001, and it was 1.7×10−14 times

less likely to have generated the data than Model 4.

The results of these model comparisons showed that a model containing fixed main effects

of causal direction and consequent, as predicted by CM, provides better fits to these data than

the models predicted by FM and IM. However, Fig 4 also shows that the same pattern of errors

occurred as in Experiment 2 in [9]. A model with just a fixed main effect of causal direction

actually provides the best fit overall, that is, the predicted main effect of consequent was absent.

The inclusion of interactions did not improve these fits. So, in terms of fitting the data, this

experiment provides qualified support for CM (Hypothesis 1). Subsequent analyses and the

graphs in Fig 4A are based on Model 3.

To test Hypotheses 2 and 3, we first used the R package lsmeans [38] to compute asymp-

totic statistics and significance levels for the simple effects comparisons for Model 3. We then

used the estimated means and standard errors in t-tests for the comparisons to 0. Consistent

with CM, but not FM or IM, for the CEC condition (causal direction, consequent present), the

mean change rating was lower than in the ECC condition, z-ratio = 11.97, p< .0001 and less

than zero, t(39) = 7.19, d = 2.30, p< .0001. Consistent with CM and FM but not IM, for the

ECNC condition the mean change rating was higher than in the CENC condition, z-
ratio = 12.02, p< .0001 and greater than zero, t(39) = 9.14, d = 2.93, p< .0001. However, con-

sistent only with IM, there were no significant differences between the ECC and ECNC condi-

tions, z-ratio = 1.38, p = 0.17, nor between the CEC and CENC conditions, z-ratio = 1.39,

p = 0.17, although the trends were in the direction (ECNC > ECC; CENC > CEC) predicted

by CM and FM. However, consistent with none of these theories, the change rating for the

CENC was less than zero, t(39) = 5.97, d = 1.91, p< .0001, and for the ECC condition it was

greater than zero, p< .0001, and ECC, t(39) = 7.69, d = 2.46, p< .0001.

These results replicated Experiment 2 in [9] using an appropriate cumulative link function

mixed models approach. The results provide qualified support for causal model theory because

it is the only theory that predicts a fixed main effect of causal direction, which was the domi-

nant finding. In so far as neither FM nor IM predict the main effect of causal direction these

results argue against the mental models account.

However, it could be argued that incorporating one of the assumptions discussed in [9] into

the mental models account could provide at least a partial explanation for these findings. One

condition that has been proposed to lead to discounting is that the causes p and r in Fig 1A are

the sole causes of the effect [28]. If this were the case, then the lights could not be off in the

absence of a power cut or the fuse blowing and so line four in the mental model in (10) would

be assigned probability zero and so would be excised. The revised mental model would predict
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a negative difference rating in the CEC condition and zero difference rating in the CENC con-

dition as predicted by CM. There are three points to make. First, in [28] it is discussed at length

what happens when p and r are not the sole causes of the effect. It is easily proved that discount-

ing is still always predicted [28]. That is, in contradistinction to this ad hoc revision of mental

models, discounting is still predicted in situations where line 4 in (10) could not be assigned

probability zero. The only essential condition whose violation can sometimes remove discount-

ing is independence of causes, however many there may be [28]. Second, as Eq 1 and Fig 1A

show, the noisy-OR integration function, which we used to introduce discounting in this paper,

includes an explicit parameter for alternative causes other than p and r, i.e.,Wa. Fig 5A shows

how Pr(r|q) and Pr(r|p, q) vary as a function ofWa and it reveals that discounting (Pr(r|p, q)<
Pr(r|q)) is predicted as long asWa< 1. This is in distinction to this proposal to allow mental

models to predict discounting, which requires thatWa = 0, which is a much more restrictive

condition. Third, to verify some claims about the materials in Experiment 2, we explicitly asked

a separate group of participants to rate the probabilities of each effect given the absence of each

cause for the materials in this experiment as well in Experiment 2 (see, supporting information:

S1A Appendix). The probability of the effect given the absence of the cause was always nonzero

(S1A Appendix reports, e.g., Pr(¬q|¬p), which were always less than 1). Consequently, for these

materials, it would not seem that participants have adopted the assumption that this ad hoc

revision of mental models theory requires to better explain the data.

