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Supplementary Methods and Results

1 SUPPLEMENTARY METHODS

We used the following procedure (see subsections below) to estimate meta-analytic effect sizes.

1.1 SEARCH STRATEGY/PAPER SELECTION

Searches of the Web of Knowledge, PubMed, Embase and Google Scholar using a web browser were
performed by ACP between the 15/11/2019 and the 6/12/2019. OJR cross-checked this search in
September 2020. This search was repeated by ACP on the 3/12/2020 and the 23/02/2021. Our search
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strategy is identical to one that has been shown to give optimal retrievall, with the exception that we
substituted PubMed for MEDLINE as it indexes the references found in MEDLINE references, plus
additional ones. As in Bramer et al.1, we screened only the first 200 Google Scholar references returned
using the relevance ranking. We used the keywords: (“reinforcement learning”) AND (computational OR
model) AND (depression OR anxiety OR mood). Other papers were added to this search after discussions
with co-authors. After screening all the abstracts returned, we reviewed the full text of the remaining
papers, rejecting those did not meet the inclusion criteria highlighted in the main text. If papers met all
inclusion criteria except the fifth (availability of sufficient statistics or individual-level parameters), we
contacted the corresponding author by email. We also contacted corresponding authors seeking
individual-level parameters if they reported only sufficient statistics. We did not attempt to infer these
parameters from figures or graphs if they were not reported in-text, due to the inaccuracy this would
likely introduce. Only one paper found in the initial search was not in English, but this did not report a
clinical group so was excluded on this basis. Abstracts of unpublished work were not included; preprints
were.

1.2 INDIVIDUAL-LEVEL PARAMETER GENERATION

In the case of studies for which individual-level parameters from the winning model were not available,
but sufficient statistics of the distribution were (n=1/27), we generated ‘individual level’ parameters for
the same number of agents as there were participants in each group in the study, based on the statistics
provided by the publication. Parameters that were irrelevant for the benchmarking tasks were set at the
mean for each participant (e.g. ‘go bias’ in a task without no-go trials), or not included if the relevant
equation was not necessary for generating choice data (e.g. the component of a model which generated
reaction time estimates?).

1.3 CONVENTIONAL META-ANALYSIS
We performed random-effects meta-analyses for the four most commonly-reported parameters, using
the ‘meta’ package in R3.

1.3.1  Assessment of study quality
We used a modified version of the case-control version of the Newcastle-Ottaway Scale for Assessing
the Quality of Nonrandomized Studies in Meta-Analyses*”.

Selection

1. Disorder Definition: Is the case definition adequate?

A) Cases were defined as MDD/GAD/PTSD/other specific diagnosis according to DSM or ICD criteria
according to a validated assessment tool or by an experienced clinician.

B) Cases were defined as MDD/GAD/PTSD/other specific diagnosis according to DSM or ICD criteria but
the method for assessing disorder status was not stated.

C) Cases were described as ‘clinically depressed/anxious/similar’ but no further description was given.
2. Disorder Generality: Was a General sample of cases tested?

A) A General sample of the specific disorder was tested.

B) Recruitment of cases was restricted to a specific sub-sample (e.g. veterans, suicidal ideation).

C) No description given.

3. HC Selection: Selection of Controls

A) Controls were selected from the same population as cases.
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B) Controls were not selected from the same population as cases.

C) No description.

4. HC Definition: Definition of Controls

A) HC were clearly defined as having no current or past psychopathology.

B) HC were clearly defined as having no current psychopathology.

C) Controls were not clearly defined as having no current or past psychopathology.

Comparability (Comparability of cases and controls on the basis of the design or analysis)

1. Does the study control for Age: Yes/No/Unclear/In supplementary analyses only

2. Does the study control for Gender: Yes/No/Unclear/In supplementary analyses only

3. Does the study control for 1Q: Yes/No/Unclear/In sensitivity analyses only

4. Does the study control for Personal or Household Income/Occupation: Yes/No/Unclear/In
supplementary analyses only

1.3.2  Scoring for study quality

In order to perform a meta-analysis in which items were scaled for quality, we created an approximately
continuous variable which results from the sum of the items above. A was counted as 3 points, B as 2,
and C as 1 in the selection criteria; Yes was counted as 3 points, Supplementary only as 2 points; and
both No and Unclear as 1 point in the comparability criteria.

1.3.3  Assessment of heterogeneity
Heterogeneity was assessed using an estimate of the between-study variance of true effect sizes (%) and
the approximate proportion of total variability (/?)®.

1.3.4  Assessment of publication bias/small study effects
We investigated publication bias using Eggers’ test, with the Pustejovsky-Rodgers standard error
correction.

1.4 FEED PARAMETERS FROM ALL PARTICIPANTS INTO SIMULATED TASKS

For this purpose, five different tasks were designed (representing tasks commonly encountered in the
mood and anxiety disorder literature) and the parameters for each paper, in conjunction with the
winning model from each paper (see Supplementary Section below entitled ‘Original Models and
Modifications’), were used to produce a set of simulated choices on these benchmarking tasks for each
original participant (Supplementary Figure 1).

Notably, we designed some of the tasks to be both representative of the literature and to allow accurate
parameter estimation. We included tasks in which reward and punishment were independent to
optimize recovery of separate learning rates; but also included more typical tasks in which they are not,
to avoid biasing our inference. In particular, recovery of separate reward and punishment learning rates
and sensitivity parameters improves as these outcomes become less correlated. Task 2 was specifically
designed to have no correlation, and task 4 has minimal correlation whilst retaining a reversal structure.
Details on the correlations between reward and punishment for the four tasks can be found in
Supplementary Table 1.

Many of the included papers used probabilistic tasks, often including some form of reversal (as in tasks 3
and 4711) or some form of multi-arm bandit (as in tasks 1 and 2'271¢). We included a go/no-go task as
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three of the papers are based around such a task, and thus it seemed conservative to ensure that this
task was included. For greater detail on the tasks reported in the particular papers please see the
Supplementary Results (Section 2.1 below) and the original manuscripts.
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Supplementary Figure 1: The reinforcement structures of the different tasks used. A-D: Probability that one of the two stimuli
is associated with reward (green line) or punishment (red line) for tasks 1 to 4 respectively. E) Probability that a go' rather than
a ‘'no-go' response is associated with reward or punishment for task 5. A) The first task was a “restless' two-armed bandit task,
with the probability of reward and punishment mirrored (reward probability = 1 - punishment probability) for a given option.
Reward and punishment probabilities were therefore exactly inverted. The probability of reward for the first option was
initialized at 0.7, and for the other option at 0.3. The probability of punishment for the first option was initialized at 0.3, and the
probability of punishment for the second option at 0.7. These probabilities changed per trial by a Gaussian random walk, with
mean 0 and standard deviation of 0.025. This random walk was bounded at probabilities of 0.9 and 0.1. B) The second task was
identical to the first one, but separate reward and punishment random walks were generated. Therefore, the reward and
punishment probabilities were independent of each other. C) The third task was a two-armed bandit with straightforward
reversals - there were 10 reversals equally spaced within 200 trials, during which the probability of reward and probability of
punishment alternated from 0.8 to 0.2. Reward and punishment were mirrored, and the probabilities of option 2 were the
opposite of those for option 1. D) The fourth task was a two-armed bandit with straightforward reversals, which differs from
the third task in that the timing of the reversals for reward and punishment were rounded values independently drawn from a
normal distribution centered on the number of reversals divided by the number of trials, with a standard deviation of 5.E) The
fifth task was a go/no-go task, in which four stimuli were presented. Each stimulus was associated with a different action-
outcome pairing: “go to win' (in which selecting the stimulus led to a reward outcome, not selecting it led to a neutral
outcome), ‘go to avoid losing' (selecting a stimulus leads to a neutral outcome, but not selecting leads to a punishment), ‘no-go
to win' (not selecting a stimulus results in a reward, selecting it results in a neutral outcome), and "no-go to avoid losing' (not
selecting a stimulus results in a neutral outcome, selecting it results in a punishment outcome). The probabilities of all these
outcomes were kept constant: for "go to win' and “no-go to avoid losing' trials, the chance that the outcome (reward or
punishment) would occur was 80%, for the other two stimuli it was 20%. Note that win and punishment trials are concurrent
(not separated by blocks) and are presented separately for visualization purposes.

Task Correlation P value
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1 -1.000 <0.001
2 -0.034 0.634
3 -1.000 <0.001
4 -0.387 <0.001
5 NA NA

Supplementary Table 1: Correlations between reward and punishment timecourses for tasks 1:5, and p values. All degrees of
freedom were 198, as there were 200 trials. Task 5 did not have rewards and punishments presented on the same trials, so the
correlation was 0.

1.4.1  Number of trials

We used variational inference to analyse parameter recovery for 500 participants on the most popular
model (a model with one learning rate, one inverse temperature, one decay and one perseverance
term; see Section 2.10 below) with different numbers of trials (20, 50, 100, 200, 300, 400, 500, 1000,
2000) on tasks of different lengths created using the same method as that used for the creation of task 2
above. We calculated the correlation between synthetic parameters, generated from realistic
distributions, and also plot the ‘confusion’ for recovered parameters: i.e. the correlation coefficient
between different parameters for the same participant (Supplementary Figure 2: Recovery and
confusion of parameter estimates using a model with one learning rate, one inverse temperature, one
decay and one perseverance parameter with different numbers of trials, for two different task types. A)
tasks generated using the same method as Task 1, B) tasks generated using the same method as Task 2.
Dashed lines represent the mean for each type of correlation coefficient, shaded areas represent the
standard error. Each point represents the correlation between two sets of parameters. Points in blue
indicate the correlation coefficients between generated synthetic parameters and recovered parameters;
values closer to 1 reflect a more accurate recovery process, with close correlations between synthetic and
recovered parameters. Points in red indicate the correlation coefficients between different recovered
parameters; values deviating from 0 reflect a large amount of trade-off between estimated parameters,
which is typically due either to a poorly specified model or insufficient data, and values close to O reflect
minimal trade-off. The vertical dotted lines indicate where the number of trials = 200, the number used in
this paper. Notably, recovery does not improve significantly beyond 200 trials even for a task with
weaker parameter recovery (task 1, panel C).

High coefficients for recovery indicate that there is sufficient data for reliable estimation to occur, and
low coefficients for confusion indicate that there is sufficient data that parameters are not trading off
against each other. Notably, recovery seems to stabilize at around 200, and confusion is minimized at
around this point. Recovery might be slightly improved by including greater numbers of trials, but this
would incur a computational cost (i.e. the dataset to be fitted would be larger, requiring greater
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resources) that would not be justified by the increase in accuracy.
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Supplementary Figure 2: Recovery and confusion of parameter estimates using a model with one learning rate, one inverse
temperature, one decay and one perseverance parameter with different numbers of trials, for two different task types. A)
tasks generated using the same method as Task 1, B) tasks generated using the same method as Task 2. Dashed lines
represent the mean for each type of correlation coefficient, shaded areas represent the standard error. Each point represents
the correlation between two sets of parameters. Points in blue indicate the correlation coefficients between generated
synthetic parameters and recovered parameters; values closer to 1 reflect a more accurate recovery process, with close
correlations between synthetic and recovered parameters. Points in red indicate the correlation coefficients between
different recovered parameters; values deviating from 0 reflect a large amount of trade-off between estimated parameters,
which is typically due either to a poorly specified model or insufficient data, and values close to 0 reflect minimal trade-off.
The vertical dotted lines indicate where the number of trials = 200, the number used in this paper. Notably, recovery does not
improve significantly beyond 200 trials even for a task with weaker parameter recovery (task 1, panel C).

1.5 REPEAT PROCESS FOR ALL PAPERS AND CONCATENATE ALL CHOICES

Choice data were generated from all the agents from all the publications for all the simulated tasks. For
each task, choice data generated based on different publications were concatenated together.

1.6 FITAVARIETY OF MODELS TO THE DATA

A variety of models were fit to the choice data. These models cover a wide model space, and overlap
with the models from the original papers (see Supplementary Table 3 and the section below entitled
‘Original Models and Modifications’). These models are standard reinforcement-learning models and are
consistent with those described in the original papers. Models are summarized in Supplementary Table
2, and discussed more fully below.

Model Learning Sensitivity Noise Pavlovian Biasterms Other terms
rate

1irlb la 18
1ir2b la 2p
2irlb 2a 1p5
2ir2b 2a 2
1irls la 1p

1lr2s la 2p

2irls 2a 1p

2ir2s 2a 2p

lirisllapse la 1p 1¢
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1Ir2sllapse la 2p 1¢

2Irisllapse 2a 1p 1¢
2Ir2sllapse 2a 2p 1¢
lirisllapselbias* 1« 1p 1¢ 1lgo
lirisllapse2bias* 1« 1p 1¢ 1 go, 1 approach-
avoid
lirisllapse3bias* 1« 1p 1¢ 1 go, 1 approach, 1
avoid
2ir2sllapselbias* 2« 2p 1¢ 1go
2ir2sllapse2bias* 2« 2p 1¢ 1 go, 1 approach-
avoid
2ir2sllapse3bias* 2« 2p 1¢ 1go, 1 approach, 1
avoid
1ir1lbid la 1B 1 decay
1iribid1p la 1B 1decay, 1
perseveration
2iribid 2a 16 1 decay
2iribid1p 2a 1B 1decay, 1

perseveration

Supplementary Table 2: Models fit to generated choice data. Briefly, these models all included learning rates (either one for all
trials, or two, where rewards and punishments were learnt about separately). Some also included sensitivity terms, which scale
the reward or punishment either by the same value (if there is a single sensitivity term in that model) or by two different values
(for rewards and punishments). Many of the models included either a temperature(f) or a lapse parameter(§), both of which
parameterize decision-making noise, so there is not a perfect mapping between expected values of stimuli and the choices
made on each trial. Six models (marked with an asterisk) were used for task 5 only as they incorporate biases for ‘go’ actions
(i.e. the tendency of each participant to perform a ‘go’ response rather than a ‘no-go’ response) and biases towards
approaching (go) and avoiding (no-go) rewarding and punishing stimuli respectively. We also used four models with a choice
kernel, which is designed to capture participants’ tendency to repeat their actions. These tasks and models are closely related
to the majority of tasks and models used in the papers, which mostly included learning from probabilistic feedback, and
generally included learning rates, sensitivity or inverse temperature parameters, and occasionally other task-specific
parameters. More detail on the original tasks and best-fitting models can be seen in Supplementary Table 3.

All of the models contain at least one learning rate («), which is bounded between 0 and 1, where a
higher number reflects greater updating of values by the prediction error. Prediction error is defined as
the difference between the expected and received value, as displayed in Supplementary Equation 1.

Supplementary Equation 1
6 = outcome, — predicted,

We updated learnt values using Q-learning!?, in which the learning rate («) acts as a multiplier on
prediction error using the form shown in Supplementary Equation 2 for a given action (denoted as ‘a’):

Supplementary Equation 2

Qiv1@a) = Qtay T A * Si(ay
&; = outcome; — Qy(qy)

This update was only performed for stimuli which were chosen (i.e. no fictive updating took place for
the unchosen stimulus).
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Some of the simpler models also have an inverse temperature parameter () which converts values into
choice probabilities using a softmax. This parameter can range from 0 to infinity. As it tends to infinity,
choices tend towards being identical with the higher value action on every try, but as it tends to zero,
stochasticity/exploration increase, such that the agent does not choose the most highly-valued action
on every trial (Supplementary Equation 3).

Supplementary Equation 3

b exp(Qtqy * B)
t@d =y e xp(Quay * B)

Some models have separate parameters for reward and punishment. Separate ‘reward’ and
‘punishment’ Q values are then calculated for each action, which are updated each trial regardless of
whether a reward or punishment is actually received, and combined together. Notably, this is different
to models in which a single Q-value is learnt for each action, and the learning rate used varies depending
on either the valence of the prediction error or whether a reward or punishment was delivered — here,
separate values for reward and punishment for each action are maintained. An example for a trial in
which action ‘a’ was chosen is shown in Supplementary Equation 4, where reward; indicates the
reward outcome (could be 1 or 0), and punishment, the punishment outcome (could be -1 or 0).

Supplementary Equation 4

Qt+1(at),reward = Qt(at),reward + Xreward * 6t(at),reward
Qt+1(at),punishment = Qt(at),punishment + apunishment * St(at),punishment
6t(at),reward = rewardt - Qt(at),reward

6t(at),punishment = puniShmentt - Qt(at),punishment

Qt+1(at) = Qt+1(at),reward + Qt+1(at),punish
If there were two separate temperature parameters for reward and punishment, the Q values for
reward and punishment were then divided by them respectively before entry into the softmax equation.
Otherwise, the Q values were summed together and then multipliedby 8, as in Supplementary Equation
3.

Some more complex models also included sensitivity terms (p). These terms scale the value of the
outcomes received to make them more or less valuable than they actually are, and typically range from
0 to infinity, with a higher sensitivity parameter indicating that outcomes are weighted more heavily
(Supplementary Equation 5).

Supplementary Equation 5

Qit1(a) = Qu(ar) T @ * St(ap
Ot(ap) = p * outcome; — Qy(ay)

These sensitivity parameters can also be separate for reward and punishment, as is shown below in
Supplementary Equation 6.
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Supplementary Equation 6

Qt+1(at),reward = Qt(at),reward + a* 6t(at),reward
Qt+1(at),punishment = Qt(at),punishment + a * 6t(at),punishment
6t(at),reward = Preward * Win; — Qt(at),reward

) * loss;

t(ar),punishment — Ppunishment - Qt(at),punishment

It is not recommended to use both a sensitivity parameter and a temperature(f) parameter together as
they are known to trade-off against each other18. In some models, therefore, we convert values to
choice probabilities without using any temperature parameter, and in others, we introduce a lapse
parameter (&), which also adjusts the shape of the softmax function but is considered to covary less with
other model parameters (Supplementary Equation 7).

Supplementary Equation 7

po—ap. PO f

tar) Yoo1€xp(Qeay) 2

Some additional models are used solely for task 4 (see Section 2.4), as it is a go/no-go task, rather than a
bandit. There are four possible states (omitted from earlier equations for simplicity, denoted henceforth
as ‘s’) in this task, each containing one stimulus, and participants make either a ‘go’ or a ‘'no-go’
response. These include additional bias terms which have been found helpful to explain choice
behaviour in this task (see e.g. Mkrtchian et al.19). One bias term that is used is an action-bias, which
captures the tendency of participants to make a 'go’ response rather than a 'no-go’ response when
presented with a stimulus (Supplementary Equation 8). This is an additive term to the value of the 'go
action. Lower-case ‘q’ is the final value of the state/action pair, including the action-bias. Note that ‘Q
does not include the action-bias, and thus this bias is not included in value-updates (i.e. it is only used
once, and not added again every time a 'go’ action is chosen). Further, as shown in the last line of the
equation, if a = 'no-go’, actbias=0 (i.e. this bias only applies for ‘go’ responses).

’

7

Supplementary Equation 8

Qe(ars) = Qrayso T actbias
Qt+1(at,St) = Qt(at,st) + a * (St(at,st)
St(anso = outcome, — Quq,s))

a = nogo = actbias =0

Other possible terms are Pavlovian bias terms. These are multiplied by the overall value of the state (not
the state-action pair). If there is a single Pavlovian bias term, this is used regardless of what the state
value is. Here, again, the biases are only applied if the action is ‘go’ (Supplementary Equation 9).
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Supplementary Equation 9

At(ays) = Qt(aysy T actbias + pavbias * values)
Qt(atlst) = Qt(abst) Tax 6t(at,5t)

valueiyq(s,) = valueys, + a * (outcome; — values,))
8 t(apse) = outcome, — Quapsp)

a = nogo = actbias =0

a = nogo = pavbias = 0

Task 4 is designed such that the ‘go-to-win’ and ‘no-go-to-win’ stimuli are only associated with reward
outcomes or no outcomes, whereas ‘go-to-avoid’ and ‘no-go-to-avoid’ stimuli are only associated with
loss outcomes or no outcomes. This means that if two Pavlovian bias terms are used, therefore, the
"approach’ bias is used only for the states associated with the ‘go-to-win’ and ‘no-go-to-win’ stimuli, and
the "avoid’ bias is used for the ‘go-to-avoid’ and ‘no-go-to-avoid’ stimulus states. The equations
therefore look much as in Supplementary Equation 9, except that the pavbias becomes approachbias in
the two states associated with rewards, and avoidbias in the other two states. As previously, other
parameters (i.e. learning rates and sensitivity terms) can also be separated for reward and punishment.
If this is the case, reward and punishment Q values are updated separately as in Supplementary
Equation 4 or Supplementary Equation 6, then combined before being passed into the softmax function.

We also incorporated a choice kernel into some of our models, as this may capture participants’
tendencies to repeat their previous actions?®?%, This type of model also converts learnt values into
choice probabilities. Here, a choice trace is introduced to the softmax, as in Supplementary Equation 10,
and in some models is weighted by a perseverance parameter (otherwise, this weight is just set to 1, in
models using a choice kernel but with no perseverance). High values of the perseverance parameter
reflect a large influence of previous choices on the current choice. This choice kernel is updated on each
trial as in Supplementary Equation 11, such that if the action is chosen, the choice trace is updated with
the difference between 1 and the trace, scaled by a ‘decay’ parameter, and if the action is unchosen, the
choice trace is updated based on the difference between 0 and the trace, also scaled by the ‘decay’
parameter.

Supplementary Equation 10

exp(Qt(at) * B _n(p * Ct(at))
19 XPWea)*P =P * L))
t t

P t(ar) = Zn
a

Supplementary Equation 11
where (a,)is chosen = Ciyq(q) = Cya, + decay * (1 — Cyq,)

where (ap)is unchosen — Ciyi(q) = Ci(ay) + decay * (0 — Cyqp)

1.7 BAVYESIAN MODEL AVERAGING: MODEL WEIGHTS CALCULATED

Bayesian Model Averaging (BMA) is a form of model selection that allows uncertainty over the winning
model to be taken into account. We used Bayesian Model Averaging (BMA) to extract parameters from
each model in proportion to how well it fit the data: a method which incorporates uncertainty as to the
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best-fitting model, rather than using a winner-takes-all approach (although we also report results using
this approach, see Supplementary Section 2.8 below). We calculated approximate model weights using
BIC values separately for each analytic strategy, and converted them by subtracting each BIC value from
the maximum BIC value, and dividing by the sum to ensure they added to 1.

We also performed the variational Bayes analyses using two other weighting methods: the LOO
package’s?2 pseudo-BMA weights, and stacking?3 weights, to examine the generalizability of our results.
The resulting multivariate ANOVAs were still highly significant (all p values <0.001), indicating that there
is a substantial difference in reinforcement-learning parameters despite the precise method of model
weighting chosen.

1.8 BAYESIAN MODEL AVERAGING: EXTRACT WEIGHTS FOR ALL PARTICIPANTS

Subsequently, we drew parameters from the posterior distribution of that model with a frequency
corresponding to the BMA model weights. Note that as maximum a posteriori estimation gives a single
point estimate for each participant, our multiple draws of parameters in Bayesian Model Averaging were
repeated instances of the same value, whereas the multiple draws from models fit using variational
Bayes are equivalent to weighted samples from the approximate posterior.

The posterior means of all possible parameters in for all tasks were analysed together, in a 2(Group:
patients, controls) x 5 (Task) multivariate ANOVA. Values which were ‘NA’ (i.e. that parameter wasn’t
present in that model) were all imputed as 1s, though note that replacing these with any other number
did not change the result. Note that, to convert BIC scores into weights, we subtracted all BIC values
from the maximum BIC value, and then divided the output of this calculation by the sum of the
calculation, resulting in weights that summed to 1.

1.9 REPEAT FOR OTHER TASKS AND ESTIMATION METHODS

Analytic degrees of freedom are frequently encountered in fields such as neuroimaging, and are also
prevalent in computational modelling. Ergo, we use four common approaches in order to demonstrate
the robustness of our findings to analytic choices. We also highlight why we did not choose to use some
other possible approaches.

Specifically, we used hierarchical Bayesian variational inference24and maximum a-posteriori estimation,
and also used either a single overall prior for each parameter, or a prior that was calculated separately
for each group (patients vs. controls). Note that our generally preferred approach, which yields the most
reliable estimates, Markov-chain Monte-Carlo sampling, proved impractical for a sample of this size.

1.9.1 Variational Bayes

We estimated the posterior distributions of parameters using variational inference, implemented in R
(v4.0.2) and RStan (v2.19.3). We chose to use variational inference rather than Markov-Chain Monte-
Carlo (MCMC) sampling, as variational Bayes produces estimates much more rapidly (especially
important when estimating parameters for a large sample size, as in this case where MCMC sampling
turned out to be computationally impractical) with limited loss of accuracy?5. For parameters bounded
between 0 and 1 (learning rates, lapse parameters), we used non-centered parameterizations,
transformed using the Phi_approx function in Stan, with the location parameter drawn from a
Normal(0,3) distribution, and the scale parameter drawn from a Cauchy(0,5) distribution. We
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assumed Gamma distributions for parameters bounded between 0 and +o° (sensitivity parameters,
inverse temperature parameters), with shape and inverse scale parameters drawn from a Normal(1,5)
distribution. For unbounded parameters, we again used non-centered parameterizations, with the
location parameter drawn from a Normal(0,3) distribution, and the scale parameter drawn from a
Cauchy(0,5) distribution.