As we have observed, the data only offered qualified support for CM. Moreover, as we men-

tioned in the introduction an alternative shallow encoding hypothesis may also explain this

result. Experiment 2 was designed to provide a critical test of this hypothesis.

Experiment 2: Shallow Encoding

Although previous results [9] were most consistent with causal models, there were some

inconsistencies. In Experiment 1 and in Experiment 2 in [9], when it is not known whether the

lights were off, participants still rated the power cut as less likely when they were told the fuse

is blown (CENC). That is, they discounted when they should not have. Moreover, when they

knew someone had chickenpox, they rated it more likely that they had spots given they have

fever (ECC). That is, they augmented when they should not have. These errors seem to demon-

strate a violation of the Markov condition that inferences about any effect variable depend

only on its direct causes and not on any of the other effects or indirect causes.

Fig 5. Discounting with the noisy-OR (A) and augmentation with the noisy-AND (B) integration

functions varying the probability of alternative causes Wa. For noisy-OR, unless Wa = 1, Pr(r|p, q) < Pr(r|

q) and discounting is predicted. For noisy-AND, unless Wa = 1 or 0, Pr(r|p, q) > Pr(r|q) and augmentation is

predicted. In these graphs Pr(p) = Pr(r) = .2 and Wp = Wr = Wpr = .9.

doi:10.1371/journal.pone.0167741.g005
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Possible explanations concern associations between the antecedents, p and r [19] which we

discuss further in the Conclusion. Here we explore a very simple explanation of these errors

concerning the change rating response format used in the current Experiment 1 and in Experi-

ment 2 in [9]. Taking the sentences in (A), participants are told that the lights go out and then

that there is a power cut (CEC) or just that there is a power cut (CENC). In both conditions,

they were asked whether the power cut increased or decreased the likelihood of the fuse blow-

ing or left it the same. This response format imposes a memory load. In the CEC condition, for

example, participants must interrogate their model assuming the lights are off and they have

no information about a power cut and assess the probability that the fuse has blown. They then

must interrogate the model again assuming there been a power cut and re-compute the proba-

bility of the fuse blowing. They must then compare this new result with the result they had to

retain in working memory from the previous query. Even small memory loads like those

imposed by easily visualizable materials can disrupt reasoning (see, [39] on the visual imped-

ance effect).

A very simple strategy based on mental models theory could explain the results of Experi-

ment 1. Mental models theory proposes that, due to working memory limitations, people fre-

quently only construct partial representations of logical relations called “initial models” as we

discussed in introducing Experiment 1. The results of Experiment 1 seem to indicate that peo-

ple ignore the consequent manipulation. One reason for this could be that, because of the addi-

tional memory load imposed by the response format, they only formulate a partial

representation of (A) and (B) which excludes the consequent. So for (A), which is recoded as if
the fuse blows (p) OR there is a power cut (r), then the lights go out (q), the partial mental model

p ¬r, ¬p r is constructed representing the possibilities allowed by an exclusive-or between p
and r. On this reading, if p occurs r should not and if r occurs p should not. For (B), which is

recoded as if someone has chicken pox (q), they have a fever (p) AND spots (r), the partial mental

model p r is constructed representing the only possibility allowed by a conjunction between p
and r. On this reading, if p occurs so should r and vice versa. This “shallow encoding” hypothe-

sis predicts discounting in both the CEC and the CENC conditions and augmenting in both

the ECNC and the ECC conditions, as we observed in Experiment 1.

Shallow encoding based on mental models is compatible with both mental models and a

probabilistic approach based on CBN’s. It has recently been argued that mental models might

provide the right kind of representation for recording the results of interrogating or sampling

underlying probabilistic representations and that this might explain certain errors as people

move from continuous to discrete representational formats [40, 41, 42]. This proposal means

that some representational format like mental models would be required even if one takes a

probabilistic view of the underlying deep logical structures over which people normally reason.

A critical test of the shallow encoding hypothesis would involve constructing materials with

opposite linguistic recodings. That is, pairs of causal conditionals (CE) that can be recoded as

if p AND r, then q and pairs of diagnostic conditionals (EC) that can be recoded as if q, then p
OR r. If the shallow encoding hypothesis is true, then the results for the causal and diagnostic

conditionals should be mirror images of the results of Experiment 1. So, there should be aug-

mentation-like behaviour for the causal conditionals (CE) and discounting-like behaviour for

the diagnostic conditionals (EC) independent of whether the consequent is known to have

occurred.

Materials that implement this manipulation are (C) for the conjunctive antecedents and

(D) for the disjunctive antecedents:

If the plant is watered often ðpÞ; then it will grow ðqÞ

If the plant receives light ðrÞ; then it will grow ðqÞ
ðCÞ
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If a participant wears glasses ðpÞ; then their vision is poor ðqÞ

If a person wears contact lenses ðrÞ; then their vision is poor ðqÞ
ðDÞ

However, only materials like (C) are likely to prove discriminatory. (D) achieves an appro-

priate exclusive-OR reading, i.e., if a person vision is poor, then they wear glasses OR contact
lenses BUT NOT BOTH. However, any implementation in a CBN would lead to the same con-

clusion that people should discount whether it is known the person’s vision is poor or not. The

simplest implementation would be a two node network q! C, where C is a three level cor-

rected vision variable with three mutually exclusive levels, glasses (p), contacts (r), and nothing.
Such an implementation would make the same predictions as the shallow encoding hypothesis.

The materials in (C), however, could be discriminatory. Recently the CBN framework has

been extended to conjunctive causes using a noisy-AND integration rule [35]:

Prðq ¼ 1jp; rÞ ¼ 1 � ð1 � WaÞð1 � WprÞ
indðpÞindðrÞ

ð2Þ

Using this rule in the common effect structure (Fig 1A) predicts augmentation when it is

known that the plant grows (CEC) but not when this is not known (CENC). Knowing that the

plant grows and is watered increases the probability that it also received light. Augmentation

has been observed in a very similar condition [43]. Consequently, the predictions based on the

noisy-AND rule contrast with the shallow encoding hypothesis in predicting no augmentation

for the CENC condition.

So the contrastive predictions are that noisy-AND predicts less augmentation for the

CENC condition in this experiment than for the ECNC condition in Experiment 1 but aug-

mentation should be at similar levels for the CEC condition as for the ECC condition in Exper-

iment 1. However, Eq 2 points to a manipulation that could allow the CEC condition to also

discriminate between noisy-AND and the shallow encoding hypothesis. Fig 5B shows that aug-

mentation reduces asWa approaches either 0 or 1. At either extreme, no augmentation is pre-

dicted. A manipulation that should reduce the scope for alternative causes is when p and r are

individually necessary for the effect. For example, plants will not grow in the absence of water

or light, that is, there is no alternative cause that can make plants grow in the absence of these

necessary causes. Using materials which encourage this interpretation should have the effect of

reducing augmentation for the CEC condition. If this happens, then augmentation should be

lower in a CEC condition in this experiment than in the ECC condition in Experiment 1.

4. According to both CM and shallow encoding, in the diagnostic direction (EC) change rat-

ings should be lower than in the causal direction (CE) and below zero, that is, discount-

ing-like behaviour should be observed.

5. According to CM, dependent on the manipulation of causal necessity, in the causal direc-

tion (CE), the change ratings should not differ from 0 for CENC but there should be

some augmentation for CEC, that is, the change rating should be greater than 0.

6. Again dependent on the causal necessity manipulation, the levels of augmentation for CE

in Experiment 2 should be much lower than for EC in Experiment 1 for both levels of

consequent.

Method

Participants. The sample size for the main experimental phase was smaller (N = 28) than

in Experiment 1 but it was drawn from the same population, i.e., students at University College

London. Sample size was set from a prospective power analysis as in Experiment 1 [34, 35].
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CM predicts no (CENC) or less (CEC) augmentation for causal conditionals. According to

shallow encoding, augmentation should be of a similar magnitude that that observed in Exper-

iment 1 for the diagnostic/not-consequent condition. Consequently, a sample size was sought

which could allow effect sizes of similar magnitude to Experiment 1 to be observed. Therefore,

as in Experiment 1, the ROPE on the effect size was again set at .75 SD units. Simulated data

were generated using the mean and SD for the diagnostic/not-consequent condition in Experi-

ment 1 with an N of 108 which corresponds to the total number of participants in [9] and

Experiment 1 where augmenting was observed. The prospective power analysis indicated that

a sample size of 25 would provide a .93 probability that the 95% HDI for the effect size falls

outside a .75 SD ROPE, i.e., a .93 probability that the null can be rejected. Consequently, an N
of 28 provides sufficient power to detect an augmentation effect of this magnitude for the

causal conditionals if there is one.