1.9.2 Maximum A-Posteriori

We also used a maximum a-posteriori approach. First, we ran maximum likelihood estimation, using
fmincon (in MATLAB 2018b), which performs gradient descent to find the parameter combination that
maximizes the likelihood of the sequence of choices made by each participant. To attempt to counteract
the problem of localized solutions, we used 10 random starting points, and selected the parameters that
produced the highest likelihood from these. Subsequently, we empirically estimated the distribution of
the priors using betafit (for parameters bounded between 0 and 1), normfit (for bias parameters only) or
gamfit (for parameters bounded between 0 and +<°), and then ran fmincon again (also with 10 starting
points), and added the log likelihood for each parameter to the log probability mass function of the prior
for that parameter value.

1.9.3 Markov-Chain Monte-Carlo (Unused)

The time taken to run a single model for a single group with MCMC ranged from 2-14 days using a
computer with four cores, so the analysis for the whole set of five tasks and 12-18 models, if performed
using MCMC, would conservatively take over 100 days. Therefore, we chose not to use this approach.

1.9.4  Number of Priors

It has been suggested that estimating separate priors for each group may lead to false positives2, if
priors with different means artificially inflate the differences between groups. However, using a single
prior may artificially reduce the difference between group means, resulting in false negatives. It has
been recently shown that the error in estimating effect size is greater when using a single prior than
when using separate group priors, and therefore it may be more robust to run estimations using
separate priors25. However, as both approaches are still common and have limitations, we use both in
this paper. Therefore, for both variational Bayes and maximum a-posteriori approaches, priors are either
specified as applying to all participants (regardless of group), or are separated by group.

1.10 PERFORM OMNIBUS MULTIVARIATE INFERENCE AND PARAMETER-WISE INFERENCE
Subsequently, we performed four multivariate analyses (corresponding to the four different analytic
choices mentioned above: one for each combination of number of priors and estimation method).

These multivariate analyses aimed to test the hypothesis that there is a difference in reinforcement-
learning parameter between patients and controls. We included all parameters as dependent variables
if there was at least one instance of that parameter after parameter extraction using Bayesian Model
Averaging. Factors were Group (2 levels: patients, controls), Study (27 levels) and the within-subject
factor of Simulated Task (5 levels).

We then further investigated parameter-specific effects by examining the effect of group for the five
parameters that were most strongly represented in the Bayesian Model Averaging analysis (i.e. the most
frequently included parameters). For the full univariate results, see Section 2.5 below.
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1.11 ROBUSTNESS META-ANALYSIS

After performing the four multivariate analyses (corresponding to analytic strategy) noted above, we
probed how robust the parameter effects were to these differences in analysis specification. We plotted
the effect sizes resulting from the univariate analyses of two broad parameter classes: learning rates,
and sensitivity parameters, generating illustrative fixed-effects meta-analytic estimates to draw overall
conclusions3. We also fractionated these effects into diagnostic sub-groups (depression, anxiety, PTSD
and mixed anxiety/depression) see Supplementary Section 2.6 below.

2 SUPPLEMENTARY RESULTS

2.1 SYSTEMATIC SEARCH RESULTS

The systematic search of databases returned 1127 results, and we added 3 extra papers that were
identified as missing by the authors. We screened all resulting abstracts. After this screen, we reviewed
the full text of the remaining papers, rejecting papers that did not meet the inclusion criteria above. If
papers met all inclusion criteria except 5 (reporting of parameters), we contacted the corresponding
author via email. We also contacted the corresponding author of papers which reported sufficient
statistics of parameters (e.g. mean and standard deviation), but not individual-level parameters. 18 sets
of individual-level data were sent to us as a result. Notably, there were 3 papers that met all the
inclusion criteria but did not report either sufficient statistics or individual-level values of all the
parameters in the model used, and either responded saying they were unable to send us the data (n=2)
or did not respond after two email enquiries (n=1). These papers are noted below. Subsequently, 28
papers were included: two studies reported fully overlapping data, resulting in a set of 27 studies,
detailed below in Supplementary Table 3. More details about the original models used can be seen in
the below section entitled ‘Original Models and Modifications’. The whole search process is displayed in
the PRISMA diagram (Supplementary Figure 3).
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Supplementary Figure 3: PRISMA flow diagram27 for papers included in this study.
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Authors and Totaln Patient n Clinical Group | Task Learning Lapse/ Sensitivity Other Notes
year rates temperature
Aylwardetal. | 132 44 Mood/ Four-armed 2 (reward Lapse Decay
20196 anxiety bandit and
disorders punishment)
Blanco et al. 133 38 Depression Leapfrog 0 (setat1) Temperature Naive RL
201328 (>16 on CES-
D)
Brown et al. 68 39 Veterans with | Two-armed 2 (reward 2 inverse 2 (reward Associability Reward and
2018%° PTSD, or non- | bandit and temperatures and (for punishment
veterans with punishment) | (fixed) punishmen | punishment blocks
MDD t) only) separate
Cavanagh et 121 46 MDD —either | Probabilistic 2 (reward Inverse
al. 2019%° low BDI (<7) selection task | and temperature
or high BDI (stimulus punishment)
(213) pairs)
Chase et al. 35 18 MDD Probabilistic 2 (reward Temperature Learning
2010%° outpatients selection task | and (called rates differ
(stimulus punishment) | exploration/exp as function
pairs) loitation) of feedback
Dombrovski 54 40 Suicide Probabilistic 2 (reward Inverse Memory If
et al. 20107 attemptors, reversal and temperature participants
ideators, learning task punishment) alsoin 2013
MDD dataset,
were
removed
Dombrovski 53 33 Suicide Probabilistic 2 (reward Inverse Memory
etal. attemptors, reversal and temperature
2013/15%11 ideators, learning task punishment)
MDD
Dombrovski 295 221 Suicide Probabilistic 2 (reward Temperature Decay
etal. 20193 attemptors, 3-choicetask | and
ideators, omission)
MDD
Freyetal. 92 40 High and low | Social 1 Temperature Choice bias,
20193 BDI scores probabilistic outcome
(>17,<7) task with valuation
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fixed
contingencies

Gagneetal. 86 32 GAD or MDD Volatile 7 learning 7 inverse 3 7*Mixture Written as
20203 (determined probabilistic rates temperature subjective parameter, 1 components
by SCID) decision magnitude | update rate —when 7,
making task parameter | for choice effects were
(sensitivity) | kernel, 3 (baseline,
inverse reward and
temperature punishment,
for choice good
kernel outcome
and bad
outcome,
volatile and
stable),
when 3,
effects were
(baseline,
reward and
punishment)
,or 1 (just
baseline)
Gradin et al. 32 15 MDD Instrumental 1 Inverse
201134 diagnosis reward temperature
(removed learning
schizophrenia
participants)
Huang et al. 122 77 Anxiety: low Change point | 2 (baseline, Inverse VMax model
2017° (OASIS score detection and higher temperature (learning
<8) or high when rate
(OASIS score maximum increases if
29) value option with
changes) maximal
value
changes)
Huys et al. 224 25 MDD Probabilistic 1 Outcome Belief, initial ‘Belief’
20138 reward task sensitivity, | value model
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Instruction

sensitivity
Khdour et al. 73 55 GAD, Social Probabilistic 1 1 No
20163 Anxiety classification individual-
Disorder, task level
Panic Disorder parameters
Kumar et al. 51 25 MDD Two-armed 2 (reward 2 (reward and
2018 bandit and punishment)
punishment)
Kunisato et 18 55 GAD, Social Probabilistic 1 Inverse
al. 201236 Anxiety classification temperature
Disorder, task
Panic Disorder
Lamba et al. 354 97 Anxiety (score | Three-armed Inverse Bias, 4 Decay Dynamic
20203 of 210 on bandit temperature (positive and Bayesian RL
GAD-7) negative
outcomes, and
for baseline
andasa
function of
change points)
Liuetal. 38 21 MDD Probabilistic 1 Temperature
2017% outpatients selection task
(stimulus
pairs)
Millner et al. 129 85 Veterans with | Go/No-go 1 B0, B1, wi, RL-DDM
20192 suicidal fractal task w2, w, T, model
thoughts and
behaviours
Mkrtchian et 101 43 Mood/anxiety | Go/No-go 2 (reward Lapse 2 (reward Action bias; 2
al. 2017%° disorders task and and Pavlovian bias
punishment) punishmen | (approach/avo
t) id)
Moutoussis 61 39 MDD Go/No-go 1 Lapse 2 (reward Action bias;
etal.2018% outpatients task and Pavlovian bias
punishmen
t)
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reward and punishment processing

Mukherjee et | 128 64 MDD Probabilistic 2 (reward 4 (actions + 0 8 (four bias
al. 2020%° Reversal task and fractals, reward terms for
punishment) | + punishment) reward and
punishment)
Myers et al. 87 48 Veterans with | Probabilistic 2 (reward Inverse Free
201338 PTSD (250 on | classification and temperature parameter for
PTSD- task punishment) no feedback
Checklist — i.e.not0)
Military
version) or
without (<50)
Ross et al. 29 15 Women with Two-arm 2 (reward Inverse Anticorrelat
20182 PTSD after bandit task and temperature ed updating
assaultative punishment)
violence
Rupprechter 32 15 MDD Pavlovian Inverse Memory Leaky beta
etal. 2018% conditioning temperature model
task
Rupprechter 433 26 MDD Probabilistic 2 (choice Inverse
et al. 2020%° reward and no- temperature
learning task choice
(with no- options)
choice)
White et al. 79 41 GAD Passive 1 Inverse Not full
20174 avoidance temperature sample
task available
Supplementary Table 3: Details of the studies included in the meta-analytic simulation.
Authors Title Journal Year DOI/URL
Rothkirch et al. | Neural mechanisms of reinforcement learning in unmedicated Brain 2017 | 10.1093/brain/awx025
patients with major depressive disorder
Huys et al. Psychiatry: Insights into depression through normative decision- Advances in neural 2009 | http://papers.nips.cc/paper/3563-psychiatry-
making models information insights-into-depression-through-normative-
processing systems decision-making-models.pdf
Beevers et al. Influence of depression symptoms on history-independent Psychiatry Research 2013 | https://doi.org/10.1016/j.psychres.2012.09.054

Supplementary Table 4: Details of studies that fit criteria 1-4, but did not report sufficient statistics or individual-level parameter values for all parameters in the reported
reinforcement-learning model, and were unable to provide dataset on request or did not respond to our request.
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2.2 ASSESSMENT OF STUDY QUALITY

Authors and year Selection Comparability Total
Disorder Disorder HC HC Age Gender 1Q Inc/Occ
definition | Generality selection | definition

Aylward et al. 2019¢ A A A A Y Y Y N 22

Blanco et al. 201328 A A A C N N N N 14

Brown et al. 2018?° A B (veterans) | A A Y Y S N 20

Cavanagh et al. 2019%° A A A A N N N N 16

Chase et al. 2010%° A B (recent B A Y Y Y N 20

onset)

Dombrovski et al. 20107 A B (elderly) A A Y Y Y N 21

Dombrovski et al. A B (elderly) A C Y Y Y N 19

2013/1581!

Dombrovski et al. 20193 A B (elderly) A A S S S N 18

Frey et al. 201932 A A A C Y N N N 16

Gagne et al. 2020% A A A B U U u U 15

Gradin et al. 201134 A A A C Y Y Y N 20

Huang et al. 2017° A A A C u u u u 14

Huys et al. 201318 B A C C N N N N 11

Khdour et al. 2016% A A B B Y Y Y N 20

Kumar et al. 2018 A A A A Y Y N N 20

Kunisato et al. 20123 A A A C Y Y N N 18

Lamba et al. 2020%3 A A A C N N N N 14

Liu et al. 2017% A A B A Y Y Y N 21

Millner et al. 20192 A B (suicidal) A A Y Y Y N 21

Mkrtchian et al. 2017%° A A A A N N N N 18

Moutoussis et al. 20182 A A B C Y Y N N 17

Mukherjee et al. 2020° A A B A Y Y Y N 21

Myers et al. 201338 A B (veterans) | A B Y Y N N 18

Ross et al. 20182 A C C A Y Y N N 16

Rupprechter et al. 2018%° A A A A Y Y Y N 22

Rupprechter et al. 2020%° A A A B N N N N 15

White et al. 20174 A C C A Y Y Y N 18

Supplementary Table 5: Table illustrating our assessment of study quality along the dimensions of selection and comparability. The criteria used in assigning these scores are
described in Section 1.3.1 above.
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2.3 CONVENTIONAL META-ANALYSIS: HETEROGENEITY AND PUBLICATION BIAS

There was evidence of heterogeneity in studies that estimated learning rate (t?=0.267; I* = 54.5%),
inverse temperature (t? = 0.035; I* = 40.9%), reward learning rate (2 = 0.033; /* = 39.0%), and
punishment learning rate (= 0.197; I = 79.0%).

For learning rate, the number of studies included was too small to reliably test for small-study effects
(k=9). Eggers’ test was not significant for inverse temperature (intercept=-0.1165 [-0.4968, 0.2638], t17=-
0.50, p=0.625), reward learning rate (intercept=--0.365 [-0.881, 0.151], t1,=0.81, p=0.433) or punishment
learning rate (intercept=0.0205 [-0.888, 0.929], t;,=-0.12, p=0.905).
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Supplementary Figure 4: Funnel plots for the difference between patients and controls on commonly-reported reinforcement-
learning parameters, with contours showing alpha values of p<0.05, p<0.025, p<0.01.

2.4 EFFECT SIZE RECOVERY

To test the sensitivity of this method, we generated parameters for three different ‘ground truth’
models: one with one learning rate and one inverse temperature, one with two learning rates and one
inverse temperature, and a final model with one learning rate, two sensitivity parameters, and a lapse
parameter. We then used these ground truth models to generate choices, and subsequently we fitted
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the set of models listed in the Supplementary Methods section above (Section 1.6) using variational
Bayes with separate group-level priors.

We subsequently performed our Bayesian Model Averaging pipeline, and calculated Cohen’s d for
parameters that were present in the ‘ground-truth’ model. Notably, we are largely able to replicate our
ground truth differences (albeit with reduced effect sizes) where these are present (for the learning rate
in the first model, the reward learning rate in the second, and punishment sensitivity in the latter).
Recovery when the generating model is one with a learning rate, two sensitivity parameters and a lapse
parameter is weaker, possibly as many of the models that we fit to the simulated data (8/16 for tasks 1-
4, 14/22 for task 5) do not include sensitivity parameters, and, correspondingly, sensitivity parameters
are not very highly represented in Bayesian Model Averaging.

Ground Truth Parameter Ground truth effect size Bayesian Model
Model Averaging effect size
1irlb Learning rate 0.501 0.884
Inverse temperature 0.000 -0.009
2irlb Reward learning rate 0.500 0.250
Punishment learning rate 0.000 0.005
Inverse temperature -0.001 0.000
1ir2sllapse Learning rate 0.000 0.002
Reward sensitivity -0.001 -0.001
Punishment sensitivity 0.500 0.025
Lapse -0.001 0.051

Supplementary Table 6: Effect size recovery for the simulation method used in this paper based on parameters with a known
effect size. Here, we used three ground truth models and defined effect size differences between patients and controls on the
parameters included in these models (the ‘Ground truth’ effect size column. We ran these models forward to generate choices.
We subsequently fit all the models listed in section 1.6 to these choices using variational Bayes with group-level priors, and
then performed Bayesian Model Averaging. Then, we report the effect size of those ground-truth parameters after this pipeline
has been run (Bayesian Model Averaging effect size column). Comparing the two effect size columns should give a sense of how
well our simulation method is able to reproduce effect sizes from known ‘ground truth’ parameter distributions.

2.5 FuLL UNIVARIATE RESULTS

2.5.1 Variational Bayes, Single Prior

Variable Factor F value Df Pr(>F)
alpha group 1.214390e+03 1 0.0000000
alpha task 1.351171e+04 4 0.0000000
alpha study 2.317784e+04 26 0.0000000
beta group 6.453653e+00 1  0.0110725
beta task 4.074445e+03 4 0.0000000
beta study 4.936379e+03 26 0.0000000
beta_reward group 1.275076e+02 1 0.0000000
beta_reward task 3.439008e+03 4 0.0000000
beta_reward study 7.277380e+02 26 0.0000000
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0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0003013
0.0000000
0.0000000
0.0000000
0.0000006
0.0000000
0.0000000
0.0000000
0.0000000
0.0001163
0.0000000
0.0000000
0.0627713
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.4248333
0.0000000
0.0000023
0.9875079
0.0000000
1.0000000
0.2822173
0.0000000
0.0000000

Df

Pr(>F)

beta_punishment group  1.287215e+02 1
beta_punishment task 1.416035e+04 4
beta_punishment study  4.023729e+03 26
alpha_reward group 1.282416e+02 1
alpha_reward task 1.606824e+04 4
alpha_reward study  1.289527e+04 26
alpha_punishment group  1.462630e+03 1
alpha_punishment task 2.80989%6e+04 4
alpha_punishment study  1.092679e+04 26
sensitivity group  1.306259e+01 1
sensitivity task 3.263366e+03 4
sensitivity study 4.567831e+03 26
sensitivity_reward group  9.975192e+01 1
sensitivity_reward task 8.586441e+00 4
sensitivity_reward study  1.494993e+03 26
sensitivity_punishment group 2.086069e+02 1
sensitivity_punishment task 2.048340e+04 4
sensitivity_punishment study 2.529044e+04 26
lapse group  1.485130e+01 1
lapse task 3.704902e+05 4
lapse study  2.051982e+03 26
decay group 3.462608e+00 1
decay task 1.900295e+04 4
decay study  4.903090e+01 26
perseverance group  1.796585e+03 1
perseverance task 1.796745e+04 4
perseverance study  1.371395e+04 26
go_bias group 1.946854e+02 1
go_bias task 6.352141e+05 4
go_bias study 1.366210e+03 26
pav_bias group  6.369062e-01 1
pav_bias task 3.129545e+05 4
pav_bias study  2.813346e+00 26
app_bias group  2.451000e-04 1
app_bias task 3.135052e+05 4
app_bias study  4.625700e-03 26
av_bias group 1.156381e+00 1
av_bias task 3.037466e+05 4
av_bias study  6.254684e+00 26
2.5.2  Variational Bayes, Group Priors
Variable Factor F value
alpha group  2.303450e+02
alpha task 6.038212e+04
alpha study 1.851452e+04
beta group 8.476239e+00
beta task 5.757897e+02
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beta

beta_reward
beta_reward
beta_reward
beta_punishment
beta_punishment
beta_punishment
alpha_reward
alpha_reward
alpha_reward
alpha_punishment
alpha_punishment
alpha_punishment
sensitivity
sensitivity
sensitivity
sensitivity_reward
sensitivity_reward
sensitivity_reward
sensitivity_punishment
sensitivity_punishment
sensitivity_punishment
lapse

lapse

lapse

decay

decay

decay
perseverance
perseverance
perseverance
go_bias

go_bias

go_bias

pav_bias

pav_bias

pav_bias

app_bias

app_bias

app_bias

av_bias

av_bias

av_bias
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study
group
task
study
group
task
study
group
task
study
group
task
study
group
task
study
group
task
study
group
task
study
group
task
study
group
task
study
group
task
study
group
task
study
group
task
study
group
task
study
group
task
study

4.132215e+02
6.795699e+00
4.395351e+00
1.375055e+00
9.298980e+00
5.030848e+00
1.879699e+00
3.105206e+03
1.041607e+05
1.576982e+04
3.234696e+04
1.671654e+05
8.955383e+03
3.957906e+00
2.659825e+00
4.684545e-01
1.841662e+00
3.442152e+00
1.742414e+00
8.806860e+00
8.893274e+00
1.597199e+00
1.204013e+04
1.459241e+05
2.511141e+03
7.901558e+01
1.130152e+04
5.820836e+01
2.486160e+03
2.157293e+04
1.299013e+04
2.914030e+02
3.971967e+05
9.929532e+02
2.281952e+00
2.090304e+05
1.423509e+01
2.880080e+01
7.594792e+04
1.540500e-03
4.267781e+00
7.510847e+04
3.456908e-01

0.0000000
0.0091378
0.0014896
0.0963363
0.0022928
0.0004722
0.0042754
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0466517
0.0309314
0.9901133
0.1747563
0.0080714
0.0109022
0.0030010
0.0000004
0.0274456
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.1308871
0.0000000
0.0000000
0.0000001
0.0000000
1.0000000
0.0388416
0.0000000
0.9992044



253
Variable
alpha
alpha
alpha
beta
beta
beta
beta_reward
beta_reward
beta_reward
beta_punishment
beta_punishment
beta_punishment
alpha_reward
alpha_reward
alpha_reward
alpha_punishment
alpha_punishment
alpha_punishment
sensitivity
sensitivity
sensitivity
sensitivity_reward
sensitivity_reward
sensitivity_reward
sensitivity_punishment
sensitivity_punishment
sensitivity_punishment
lapse
lapse
lapse
decay
decay
decay
perseverance
perseverance
perseverance
go_bias
go_bias
go_bias
pav_bias
pav_bias
pav_bias
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Maximum A-Posteriori, Single Prior

Factor
group
task
study
group
task
study
group
task
study
group
task
study
group
task
study
group
task
study
group
task
study
group
task
study
group
task
study
group
task
study
group
task
study
group
task
study
group
task
study
group
task
study

F value
9.847825e+02
1.839612e+04
1.175841e+04
5.590719e+00
1.517679e+02
1.872758e+02
3.774078e+01
5.590561e+01
2.532236e+01
3.538367e+01
5.521180e+01
2.633381e+02
1.165428e+01
9.309521e+04
9.286729e+03
3.915375e+03
4.698586e+04
1.313498e+04
9.646359e+01
6.498502e+01
1.219736e+02
3.673740e+01
5.841093e+01
1.269481e+02
1.097354e-01
4.011837e+01
5.486666e+01
6.462900e-03
1.774588e+05
1.913682e+03
2.327576e+02
5.416478e+04
5.349856e+02
2.585237e+01
1.175514e+02
8.625106e+01
1.038521e+02
1.468925e+01
7.472874e+01
3.536827e+01
4.864079e+01
1.112456e+02

Pr(>F)
0.0000000
0.0000000
0.0000000
0.0180559
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0006406
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.7404456
0.0000000
0.0000000
0.9359253
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000004
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000



app_bias
app_bias
app_bias
av_bias
av_bias
av_bias

2.5.4  Maximum A-Posteriori, Group Priors
Factor

Variable
alpha

alpha

alpha

beta

beta

beta
beta_reward
beta_reward
beta_reward

beta_punishment
beta_punishment
beta_punishment
alpha_reward
alpha_reward
alpha_reward
alpha_punishment
alpha_punishment
alpha_punishment

sensitivity
sensitivity
sensitivity

sensitivity_reward
sensitivity_reward
sensitivity_reward
sensitivity_punishment
sensitivity_punishment
sensitivity_punishment

lapse

lapse

lapse

decay

decay

decay
perseverance
perseverance
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group
task
study
group
task
study

group
task
study
group
task
study
group
task
study
group
task
study
group
task
study
group
task
study
group
task
study
group
task
study
group
task
study
group
task
study
group
task
study
group
task

3.581951e+01
9.994258e+01
4.723452e+01
1.378884e+01
1.541414e+02
6.254147e+01

F value
1.952081e+03
3.951651e+04
1.203627e+04
1.305739e+02
2.442069e+02
1.417763e+02
1.251845e+02
3.914597e+02
1.362766e+03
1.170984e+02
3.812045e+02
1.363351e+03
1.665936e+02
4.149728e+04
1.459022e+04
5.514633e+03
4.587283e+04
1.471260e+04
7.727588e+01
4.162782e+01
2.591338e+01
4.405627e-01
1.036535e+02
4.442463e+02
5.999143e+00
2.047053e+02
5.796791e+02
1.106212e+03
2.780625e+05
8.649435e+03
6.174732e+02
4,358027e+04
1.447981e+03
1.965309e+01
6.503515e+01

0.0000000
0.0000000
0.0000000
0.0002045
0.0000000
0.0000000

Pr(>F)
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.5068510
0.0000000
0.0000000
0.0143128
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000093
0.0000000



perseverance study  1.322247e+02 26 0.0000000
go_bias group 2.175903e+01 1 0.0000031
go_bias task 1.433563e+03 4 0.0000000
go_bias study  5.250998e+01 26 0.0000000
pav_bias group 7.420497e+01 1 0.0000000
pav_bias task 5.015732e+01 4 0.0000000
pav_bias study  6.823301e+01 26 0.0000000
app_bias group 2.830973e+01 1 0.0000001
app_bias task 4.213569e+01 4 0.0000000
app_bias study 5.371783e+01 26 0.0000000
av_bias group  4.771000e-03 1 0.9449317
av_bias task 4.340361e+02 4 0.0000000
av_bias study 6.216055e+01 26 0.0000000

2.6 SUB-GROUP ANALYSES

After performing an illustrative fixed-effects meta-analysis across analysis approaches for the most-
represented parameters (learning rates and sensitivity parameters), we also performed subgroup
analyses for different diagnoses — depression (k=15), anxiety (k=5), PTSD (k=4) and mixed
anxiety/depression (k=3).

2.6.1 LearningRate

Subgroup analyses indicated that this differed between diagnosis (Qs;= 29466.65, p<0.001): those with
anxiety showed an increased learning-rate (0.0689[0.0672, 0.0706]) and those with depression showed
a decreased learning rate (-0.0613[-0.0625, -0.0602]). Whilst a limited number of studies focused on
PTSD or recruited a mixed anxiety/depression sample, the results from these also indicated an increased
learning rate (PTSD: 0.0628 [0.0598; 0.0657]; mixed: 0.1193[0.1169; 0.1216]).

2.6.2 Reward learning rate

For reward learning rate, there was also a significant effect of diagnosis (Qs = 16681.01, p<0.001): here,
those with depression also showed a reduction in learning rate (-0.0573 [-0.0584; -0.0562]), as did those
with PTSD (-0.0056 [-0.0084; -0.0028]), but those with anxiety showed an increase (0.0665 [ 0.0649;
0.0681]), as did mixed depression and anxiety groups ( 0.0230 [ 0.0208; 0.0253]).