Design. The design of this experiment was the same as for Experiment 1 and the same

participants carried out the pre-test for this experiment.

Materials. The materials are shown in supporting information S1C and S1D Appendix.

In this experiment, for the CE-AND conditions materials were used to encourage an interpre-

tation were the causes were individually necessary for their effects. This was to encourage a

reduction in augmentation for the CEC condition [43]. Confirmation that the CE rule pairs

were interpreted as individually necessary came from an additional on-line test using another

47 participants and two subsets of these materials (see S1A and S1C Appendix for the mean

ratings for these subsets). Ratings were collected for Pr(q|p), Pr(q|r), Pr(q|¬p) and Pr(q|¬r) for

these rule pairs in the CE conditions. As we were concerned with differences in necessity, Pr(q|
¬p) and Pr(q|¬r) were subtracted from 1 and averaged. In the CE-AND condition in this

experiment (Pr(q|x): �m ¼ :77, SE = .03; Pr(¬q|¬x): �m ¼ :69, SE = .03) causes were rated as less

sufficient, t(13.33) = 2.99, p< .01, and more necessary, t(13.67) = 2.86, p< .01, than in the

CE-OR condition (Pr(q|x): �m ¼ :89, SE = .03; Pr(¬q|¬x): �m ¼ :57, SE = .30) in Experiment 1.

For three rule pairs (Rule pairs 2, 4, 5 in S1C Appendix) the cause was rated as more necessary

than sufficient. We analysed the results in three ways, (i) using all the materials, (ii) restricting

the CE-AND condition to just Rule pairs 2, 4, 5, and (iii) using just the subset of rule pairs for

which we collected conditional probability ratings plus the restriction in (ii).

Results and Discussion

Pre-test. The same exclusion criteria were used as in Experiment 1. The exclusions left six

scenarios (from ten) for the causal conditionals and six (from 9) for the diagnostic

conditionals.

Main experiment. Fig 4 Panel B shows the results of Experiment 2 (for the raw data see

supplementary material, S2 Experiment). Qualitatively they closely follow the pattern pre-

dicted by CM. That is, in the CE causal direction there was no augmentation for CENC but

some for CEC. Consistent with the shallow encoding and CM, in the EC direction there was

discounting, regardless of whether the consequent was present (C) or absent (NC). We ana-

lysed the result in the three ways we mentioned at the end of the sectionMaterials. However,

which subsets of materials we used made no difference to the results. Consequently, unless

stated the results using all materials are reported.

The cumulative link function models we compared are shown in Table 2. Model 1 is the

null model. Model 2 corresponds to a model in which there is only a main effect of causal

direction (CD). This model provides a better fit than the null model, G2(1) = 115.25, p< .0001.

Adding a random effect of items, Model 3, improves the fit, G2(1) = 7.64, p< .01, and it is 6.17

times more likely to have generated the data than Model 2. Model 4 shows that adding a main
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effect of consequent (C) does not improve this fit. The fits were not improved by including

either interactions (fixed effects) or slopes (random effects). According to the AIC, adding a

main effect of consequent did not worsen the fit either. We, therefore, used Model 4 for the

means shown in Fig 4 (Expt. 2) that we compared to test Hypotheses 4 and 5.

Consistent with CM and the shallow encoding hypothesis, the mean change ratings for the

ECC condition were lower than for the CEC condition, z-ratio = 7.05, p< .0001. The mean

change ratings for the ECNC condition were also lower than for the CENC condition, z-
ratio = 6.80, p< .0001. The change ratings were less than zero for the ECC condition, t(27) =

8.08, d = 3.11, p< .0001, and for the ECNC condition, t(27) = 10.72, d = 4.13, p< .0001. These

results confirm Hypothesis 4. The change rating for the CEC condition was greater than zero, t
(27) = 2.05, d = .79, p< .025 (one-tailed), but it did not differ from zero in the CENC condi-

tion, t(27) = .82, d = .32, p = .42. The Bonferroni correction for these multiple hypothesis tests

mean that the significance level required for each individual hypothesis is .05/2 = .025. So the

result for the CEC condition was just significant. However, the effect size was in the medium

range (d = .79) and fell outside the ROPE (d = .75) we set in the power analysis to detect an

augmentation effect. This was in contrast to the CENC condition which fell inside the ROPE.