2.6.3  Punishment learning rate

Similarly, there was a significant effect of diagnosis on punishment learning rate (Qs= 22255.95,
p<0.001), although all groups showed an increase (depression: 0.0137 [0.0126; 0.0147]; anxiety: 0.1225
[0.1209; 0.1241]; PTSD: 0.1311 [0.1283; 0.1340]; mixed: 0.1588 [0.1565; 0.1610]).

2.6.4 Inverse temperature

There was an effect of diagnosis on inverse temperature: Q3= 3822.06, p<0.001. All groups except PTSD
showed reduced inverse temperature (PTSD: 0.0007 [-0.0024; 0.0038]; depression: -0.0469 [-0.0481; -
0.0458]; anxiety: -0.0236 [-0.0254; -0.0218]; mixed: -0.1069 [-0.1093; -0.1044]).
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2.7 META-REGRESSIONS

2.7.1  Study quality

We converted our modified Newcastle-Ottawa ratings into continuous scores, mean-centred them, and
added them to meta-regressions. The estimates and their p-values are shown below (Supplementary
Table 7). We also present the adjusted effect size and confidence intervals (i.e. the intercept when the
covariate is mean-centred*). After controlling for study quality, the effects on reward and punishment
learning rate remain significant; the effect on learning rate is no longer significant, and there is an effect
on inverse temperature, such that patients show lower inverse temperature than controls.

Effect of adding quality to meta- Adjusted effect size of group on
regression parameter value
Parameter Effect Z value p value Adjusted Lower Upper
effect size confidence | confidence
interval interval
Learning rate -0.0314 -3.0044 0.0027 -0.0154 -0.0358 0.0050
Reward -0.0388 -4.6086 <.0001 -0.0288 -0.0453 -0.0123
learning rate
Punishment -0.0236 -2.4986 0.0125 0.0577 0.0392 0.0762
learning rate
Inverse -0.0090 -1.4569 0.1451 -0.0530 -0.0651 -0.0409
temperature

Supplementary Table 7: Estimated effects, z-values and p-values for the effect of study quality on effect sizes.

2.7.2  Year of publication

Similarly, we performed a meta-regression using mean-centred year of publication, the results for which
are shown in Supplementary Table 8. Again, the effects on reward and punishment learning rate remain
the same. The effect on learning rate is no longer significant, but there is an effect on inverse
temperature, such that patients show lower inverse temperature than controls.

Effect of adding year of publication to Adjusted effect size of group on
meta-regression parameter value
Parameter Effect Zvalue p value Adjusted Lower Upper
effect size confidence | confidence
interval interval
Learning rate 0.0130 3.9830 <.0001 -0.0154 -0.0358 0.0050
Reward 0.0104 3.9308 <.0001 -0.0288 -0.0454 -0.0122
learning rate
Punishment 0.0070 2.3747 0.0176 0.0577 0.0391 0.0762
learning rate
Inverse -0.0132 -6.8541 <.0001 -0.0529 -0.0649 -0.0409
temperature

Supplementary Table 8: Estimated effects, z-values and p-values for the effect of year of publication on effect sizes.
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2.7.3  Parameter uncertainty

Relative parameter uncertainty summarizes the extent to which the estimates of the parameter are
imprecise. Higher imprecision in a parameter estimate could indicate poor model fit, either due to a
different underlying generative process, insufficient data, or inadequate parameterization. For each
combination of task, model, and analysis method, we estimated the relative uncertainty for the
parameters that were most represented in Bayesian Model Averaging (learning rate, reward learning
rate, punishment learning rate, and inverse temperature). Relative uncertainty in estimating a
parameter for a given participant is defined in the following supplementary equation:

Standard Deviation of Individual's Parameter

Relative Uncertainty = Mean of Individual's Parameter

Note that the standard deviation is available to us where a whole posterior distribution is estimated,
rather than a point estimate. For this reason, it is not possible to calculate the relative uncertainty at the
individual level for maximum a-posteriori estimation, and the uncertainty at the group level just reflects
the spread of the parameter, rather than any uncertainty inherent to the estimation method/model. We
therefore show results for a meta-regression including these relative uncertainty terms for parameter
estimates using variational Bayes in Supplementary Table 9. The effect on punishment learning rate
remains the same, whereas the effects on reward and single learning rate are no longer significant.
There is no significant effect on inverse temperature.

Effect of adding relative uncertainty to Adjusted effect size of group on
meta-regression parameter value
Parameter Effect Z value p value Adjusted Lower Upper
effect size confidence confidence
interval interval
Learning rate -0.0042 -0.1566 0.8756 0.0804 -0.0148 0.1755
Reward learning | 0.0137 0.1413 0.8876 -0.0420 -0.1567 0.0727
rate
Punishment 0.0009 0.0788 0.9372 0.1367 0.0019 0.2715
learning rate
Inverse -0.1004 -1.0364 0.3000 0.0512 -0.0847 0.1871
temperature

Supplementary Table 9: Estimated effects, z-values and p-values for the effect of relative uncertainty in parameter estimation
on effect sizes. Note that this meta-regression is only using effect sizes for variational Bayes estimation.

2.8 TASKEFFECTS

Notably, there were significant task effects on our parameter estimates, using either Bayesian Model
Averaging or (see below) using a winner-takes-all approach. particular, it is worth noting that tasks
which contain correlated rewards and punishments result in greater difficulty in estimating separate
reward and punishment learning rates, as illustrated using the correlation between synthetic
parameters and recovered parameters below (Supplementary Figure 5). It may be that studies using
correlated rewards and punishments limited their ability to observe the valence-dependent effects we
see in this meta-analysis, hence explaining the lack of learning rate effects on the conventional meta-
analysis.
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Supplementary Figure 5: The correlation coefficients between synthetic and recovered reward and punishment learning rates
by task. Note that perfect recovery of these known parameters would result in a coefficient of 1. It is apparent that recovery
varies substantially as a function of task. Tasks 1 and 3 have reward and punishment outcomes which are perfectly correlated;
the others do not. As can be seen here, recovery (and hence our ability to trust the parameters) is considerably worse for tasks
1 and 3. Recovery was tested using variational Bayes and a model with two learning rates and an inverse temperature for
illustrative purposes. Points in black (shifted right from the main tick marks) represent mean and standard error.

2.9 TASKSENSITIVITY ANALYSIS

Given that the recovery for reward and punishment learning rates was somewhat worse for tasks 1 and
3 (see Supplementary Figure 5), we also ran the simulation meta-analysis excluding these tasks. The
results are very similar, indicating that our learning rate findings do not result from noise in the
estimation of reward and punishment learning rates. Again, we see a meaningful increase in punishment
learning rates (standardized mean difference = 0.0981 [0.0972; 0.0990]), a slight decrease in reward
learning rates (-0.0133 [-0.0142; -0.0124]). If only a single learning rate was estimated in a model, this
was slightly elevated in patients compared to controls (0.0585 [0.0575; 0.0594]). There was only a
negligible effect on inverse temperature (0.0053 [0.0042; 0.0063]).

S33



Learming rate i Reward leaming rale I Punishment leaming rate ][ nverse temperature

2vba =] o i o =]

astimate

14ba e o ‘o o e

» H i
7 05

%2 ap o o e o
£ 0o

<

0s

1.mep o o o °
|

FEMA * * * »

estimate

Supplementary Figure 6: Forest plots of the Cohen’s d effect sizes for the four most highly-represented parameters from our
Bayesian model averaging analysis, across the four analytic strategies we used. This is the same as Figure 3 in the main paper,
except that only tasks 2, 4 and 5 (those with better reward/punishment learning rate estimation) are included. On the x-axis is
the Cohen’s d effect size value, and on the y axis is the type of analysis. The plots are split by parameter type and show: A) a
small learning rate increase in patients. When learning rates are allowed to be separate for rewards and punishments, we can
see B) a slight decrease in reward learning rate and a C) meaningful increase in punishment learning rate in patients compared
to controls. D) Unlike the conventional meta-analysis, we see no meaningful difference in inverse temperature. ‘VBA’ stands for
‘variational Bayesian analysis’, and ‘MAP’ stands for ‘maximum a posteriori’ analysis; ‘1’ refers to the cases where parameters
were estimated using a hierarchical Bayesian approach with only a single prior over groups, ‘2’ refers to the cases where a
different prior was estimated for each group. At the bottom are the results of the fixed-effects meta-analyses (‘FE MA’), with
the point estimate for the standardized mean difference (Cohen’s d) and the 95% confidence interval shown in black. A dashed
line is displayed representing an effect size of d=0.

2.10 WINNER-TAKES-ALL MODEL ANALYSES

Here, we present more detail of the results of all analyses performed using different methodological
choices, in order to examine the robustness of effects to analytic degrees of freedom. First, we present
the results when one ANOVA is performed per task (on the overall winning model), rather than the
omnibus ANOVA presented in the main text with parameters derived from all tasks. Secondly, we
present the results of performing one ANOVA per task on parameters estimated from the per-task
winning model, i.e. the model with the lowest sum of BIC for that task only. Thirdly, we present the
results of ANOVAs performed on parameters estimated using a single prior across both groups. Finally,
we present the results of ANOVAs estimated using maximum a-posteriori estimation rather than
variational inference. A summary of these results can also be seen in Figure 4 in the main text.

2.10.1 Methods

2.10.1.1 Model Comparison

Model comparison was performed to select the model that most parsimoniously described the data
(represented by the lowest BIC) across all tasks. We report the log Bayes Factor43 of the improvement in
BIC between the first and second best models. Model selection results are presented in full for each
analysis method below. The generate-recover matrix for each task using variational estimation is shown
in Supplementary Figure 19 and Supplementary Figure 22.

We used the Bayesian Information Criteria (BIC) to determine the best-fitting model (where the lower
the BIC, the better the model fits the data). To compare models, we report the Bayes Factor, which can
be calculated from total BIC scores using the following equation:

BF BIC, = BIC,

ab = exp( 9 )
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where BF,, refers to the Bayes Factor that indicates the strength of the evidence for model a relative to
model b, and BIC; refers to the total BIC for model a. In general, a Bayes Factor of 1-3 indicates
anecdotal evidence, 3-10 indicates substantial evidence, 10-30 indicates strong evidence, and >100
indicates decisive evidence43.

2.10.1.2 Inference

The posterior means of each separate parameter for all tasks were analysed together, in a 2(Group:
patients, controls) x 27(Study) x 5 (Task) ANOVA. A Greenhouse-Geisser correction was used if the
assumption of sphericity was violated. Effect sizes are reported as Cohen’s d for the comparison across
groups to aid interpretation. In Supplementary Section 2.4, we present a simulation showing that given
a known between-group effect size for a specific parameter, this method can reliably detect a true
between-group difference, albeit that it is likely to be an overestimate of the effect.

2.10.2 Variational Bayes, Single Prior

2.10.2.1 Model Selection

The winning model had a single learning rate, which govern the rate that learnt stimulus values are
updated by prediction errors, and one inverse temperature parameter, which scales the learnt values of
the stimuli, and thus also govern the extent to which participants behave deterministically. This model
also had a choice kernel, with a perseverance parameter and a decay parameter. The decay parameter
controls how many trials back participants keep track of when deciding whether to repeat a choice or
not, and the perseverance parameter governs how likely they are to repeat a previous choice. This
model is substantially better than the next model [logBF10 = 44624.72]. More detail on the other
models we compared can be found in Section 1.6 of the supplement above, and more detail on the
model comparison process can be found above in Section 2.10.1.1.
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Supplementary Figure 7: Bar graph of BIC for each model after parameter estimation using variational Bayes with a single prior
over all participants. The best fitting model is marked with an asterisk.

2.10.2.2 Learning rate
F  num Df den Df Pr(>F) ges

pat_con 0.334 1.000 3057.00 0.563 0.000
study 131.515 26.000 3057.00 0.000 0.417
task 818.949 3.667 11210.66 0.000 0.088

pat_con:task 0.420 3.667  11210.66 0.778 0.000
study:task 45.100 95.347 11210.66 0.000 0.122

Cohen's d: 0.05[0.02,0.09].

2.10.2.3 Inverse temperature
F num Df den Df Pr(>F) ges

pat_con 5.437 1.000 3057.00 0.020 0.001
study 172.396 26.000 3057.00 0.000 0.532
task 243.727 3.745 1144792 0.000 0.018
pat_con:task 0.548 3.745 1144792 0.688 0.000
study:task 16.610 97.365 11447.92 0.000 0.031
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Cohen's d: -0.08[-0.11,-0.05]

2.10.2.4 Decay

F num Df
pat_con 9.319 1.000
study 41.219 26.000
task 226.608 3.537
pat_con:task 0.674 3.537
study:task 12.180 91.970

Cohen's d: 0.01[-0.02,0.04]

2.10.2.5 Perseverance

F num Df
pat_con 3.763 1.000
study 95.571 26.000
task 48.144 3.445
pat_con:task = 2.706 3.445
study:task 33.444 89.561
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den Df
3057.00
3057.00
10813.49
10813.49
10813.49

den Df
3057.00
3057.00
10530.32
10530.32
10530.32

Pr(>F)
0.002
0.000
0.000
0.592
0.000

Pr(>F)
0.052
0.000
0.000
0.036
0.000

ges
0.001
0.139
0.039
0.000
0.053

ges
0.001
0.371
0.004
0.000
0.072



Cohen's d: -0.09[-0.13,-0.06]
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Supplementary Figure 8: Raincloud plots#4 showing the main effects of group on each parameter of the overall winning model
fitted using variational Bayes with a single prior across all participants. A) Learning rate. B) Log reward inverse temperature. C)
Decay. D) Perseverance. On the left of each tick mark, a boxplot is displayed (showing median, first and third quartiles, with
whiskers showing the largest value no more than 1.5%IQR from the third quartile, and the smallest value no more than 1.5*IQR
from the first quartile), with the individual data points plotted in grey beneath it. On the right is a half violin plot, showing the
density of the distribution. The Cohen’s d effect size for group effects is displayed above to aid interpretation, and asterisks
represent significant main effects of group in the ANOVA.

2.10.2.6 Choice behaviour

Below, we show data that relates our choice bank data, generated from the original models, to data
generated from this best-fitting model. We show that the trial-by-trial accuracy from our bank of choices
(generated by feeding original parameters through each papers’ best-fitting model for benchmarking
tasks) tracks trial-by-trial accuracy for choices generated from the best-fitting model, shown averaged
over different participants’ choices for different tasks (Supplementary Figure 9).
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Supplementary Figure 9: Trial-by-trial accuracy (defined as choosing the option with the maximum value on each trial) across
participants for each of the tasks, with both the choice bank data (from using original parameters and original models and
feeding into the benchmarking tasks) and synthetic choices from the best-fitting model.

2.10.3 Variational Bayes, Separate Priors

2.10.3.1 Model Selection

The winning model had a single learning rate, which governs the rate that learnt stimulus values are
updated by prediction errors, and a single inverse temperature, which scale the values of the outcomes
received, and thus also govern the extent to which participants behave deterministically, alongside a
decay term, which controls how many trials back participants keep track of when deciding whether to
repeat a choice or not, and a perseverance parameter, which governs how likely they are to repeat a
previous choice. This model is substantially better than the next model [logBF10 = 35807.99]. More
detail on the other models we compared can be found in Section 1.6, and more detail on the model
comparison process can be found above in Section 2.10.1.1.
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Supplementary Figure 10: Bar graph of BIC for each model after parameter estimation using variational Bayes with separate
priors for each group. The best fitting model is marked with an asterisk.

2.10.3.2 Learning rate

F num Df den Df Pr(>F) ges

pat_con 2.513 1.000 3057.00 0.113 0.001
study 131.888 26.000 3057.00 0.000 0.414
task 57.448 3.659 11185.12 0.000 0.007
pat_con:task 1044.756 3.659 11185.12 0.000 0.112
study:task 17.653 95.130 11185.12 0.000 0.053

Cohen's d: 0.11[0.08,0.14]

2.10.3.3 Inverse temperature
F num Df den Df Pr(>F) ges

pat_con 10.376 1.000 3057.00 0.001 0.003
study 175.936 26.000  3057.00 0.000 0.534
task 59.281 3.672 11225.97 0.000 0.005

pat_con:task =~ 93.071 3.672 11225.97 0.000 0.007
study:task 20.826  95.478 11225.97 0.000 0.040
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Cohen's d: -0.1[-0.13,-0.07]

2.10.3.4 Decay
F num Df den Df Pr(>F) ges

pat_con 104.163 1.000 3057.000 0 0.014
study 33.174 26.000 3057.000 0 0.106
task 127.014 3.066 9372.986 0 0.024
pat_con:task 959.508 3.066 | 9372.986 0 0.154
study:task 14.434 79.718 9372.986 0 0.066

Cohen's d: 0.3[0.27,0.34]

2.10.3.5 Perseverance
F num Df den Df Pr(>F) ges

pat_con 3.496 1.000 3057.00 0.062 0.001
study 90.148 26.000 3057.00 0.000 0.360
task 14.728 3.425 10470.68 0.000 0.001

pat_con:task = 95.756 3.425 10470.68 0.000 0.008
study:task 33.503 89.054 10470.68 0.000 0.071

Cohen's d:-0.09[-0.12,-0.06]
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Supplementary Figure 11: Raincloud plots#4 showing the main effects of group on each parameter of the overall winning model
fitted using variational Bayes with separate priors for each group. A) Reward learning rate. B) Punishment learning rate. C) Log
sensitivity. On the left of each tick mark, a boxplot is displayed (showing median, first and third quartiles, with whiskers showing
the largest value no more than 1.5*IQR from the third quartile, and the smallest value no more than 1.5*IQR from the first
quartile), with the individual data points plotted in grey beneath it. On the right is a half violin plot, showing the density of the
distribution. The Cohen’s d effect size for group effects is displayed above to aid interpretation, and asterisks represent
significant main effects of group in the ANOVA.
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2.10.3.6 Choice behaviour
Below, we show data that relates our choice bank data, generated from the original models, to data

generated from this best-fitting model. We show that the trial-by-trial accuracy from our bank of choices
(generated by feeding original parameters through each papers’ best-fitting model for benchmarking
tasks) tracks trial-by-trial accuracy for choices generated from the best-fitting model, shown averaged
over different participants’ choices for different tasks (Supplementary Figure 12).
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Supplementary Figure 12: Trial-by-trial accuracy (defined as choosing the option with the maximum value on each trial) across
participants for each of the tasks, with both the choice bank data (from using original parameters and original models and
feeding into the benchmarking tasks) and synthetic choices from the best-fitting model.

2.10.4 Maximum A-Posteriori, Single Prior

2.10.4.1 Model Selection
The winning model had a single learning rate, which governs the rate that learnt stimulus values are

updated by prediction errors, a single inverse temperature parameter, which scales the learnt values,
and thus also governs the extent to which participants behave deterministically, alongside a decay term,
which controls how many trials back participants keep track of when deciding whether to repeat a
choice or not, and a perseverance parameter, which governs how likely they are to repeat a previous
choice. This model is substantially better than the next model [logBF10 = 16224.56]. More detail on the
other models we compared can be found in Section 1.6, and more detail on the model comparison
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process can be found above in Section 2.10.1.1.
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Supplementary Figure 13: Bar graph of BIC for each model after parameter estimation using maximum a-posteriori with a
single overall prior. The best fitting model is marked with an asterisk.

2.10.4.2 Reward learning rate
F  num Df den Df Pr(>F) ges

pat_con 90.093 1.000 3057.00 0 0.013
study 18.647 26.000 3057.00 0 0.069
task 40.584 3.756 11481.03 0 0.007
pat_con:task 24.837 3.756 11481.03 0 0.004
study: task 4.235 97.647 11481.03 0 0.019

Cohen's d: 0.23[0.2,0.26]

2.10.4.3 Inverse temperature
F num Df den Df Pr(>F) ges

pat_con 2.030 1.000 3057.000 0.154 0.000
study 1.068 26.000 3057.000 0.371 0.002
task 1.809 1.019 3114.515 0.179 0.000

pat_con:task 2.039 1.019 3114.515 0.153 0.001
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study:task 1.095

Cohen's d: 0.03[0,0.06]

2.10.4.4 Decay

26.489 3114.515 0.335 0.007

F num Df den Df Pr(>F) ges
pat_con 168.942 1.000 3057.000 0 0.016
study 6.526 26.000 3057.000 0 0.016
task 423.930 2.382  7281.062 0 0.088
pat_con:task =~ 31.458 2.382  7281.062 0 0.007
study:task 3.354 61.926 7281.062 0 0.020
Cohen's d: 0.23[0.2,0.27]
2.10.4.5 Perseverance
F numDf denDf Pr(>F) ges
pat_con 2.503 1.000 3057.00 0.114 0.000
study 1.474 26.000 3057.00 0.058 0.003
task 2.604 1.094 3345.71 0.104 0.001
pat_con:task | 1.887 1.094 | 3345.71 0.169 0.000
study:task 1.551 28.455 3345.71 0.031 0.010
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Supplementary Figure 14: Raincloud plots#4 showing the main effects of group on each parameter of the overall winning model
fitted using a maximum a-posteriori approach with a single prior. A) Learning rate. B) Log inverse temperature. C) Decay. D)
Perseverance. On the left of each tick mark, a boxplot is displayed (showing median, first and third quartiles, with whiskers
showing the largest value no more than 1.5*IQR from the third quartile, and the smallest value no more than 1.5*IQR from the
first quartile), with the individual data points plotted in grey beneath it. On the right is a half violin plot, showing the density of
the distribution. The Cohen’s d effect size for group effects is displayed above to aid interpretation, and asterisks represent
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significant main effects of group in the ANOVA. Note that the y axis for perseverance is truncated to between -15 and +15,
where the majority of the mass is.

2.10.4.6 Choice behaviour

Below, we show data that relates our choice bank data, generated from the original models, to data
generated from this best-fitting model. We show that the trial-by-trial accuracy from our bank of choices
(generated by feeding original parameters through each papers’ best-fitting model for benchmarking
tasks) tracks trial-by-trial accuracy for choices generated from the best-fitting model, shown averaged
over different participants’ choices for different tasks (Supplementary Figure 15).
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Supplementary Figure 15: Trial-by-trial accuracy (defined as choosing the option with the maximum value on each trial) across
participants for each of the tasks, with both the choice bank data (from using original parameters and original models and
feeding into the benchmarking tasks) and synthetic choices from the best-fitting model.

2.10.5 Maximum A-Posteriori, Separate Priors

2.10.5.1 Model Selection

The winning model was the same as above, for a single prior: a single learning rate, which governs the
rate that learnt stimulus values are updated by prediction errors, and a single inverse temperature
parameter, which scale the learnt values, a decay parameter, and a perseverance parameter. This model
is substantially better than the next model [logBF10 = 14804.35]. More detail on the other models we
compared can be found in Section 1.6, and more detail on the model comparison process can be found

above in Section 2.10.1.1.
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Supplementary Figure 16: Bar graph of BIC for each model after parameter estimation using maximum a-posteriori with
separate priors for each group. The best fitting model is marked with an asterisk.

2.10.5.2 Learning rate
F  num Df den Df Pr(>F) ges

pat_con 76.240 1.00 3057.00 0 0.011
study 10.492 26.00 3057.00 0 0.037
task 9.605 3.89 11891.71 0 0.002
pat_con:task | 17.756 3.89  11891.71 0 0.003
study:task 1.817 101.14 11891.71 0 0.009

Cohen's d: 0.23[0.2,0.27]

2.10.5.3 Inverse temperature
F num Df denDf Pr(>F) ges

pat_con 1.070 1 3057 0.301 0.000
study 1.315 26 3057  0.131  0.002
task 1.098 1 3057 0.295 0.000
pat_con:task = 1.069 1 3057  0.301 0.000
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Cohen's d: 0.02[-0.01,0.05]

2.10.5.4 Decay

F num Df den Df | Pr(>F) ges
pat_con 128.395 1.000 3057.00 0 0.012
study 4,746  26.000 3057.00 0 0.011
task 74.890 3.896 11909.87 0 0.017
pat_con:task 9.622 3.896 11909.87 0  0.002
study:task 2.998 101.294 11909.87 0 0.018
Cohen's d: 0.19[0.16,0.22]
2.10.5.5 Perseverance
F num Df den Df Pr(>F) ges
pat_con 3.595 1.000 3057.000 0.058 0.000
study 1.019 26.000 3057.000 0.437 0.002
task 0.426 1.158  3541.528 0.543 0.000
pat_con:task 1.397 1.158 3541.528 0.242 0.000
study:task 0.857 30.121 3541.528 0.689 0.006
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Supplementary Figure 17: Raincloud plots#4 showing the main effects of group on each parameter of the overall winning model
fitted using a maximum a-posteriori approach with separate priors for each group. A) Learning rate. B) Log inverse temperature.
C) Decay. D) Perseverance. On the left of each tick mark, a boxplot is displayed (showing median, first and third quartiles, with
whiskers showing the largest value no more than 1.5*IQR from the third quartile, and the smallest value no more than 1.5*IQR
from the first quartile), with the individual data points plotted in grey beneath it. On the right is a half violin plot, showing the
density of the distribution. The Cohen’s d effect size for group effects is displayed above to aid interpretation, and asterisks
represent significant main effects of group in the ANOVA. Note that the y axis for perseverance is truncated to between -15 and

+15, where the majority of the mass is.
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2.10.5.6 Choice behaviour

Below, we show data that relates our choice bank data, generated from the original models, to data
generated from this best-fitting model. We show that the trial-by-trial accuracy from our bank of choices
(generated by feeding original parameters through each papers’ best-fitting model for benchmarking
tasks) tracks trial-by-trial accuracy for choices generated from the best-fitting model, shown averaged
over different participants’ choices for different tasks (Supplementary Figure 18).
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Supplementary Figure 18: Trial-by-trial accuracy (defined as choosing the option with the maximum value on each trial) across
participants for each of the tasks, with both the choice bank data (from using original parameters and original models and
feeding into the benchmarking tasks) and synthetic choices from the best-fitting model.