So we can have some confidence in this result for the CEC condition. Consequently, using

materials for which the causes were individually necessary for the effect has reduced but not

eliminated augmentation for the CEC condition in this experiment, confirming Hypothesis 5.

To test Hypothesis 6 we contrasted the levels of augmentation for the CE causal direction in

this experiment with those observed for the EC direction in Experiment 1. The best fitting

cumulative link function model had fixed main effects for causal direction and consequent

with random intercepts for participants and items. This newly estimated model produced

minor variations in the means for the fixed effects but the results of the simple effects compari-

sons were clear. The change ratings were a lot lower for the CEC condition in Experiment 2

than for the ECC condition in Experiment 1, z-ratio = 5.04, p< .0001. They were also a lot

lower for the CENC condition in Experiment 2 than for the ECNC condition in Experiment 1,

z-ratio = 5.01, p< .0001. These findings are not consistent with the shallow encoding hypothe-

sis. This hypothesis must predict that the levels of augmentation should be the same in both

conditions because the recoding of both pairs of rules involves a conjunction.

One might argue that these between experiment comparisons are unreliable because partic-

ipants were not randomly assigned to groups in these between-subject comparisons. However,

the population from which these samples were drawn was homogenous, that is, undergraduate

students at UCL. Consequently, it is highly unlikely that there were other differences between

these groups, other than the experimental manipulations, that could account for the large

effects sizes (CEC vs ECC: d = 1.17 SD units, CENC vs ECNC: d = 1.16 SD units).

Table 2. Cumulative link function models for Experiment 2.

Model Pars AIC BIC LR df BF

1. CR ~ 1 + (1|P) 3 710.7 722.0

2. CR ~ CD + (1|P) 4 597.3 612.6 117.30 1

3. CR ~ CD + (1|P) + (1|I) 5 591.7 610.8 7.64 1 6.17

4. CR ~ CD + C + (1|P) + (1|I) 6 591.7 614.6 1.94 1 0.02

Model 1 is the baseline no effect model (i.e., the overall mean); Models 2, 3, and 4 correspond to CM with differing assumptions about the structure in the

random effects. All acronyms are the same as in Table 1. Each model is compared to the one above it in the list using the likelihood ratio and the Bayes

Factor.

doi:10.1371/journal.pone.0167741.t002
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The focus of Experiment 2 has been on the shallow encoding hypothesis. However, the

question arises as to whether mental models could explain these results especially if it

invoked the “sole causes” condition we introduced in discussing the results of Experiment 1.

Focusing on the discriminatory CE condition, (C) would be paraphrased as if the plant is
watered often AND the plant receives light, then it will grow. We consider the mental models

shown in Table 3, which shows all eight possibilities allowed by the three propositions in (C)

and the true possibilities under four possible interpretations of the conditional that have

been considered in mental models theory and which are plausible given the materials used

in this experiment.

Take the material conditional with the sole causes condition (Table 3(�sc)) for the conse-

quent absent condition (CENC), Pr(r) = 3/6 = ½ and Pr(r|p) = 1/3 and so because 1/3–1/2 =

-1/6 discounting is predicted. If we do the same calculation for the consequent (i.e., the effect)

present condition (CEC), then Pr(r|q) = 2/3 and Pr(r|p, q) = ½, and so because ½−2/3 = -1/6,

discounting is also predicted. Consequently, a model in which the conditional in the para-

phrasing of the rule pairs is given by the material conditional of standard logic with a “sole

cause” assumption, cannot explain the results of Experiment 2. If the “sole cause” condition is

dropped (Table 3(�)) then mental models predicts no augmentation or discounting for CEC

but it still predicts discounting for CENC, which again does not capture these results.