2.11 RECOVERABILITY ANALYSIS ON GENERATED TASKS

We tested the ability of the best-fitting models for each type of analysis to recover hypothetical
parameters from the simulated tasks. 500 simulated ‘agents’ with a random combination of simulated
parameters ‘performed’ the tasks in the paper using the overall best model, and the parameters were
recovered using the relevant analytic approach (variational Bayes or maximum a-posteriori analysis). All
correlations between generated and recovered parameters were positive and statistically different from
0 (Supplementary Figure 19). The simulated parameters were generated based on realistic distributions,
informed by the estimates obtained in this paper. Thus, all learning rate parameters were generated
using a Beta(1,1) distribution, temperature parameters were generated using a Gamma(5,1)
distribution, sensitivity and bias parameters using a Gamma(3,1) distribution, and lapse parameters
using a Gamma(0.5,1.5) distribution.
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Task 1 Task 2

¢ o
learning rate . 0.1 0.12 0.1 learning rats 0.28 0.05 0.1
Correlation Coefficient
imerse temperature 0,11 017 0.1 inversetemperature 0,28 017 0.01 m"
05

0.0

decay 0.12 017 0.51 0.26 decay 0.05 0.17 0.51 0.21 I 05
-1.0
perseverance 0.11 0.1 0.28 . perseverance 0.1 0.01 0.21 .
c D E
Task 3 Task 4 Task 5
o ©
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leaming rate learning rate 0.27 0 0.05 learning rate 02 0.09 0.14
inverse temperature inverse temperature 0.27 0.12 0.05 inverse temperature 0.2 0.02 -0.13
decay decay 0 0.12 0.57 017 decay 0.09 0.02 0.48 -0.08

perseverance

perseverance 0.05 0.05 017 . perseverance 0.14 -0.13 -0.08 .

Supplementary Figure 19: Correlations between synthetic and estimated parameters for the overall winning model across all
tasks estimated using variational Bayes, which had a single learning rate, an inverse temperature parameter, a decay
parameter, and a perseverance parameter. The diagonal is the correlation between the generated and recovered parameters,
and all off-diagonal squares are the correlations between two different recovered parameters. A) Task 1, B) Task 2, C) Task 3, D)
Task 4. E) Task 5.

We also show for comparison the recovery for the second best models for variational Bayes estimation,
for both estimation with a single prior (which was a model with a single learning rate and two inverse
temperature parameters), and group-level priors (a model with two learning rates and one sensitivity
parameter).
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Supplementary Figure 20: Correlations between synthetic and estimated parameters for the second best model across all tasks
estimated using variational Bayes with a single prior, which had a single learning rate and two inverse temperature parameters
(for reward and punishments). The diagonal is the correlation between the generated and recovered parameters, and all off-

diagonal squares are the correlations between two different recovered parameters. A) Task 1, B) Task 2, C) Task 3, D) Task 4. E)
Task 5.
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Supplementary Figure 21: Correlations between synthetic and estimated parameters for the second best model across all tasks
estimated using variational Bayes with separate group-level priors, which had two learning rates (for rewards and punishments)
and one sensitivity parameter. The diagonal is the correlation between the generated and recovered parameters, and all off-
diagonal squares are the correlations between two different recovered parameters. A) Task 1, B) Task 2, C) Task 3, D) Task 4. E)
Task 5.
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Supplementary Figure 22: Correlations between synthetic and estimated parameters for the overall winning model across all
tasks estimated using maximum a-posteriori, which had one learning rate, one inverse temperature, one decay term, and one
perseverance term. The diagonal is the correlation between the generated and recovered parameters, and all off-diagonal
squares are the correlations between two different recovered parameters. A) Task 1, B) Task 2, C) Task 3, D) Task 4. E) Task 5.

We also include for comparison the model recovery using maximum a-posteriori for a model with two
learning rates and one inverse temperature, which was significantly better.
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Supplementary Figure 23: Correlations between synthetic and estimated parameters for the second best model across all tasks
estimated using variational Bayes with separate group-level priors, which had two learning rates (for rewards and punishments)
and one sensitivity parameter. The diagonal is the correlation between the generated and recovered parameters, and all off-
diagonal squares are the correlations between two different recovered parameters. A) Task 1, B) Task 2, C) Task 3, D) Task 4. E)
Task 5.
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MOQOSE Checklist for Meta-analyses of
Observational Studies

Item No Recommendation REPE C
Page No
Reporting of background should include
1 Problem definition 5
2 Hypothesis statement 5,6,7
3 Description of study outcome(s) 7,8
4 Type of exposure or intervention used 5,6,7
5 Type of study designs used 5,6,7
6 Study population 5,6,7
Reporting of search strategy should include
7 Qualifications of searchers (eg, librarians and investigators) 8
8 Search strategy, including time period included in the synthesis and key words 8, S3
9 Effort to include all available studies, including contact with authors S3
10 Databases and registries searched S3
11 Search software used, name and version, including special features used (eg, s3
explosion)
12 Use of hand searching (eg, reference lists of obtained articles) S3
13 List of citations located and those excluded, including justification OSF
14 Method of addressing articles published in languages other than English S3
15 Method of handling abstracts and unpublished studies S3
16 Description of any contact with authors S3
Reporting of methods should include
Description of relevance or appropriateness of studies assembled for assessing
17 : 7.8
the hypothesis to be tested
18 Rationale for the selection and coding of data (eg, sound clinical principles or 78 83
convenience) T
Documentation of how data were classified and coded (eg, multiple raters,
19 o : o 8,53
blinding and interrater reliability)
20 Assessment of_ confounding (eg, comparability of cases and controls in studies $27-829
where appropriate)
21 Assessment of study quality, including blinding of quality assessors, stratification S4-S5
or regression on possible predictors of study results
22 Assessment of heterogeneity S5
Description of statistical methods (eg, complete description of fixed or random
23 effects models, justification of whether the chosen models account for predictors 8-9 S4-S14

of study results, dose-response models, or cumulative meta-analysis) in sufficient
detail to be replicated
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24

Provision of appropriate tables and graphics

Reporting of results should include

25

Graphic summarizing individual study estimates and overall estimate

Figures 2 and

3

26 Table giving descriptive information for each study included S14-519

27 Results of sensitivity testing (eg, subgroup analysis) S27-S30

28 Indication of statistical uncertainty of findings Fig:lgﬁ;and
Reporting of discussion should include

29 Quantitative assessment of bias (eg, publication bias) S21

30 Justification for exclusion (eg, exclusion of non-English language citations) S1

31 Assessment of quality of included studies S20
Reporting of conclusions should include

32 Consideration of alternative explanations for observed results 14-16

33 G_en_eralization qf the con_clusions (ie,_appropriate for the data presented and 11-14

within the domain of the literature review)
34 Guidelines for future research 14-16
35 Disclosure of funding source 22-23

From: Stroup DF, Berlin JA, Morton SC, et al, for the Meta-analysis Of Observational Studies in

Epidemiology (MOOSE) Group. Meta-analysis of Observational Studies in Epidemiology. A Proposal for
Reporting. JAMA. 2000;283(15):2008-2012. doi: 10.1001/jama.283.15.2008.
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Original models and modifications

General principles

1. Reward and punishment learning rates were used to update learnt values in response to reward
and punishment outcomes, respectively. Note that some original papers estimated learning
rates for rewards and punishment from different blocks or tasks, but our benchmarking tasks
(except the go-nogo task) included the potential for reward or punishment outcomes on every
trial.

2. Reward/punishment inverse temperatures that had been estimated from different blocks or
tasks were averaged. This is because it is not possible to determine whether a reward or
punishment outcome will result on each trial until after the inverse temperature has been
applied.

3. Bias terms that were specific to stimuli from the original task were removed. This is because
these biases are assumed not to generalize to new stimuli in other tasks.

4. Any ‘action bias’ parameters were added to all relevant calculations for benchmarking tasks
where both options involved making an action (e.g. choosing between different stimuli). This, in
our opinion, is more true to the original models than removing these bias terms.

5. We used a softmax rather than a sigmoid equation in several places for ease. These are
equivalent to a certain level of accuracy (>4 decimal places).

Notation

Parameter Meaning

Learning rate

Inverse temperature (> is more deterministic)
Temperature (> is more stochastic)

Lapse (> is more stochastic)

Outcome sensitivity

Learnt value

Prediction error (difference between expected and obtained outcomes)
Number of stimuli

Current trial

Action

Associability weight

Associability value

Decay

<|AR|[S|o |+ S| Q|O |||
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1 AYLWARD ETAL., NAT HUM BEHAV. 3,1116-1123 (2019).

The best-fitting model had six parameters: two learning rate parameters, for reward and punishment
outcomes (@, and a;,ss), two sensitivity parameters (p,,i, and pjoss), @ lapse parameter (£), and a
decay parameter which governed the rate at which unchosen values decayed.

Two models were used for inference in this paper. We chose the simpler of the two models due to
concerns about parameter trade-offs in the model with a decay parameter.

There was some fictive updating, in that the prediction error for the unchosen option was set to -1 *
learnt value for that option.

po—ap. Q@ f

Had) Ya-16xp (Qu@)) n

Where the learnt values are defined as:
Qt(at) = Qt(at),win - Qt(at),loss
Qt+1(at),reward = Qt(at),reward + Xreward * St(at),reward

Qt+1(at),punishment = Qt(at),punishment + apunishment * é‘L‘(at),punishment

Where the prediction error (8) for the chosen stimulus
6t(at),reward = Preward * 7Aewardt - Qt(at),reward
é‘L‘(at),punishment = ppunishment * puniShmentt - Qt(at),punishment
For the unchosen stimulus
8t(at),reward = _Qt(at),reward

St(at),punishment = _Qt(at),punishment

Note that t refers to the particular trial for which updating is occurring, and n refers to the number of
stimuli. Q indicates a learnt value, and 6 denotes prediction errors.

2 BLANCO, OTTO, MADDOX, BEEVERS, LOVE, COGNITION. 129, 563-568
(2013).

Uses two models, both more clearly defined in Knox et al. (2012) (https://doi.org/10.3389/fpsyg.2011.00398).

One is a naive RL model, and the other is an ideal observer model, which is not based on the framework
of reinforcement learning but optimal Bayesian inference so was not used.

The naive RL model is equivalent to a Rescorla-Wagner model with a learning rate set at 1.
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b _ exp(f * Qt(at))
t(ar) 2221 exp (,B * Qt(at))

Qes1a) = Qta) t Ot(ar)
&; = outcome; — Qy(qp)

3 BROWNETAL., ELIFE. 7,E30150 (2018).

The winning model in this paper included associability, such that learning rate was modulated on a trial-
by-trial basis by an associability value (k) for the stimulus that was chosen. An associability weight (1)
was a free parameter estimated per participant, and controlled how much previous prediction errors
updated the associability value. Note that associability weight was bounded at 0 and 1, and associability
values were initialised at 1 and constrained to stay between 0.05 and 1. In their task, blocks where wins
and punishment could occur were separate, so all parameters were estimated separately for reward and
punishment outcomes. The model with an associability term did not win model comparison for rewards,
only for punishment, so this term is not included for reward outcomes.

Qt+1(at),reward = Qt(at),reward + Xreward * 8t(at),reward

Qt+1(at),punishment = Qt(at),punishment + apunishment * Kt(at),punishment * 6t(at),puni5hment

Where
St(at),reward = Preward * rewardt - Qt(at),reward

5t(at),punishment = ppunishment * punlShmentt - Qt(at),punishment

And
Kt+1(at),punishment = (1 - Tl) * Kt(at),punishment +n* |5t(at),punishment|

And the unchosen option was decayed
Qt+1(at),reward = Yreward * Qt(at),reward

Qt+1(at),punishment = ypunishment * Qt(at),punishment

These values were then converted into probabilities of making a choice, with an inverse temperature (f)
parameter included. However, this parameter was estimated separately prior to running the model
including a sensitivity term, as these trade off. The 8 parameter for actual model estimation was set to
the mean for each group, so we have done the same.

p exp(B * Qt(a))
t(at) ZZ=1 exp (B * Qt(at))

Some participants didn’t have parameters for both valences, in which case we used the parameters for
the valence they did have. To transfer these parameters into our tasks, specifically the ones in which
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rewards and punishments could occur together, we used the learning rate that was appropriate given
the outcome they had just received — reward learning rate for +1 outcomes, and punishment otherwise
for the majority of benchmarking tasks, and reward learning rate for 0 outcomes for negative stimuli in
go-nogo tasks.