However, mental models theory has postulated a variety of interpretations of the condi-

tional which usually depend on further background knowledge. This process is referred to as

pragmatic modulation [44]. The materials in Experiment 2 for the CE condition were selected

so that the causes would be interpreted as individually necessary for the effect. In mental

models theory, these materials should evoke to an ENABLEs relation [44], which has been

referred to as the reverse conditional [45] as it is true if the consequent is false or the anteced-

ent is true. This is the reverse of the standard material conditional, which is true if the conse-

quent is true or the antecedent is false. On this interpretation (Table 3(EN)), augmentation is

predicted for the CENC condition but not the CEC condition, which again does not capture

these results. Finally, we considered the possibility that the conditional is interpreted as the

biconditional (Table 3(�)), which is true if the consequent and antecedent are both true or

both false. On this interpretation, no augmentation is predicted for either the CENC or the

CEC conditions. This interpretation does not capture these results because a medium sized

augmentation effect was observed for the CEC condition albeit not comparable to that seen

for the EEC condition in Experiment 1. In conclusion, mental models cannot predict the

results of Experiment 2.

Table 3. Four mental model interpretations of the conditional.

Possibilities ⊃ ⊃sc EN �

Plant watered Receives light Grows * * * *

¬Plant watered Receives light Grows * *

Plant watered ¬Receives light Grows * *

¬Plant watered ¬Receives light Grows *

Plant watered Receives light ¬Grows *

¬Plant watered Receives light ¬Grows * * * *

Plant watered ¬Receives light ¬Grows * * * *

¬Plant watered ¬Receives light ¬Grows * * * *

The left most three columns show all eight possibilities allowed by the three propositions in (C)The right most four columns show the true possibilities (*) for

the material conditional (�), the material conditional plus sole causes (�sc), the enables relation (EN, see text), and the biconditional (�).

doi:10.1371/journal.pone.0167741.t003
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Conclusions

Within the limited goals that the research reported here set itself, these experiments have

been successful. First, Experiment 1 replicated the results of Experiment 2 in [9] using a

cumulative link function mixed model approach appropriate to these data. Using this

approach allowed us to quantify, using the Bayes Factor, how much more likely CM, which

uniquely predicts a main effect of causal direction, was to have generated the data than

mental models theory. This support was, however, qualified because (i) no effect of conse-

quent was observed, which CM also predicts, and (ii) the much simpler shallow encoding

hypothesis could explain the pattern of results in Experiment 1. So, and second, Experiment

2 was designed to provide a critical test of the shallow encoding hypothesis. This experi-

ment produced results inconsistent with this account. In this experiment, no augmentation

effect of comparable magnitude to the diagnostic conditionals in Experiment 1 was

observed for causal conditionals although in both conditions the rule pairs could be

recoded using a conjunction. Moreover, there would appear to be no account of the condi-

tional in mental models theory which could predict the results of Experiment 2. Before con-

cluding, we address a variety of questions that might arise as a result of the research

reported here.

Our results are consistent with previous work [43] and so provide convergent evidence

that people implement the noisy-AND integration rule. However, the materials in [43] were

all novel and participants were unlikely to have had any direct experience of the causes

involved and so they had to be told that they operated conjunctively. In Experiment 2, mate-

rials that could spontaneously lead to a conjunctive interpretation were used. Individually

necessary effects must be interpreted conjunctively. Our choice of materials was largely suc-

cessful in replicating these previously observed effects [43] without explicitly cuing the con-

junctive interpretation.

Experiment 1 was a qualified success for the causal model theory insofar as the pattern of

main effects it predicts provided a better fit to the data than that predicted by mental models,

although the main effect of the consequent was not observed. Mental models theory lacks the

representational resources to capture the kinds of independence constraints that allow causal

models to predict discounting. In this respect, causal Bayes nets is a more expressive formalism

in which to capture causal relations. While there has been a recent revision of mental model

theory [46], which we consider in the next paragraph, this theory has adhered to the material

conditional interpretation of conditionals for most of its history. This adherence is problematic

even if the equiprobability assumption is abandoned. For example, suppose it is known that

Johnny has spots and it is asserted that if he has chickenpox then he has spots. Intuitively this

conditional information raises the probability that Johnny has chickenpox. Moreover, this is

what happens formally according to the interpretation of the conditional embodied in the

causal model approach, in which the probability of the conditional is the conditional probabil-

ity. However, on the material conditional interpretation, assuming equiprobability or not, the

probability that Johnny has chickenpox must fall when it is learned that if he has chickenpox
then he has spots. We have yet to test this prediction but intuitively the mental models

approach gets this the wrong way round.

However, a recent radical revision of mental models theory [46] no longer commits it to the

material conditional interpretation of any natural language conditional. This revision has been

strongly criticised [47] and, moreover, it is easy to see that it confronts serious problems if it

were to be extended to the discounting inferences which are our current topic. In the revision,

the inclusive or-introduction inference, inferring “p or q” from p, is supposed to be logically

invalid. Yet the following inference seems intuitively perfectly acceptable:
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If the fuse blows or there is a power cut (p or q), then the lights go out (r).

The fuse blows (p).

Therefore, the lights go out (r).

Firstly, the acceptability of this inference shows how implausible it would be for pre-revi-

sion mental model theory to explain our results by claiming that the antecedent above tends

to be interpreted as an exclusive disjunction. In that case, people could not generally reason,

as they apparently can, in this form: “p, therefore p or q by inclusive or-introduction, and

therefore r by MP” (MP =modus ponens, i.e., if p, then q, p, therefore q). Secondly, people

could not make this inference in revised mental models theory even for inclusive disjunction,

since inclusive or-introduction is supposed to be invalid. More generally, the inference “if p
or q then r, p, therefore r” cannot be valid without the inference “p therefore p or q” being

valid, since the validity of the former logically implies the validity of the latter via the tautol-

ogy “if p or q then p or q” (see [48] for these and further problems with the revised mental

models theory). Consequently, this recent revision of mental models theory is in no better

shape to explain discounting effects in causal conditional inference than the pre-revision

theory.

One reason why a hypothesis like shallow encoding has not been the focus of attention in

the causal Bayes net literature is that there has not been much research on CBN’s as the inter-

pretation of conditionals (for exceptions see [15, 18, 49, 50]). Accounts of violations of the

Markov condition have focused more on associative, hidden cause, or mechanistic explana-

tions [19, 51, 52, 53]. For example, for the CENC condition the sprinklers being on and rain

may be negatively correlated by human intervention: there is no point in switching the sprin-

klers on when it is raining. So when it is raining the sprinklers are off and when the sprinklers

are off it is raining. The human intervention could be characterised as an additional hidden

instrumental cause in a CBN. A related positive correlation may be perceived to exist between

the antecedents for the diagnostic conditionals which could explain augmentation for the ECC

condition. However, there are a couple of reasons to doubt this explanation. First, the sprinkler

example provides a rational explanation of why the human intervention occurs that could give

rise to this association. Such an explanation is absent for rule pairs like 8 (S1A Appendix).

What explanation could there be for an inverse correlation between a person’s car breaking

down and them sleeping in, other than a whimsical fancy? Nonetheless, one or the other event

will make them late for work. Second, at least for the ECC condition, associative explanations

are questioned by the fact that using a different response format removes augmentation for the

ECC condition [54]. In Experiment 1 in [9], difference ratings were used where, for example,

in (B) participants would be asked for a rating of the probability of fever before and after they

were told that someone had spots. The first rating was subtracted from the second rating to

create the difference score. This procedure may remove the memory load imposed by the

change rating response format. But if augmentation in the ECC condition using the change

ratings is to be explained by an association between fever and spots then one would expect aug-

mentation to also be present using the difference ratings which it was not. Our next experi-

ments will explore further the reasons for these discrepancies.

In conclusion, discounting and augmentation inferences are a unique contribution made

by the causal Bayes net approach to our understanding of human inference [11]. They have

facilitated our ability to discriminate between the two main psychological theories of inference,

mental models and new paradigm probabilistic approaches. The experiments testing these pre-

dictions have also thrown up other possible hypotheses such as shallow encoding which we

ruled out in Experiment 2. However, while successfully dismissing one explanation we still
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lack an adequate explanation of the errors observed using the change ratings. Clearly, there is

much further work to do in this area.
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