In tasks that took a go-no-go format, we updated separate associability values for each choice per
stimulus — go or no-go. Otherwise, we maintained separate associability values for each stimulus.

4 CA\/ANAGH, BISI\/IARK, FRANK, ALLEN, COMPUT PSYCHIATR. 3, 1-17
(2019).

In this model, there was a single Q value, and the learning rate depended on whether the feedback was
positive or negative. There were therefore two separate learning rates for trials on which participants
won, and when they did not.

Qt+1(a) = Qe(ay + @ * St(ap
Where
outcome; =1 = & = Qreward
outcome;, = 0 = a = Xpunishment

And
8t(ap = outcome; — Qi)

These learnt values were combined into a softmax.

P exp(Qe(a) * P)
tla) =y exp (Quap * B)

As they had only reward outcomes and no-reward outcomes, their Q values were initialised at 0.5,
halfway between the two. We modified this model to allow for it to be fit to our benchmarking tasks in
several ways: we initialised Q values at 0, as we had punishments (outcomes of -1), and determined that
the reward learning rate would be used for any outcomes that were 1 for all tasks other than go-nogo
tasks, for which the reward learning rate was used for successfully obtaining reward or avoiding
punishment.

5 CHASE ET AL., PSYCHOLOGICAL MEDICINE. 40, 433 (2010).

This model is identical to the one from Cavanagh et al., with the exception that temperature is used
rather than inverse temperature.

Qt(at)

exp( )
P = L
t(at) n Ytla)
Zazl exp ( T ‘ )
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6 DOMBROVSKI ET AL., PSYCHOL. MED. 45, 1413-1424 (2015).

This model used the same model as Dombrovski et al. (2010). In this model, learning was as shown
above, with the addition of a memory term.

Qt+1(ap = memory * Qu(ay) + & * St (ay)

8t(ay) = outcome; — Qe(ay)

Where
outcome; > 0 = @& = Areyard

outcome; < 0 = @ = Apunishment

Furthermore, this model had reciprocal updating for the unchosen stimulus (denoted a’), similarly to
Aylward et al. (2019) but for the entire expected value rather than just the prediction error.

Qt(a’t) = _Qt(at)
This was then converted into probability of making choices using a sigmoid:

1
P =
1@ ~ T ¥ exp((10 — B) * Qt(at))

As above, where outcomes were 1 in non go-nogo tasks, we used reward learning rates, and otherwise
used punishment learning rates.

7/ DOMBROVSKI ET AL., AMERICAN JOURNAL OF PSYCHIATRY. 167, 699—
707 (2010).

This model is described under Dombrovski et al. (2015).

8 DOMBROVSKI, HALLQUIST, BROWN, WILSON, SZANTO, BIOLOGICAL
PSYCHIATRY. 85, 506516 (2019).

Qt+1(a) = Qe(ap T @ * S(ay)
Where

8t(a,) = outcome; — Qe(ay)
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And
outcome; =1 = a& = reward

outcome; = 0 = a = Apynishment

The unchosen stimulus was updated using a decay parameter.

Qeri(ayy = AQu@y

This was converted into action probabilities using a softmax with a temperature parameter.

Qt(an

exp( )
P = 5
t(at) n Vt(a )
Za=1 exp ( T ‘ )

9 DOMBROVSKI, SZANTO, CLARK, REYNOLDS, SIEGLE, JAMA PSYCHIATRY.
70,1020 (2013).

This model is described under Dombrovski et al. (2015).

10 FREY, FRANK, MICCABE, PsycHoL. MED., 1-8 (2019).

Note that there was a social and non-social task reported in this paper — we used only parameters from
the non-social task, as none of our benchmarking tasks included a social element.

Qt+1(a) = Qe(ap T A * 6f(at)
Where, as usual,
8t(ay) = outcome; — Qe(qy)

However, note that the value of the outcome was determined by a parameter known as ‘choice
valuation’, such that rewards received the value (1-choice_valuation), punishments were valued at (-
1*choice_valuation), and neutral outcomes were valued at the midpoint between these (1-
choice_valuation)-((1-choice_valuation)-(-1*choice_valuation))/2.

Subsequently, a softmax was used to transform learnt values into probabilities of choices:

Qt(a) T Ct(ap * @
exp( pe )
Piay =—; DA TICR 4
Yomrexp( ° L )
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This is similar to the softmax as shown above, with an additional term - ¢;(4,) * @. C¢(q,) is an indicator

variable which is 1 if the stimulus chosen on the previous trial was that action. So, to calculate the
probability that stimulus A will be chosen, c;(q,) is 1 if A was chosen on the previous trial, and otherwise

is 0. @ is a free parameter representing how likely participants are to repeat their choices, or how
‘sticky’ their behaviour is. Note that the winning model did not contain any decay terms, though these
are displayed in the illustrative equations in the supplement.

We initialised all Q values at 0.

11 GAGNE, ZIKA, DAYAN, BISHOP, ELIFE. 9, E61387 (2020).

For the winning model, probabilities of outcomes were updated using the following:

Pt(a) = Pr—1(a) + @ * 8t—1(ap)
Where
8t—1(ay) = OULCOME;_1 — Pi_1(ay)
And value was calculated as follows
Viay) = Alpe = (L —p)] + (1 =) * [M1, — M2,]"

Where M1 is the magnitude of one stimulus, and M2 is the magnitude of the other. For our tasks,
magnitude was not manipulated, so we set these to 1. R is a scaling parameter designed to capture the
nonlinearity of perceived differences in magnitude. Subsequently, a choice kernel was updated, which
governs the possibility that participants tend to repeat choices (or not repeat choices) independently of
the outcomes they receive, with 1 acting as an update rate for how many previous choices are included
in the value of the choice kernel:

kt(at) = kt—l(at) +n*(Comqg — keq)
And actions were selected using a softmax

1
Piay = 1+exp(—1*(B*v, + a [k; — (1 = kp]))

In these models, all parameters were broken up into components (for volatile vs. stable blocks, and for
reward vs. punishment tasks, and the interaction).

Parameters were broken up into components, as follows:
a = logiStiC(abaseline +
Xreward—aversive * greward—aversive +
Xyolatile—stable * evolatile—stable +

agaod—bad * egood—bad +
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A (reward—aversive)*(volatile—stable) * 6(reward—aversive)*(volatile—sl.‘able) +
a(reward—aversive)*(good—bad) * 9(reward—aversive)*(good—bad) +

a(good—bad)*(volatile—stable) * 9(good—bad)*(volatile—stable))

Where 6 indicated an indicator variable, which was 1 or -1 (e.g. Oyo1atile—stabie WaSs 1 in the volatile
block, and -1 in the stable block). The logistic transform was used to constrain the learning rate between
0 and 1, and a logarithmic transform was used for other parameters that constrained to be positive.
Here, good-bad indicates learning rate shifts after positive vs. negative feedback. As all our tasks had
volatile outcomes, we used learning rates including the volatile component. For the majority of our
benchmarking tasks, in which there were no separate blocks for reward and punishment and these
outcomes could both occur on any trial, so we set this component to 0, as follows:

Ayin = logiStiC(abaseline + Ayolatile—stable + agood—bad + a(good—bad)*(volatile—stable)

Hioss = logiStiC(abaseline t Ayolatite—stable — agood—bad - a(good—bad)*(volatile—stable)

However, in our go-no-go task, there were stimuli that could either reward or have a neutral outcome,
for which we used learning rates including all components, 0, cyard—aversive S€t to 1, and stimuli which
could either have a neutral outcome or result in a punishment, for which we used learning rates
including all components with 8,.,ard—aversive S€t to -1. Notably, in this paper r and w; had only two
components: baseline and a component for reward-aversive task versions, so we used only the
transformed baselines. The update rate for the choice kernel (1) had only a baseline component.

12 GRADIN ET AL., BRAIN. 134, 1751-1764 (2011).

This paper used a SARSA model, a type of temporal difference model which incorporates the subsequent
state the participant will be in and the value they expect to obtain from that state, in which the
prediction error is defined based not only on the current state and reward obtained, but the next state.

Qt+1@a) = Qe(an T @ * S¢(ay)
8¢ = outcome, +y * Qt(ars1ser) ~ Qelansy)

The y parameter, which governs the discounting of future outcomes was set at 1. Q values were
initialised at 0. Learnt values were then converted to probabilities using a softmax with inverse
temperature.

P exp(Qtqy) * B)
t@) —y"_ exp (Quay * B)

As in the original paper, for the majority of our benchmarking tasks we assumed the next state was the
same as the current one (although note that for go-nogo tasks the next stimulus presented was
unpredictable), so we simply allowed the Q value for the next state to be the one for the current state,
assuming the policy of choosing the action with the highest Q value was followed (max Q¢(q,))-
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13 HUANG, THOMPSON, PAULUS, BIOLOGICAL PSYCHIATRY. 82, 440-446
(2017).

Here, values were updated using a ‘VMax’ rule, such that when the stimulus with the highest value
changes the learning rate is adjusted.

Qe+1(a) = Qt(a + A * Se(ay
Where
8t(ap = outcome; — Qu(ay)
And
argmax(Q,) == argmax(Q,) = a = «ay
argmax(Q,) =/= argmax(Q,) = a = ay + ag
These learnt values were then entered into a softmax with an inverse temperature parameter:

P exp(Qtay * B)
t@) —y"_ exp (Quay) * B)

For trial 1, we set the learning rate as ay.

14 Huys, PIzzAGALLI, BOGDAN, DAYAN, BIOLOGY OF MOOD & ANXIETY
DISORDERS. 3, 12 (2013).

The model used in this paper was a ‘belief’ model, as the task involved participants responding to
identify a stimulus (as either a ‘long’ or a ‘short’ stimulus), where one of the two stimuli was more
rewarded than another. This model included a form of Q learning, where the values of each action for
each stimulus were updated as:

Qt+1(at,st) = Qt(at,st) +ax St(at,st)

6t(at,st) = p * Outcomet - Qt(at,st)

And these Q values were combined into weights

Wei'ghtf(at,st) il If(at.st) +{* Qt(at.st) +(A-9= Qt(at.s't)

Where I(4,s,) Was 1 if the action was the instructed one for the stimulus, and y defined participants’
ability to follow the instructions. We set I;(4,5,) to O, as there were no instructions in our benchmarking

tasks. ¢ governed the weight given to the chosen and unchosen stimulus values, and in this paper this
represented the belief they had that they had made the correct choice. To simulate choices on our

S68



benchmarking tasks, we used the belief parameter and Q values for the two options to calculate the
weight — so, between the two stimuli in the majority of the tasks, and between go and no-go actions in
go-nogo tasks.

These weights were used to determine action probabilities using a sigmoid:
1

P =
t(ar) 1 + exp(—l * (Qt(at) - Qt(a't)))

15 KHDOUR ET AL., FRONT INTEGR NEUROSCI. 10, 20 (2016).

Whilst actor-critic models were fit to the data in this paper, the best fitting model was a simple Q-
learning model.

Qt+1(at) = Qt(at) +ax 5t(at)
Where
8t(a,) = outcome; — Qe(ay)

This was then converted into choices as

1
Pt ) =
“ 71+ exp(—B(Quay — Qi)
Where a’ is the other (unchosen) option. Note that when generating choices for the benchmarking tasks

we used a softmax rather than a sigmoid, but these equations are reducible to each other when there
are only two possible choices.

16 KUMAR ET AL., NEUROPSYCHOPHARMACOLOGY. 43, 1581-1588
(2018).

This paper uses Q-learning with a temperature parameter.

Qt+1(a) = Qu(ap T @ * S(ay)

8t(ay) = outcome; — Qy(ay)

Qt(at)

exp( )
P = L
t(at) n Ytla)
Zazl exp ( T ‘ )
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Notably, they fit separate learning rates and temperatures to the reward and punishment conditions.
Many of the stimuli in our benchmarking tasks could receive rewards, punishments or neither; in these
tasks we used the reward learning rate if participants received a reward, but otherwise the punishment
learning rate; in the go-no-go task, where stimuli were either associated with reward or with
punishment, we used the reward learning rate when they received the best outcome possible: rewards
for rewarding stimuli, and omissions for punishing stimuli; and the punishment learning rate for
omissions for rewarding stimuli and punishment for punishing stimuli. We used the average of the
temperature parameters that they had estimated for the reward and punishment conditinos, as this
parameter occurs in the model prior to a choice being made and an outcome being received.

17 KUNISATO ET AL., JOURNAL OF BEHAVIOR THERAPY AND EXPERIMENTAL
PSYCHIATRY. 43, 1088—1094 (2012).

This model is very similar to some of the above, except that the value of the prediction error (whether it
is over 0 or under 0) determines which learning rate is used.

Qt+1(a) = MemMory * Qu(q,) + & * Se(ay)
Where
6 >0=a=a,m
0 < 0= a=aqp

A softmax was used to convert these learnt values into action probabilities, including a temperature
parameter.

Qt(an

exp( )
P = 5
t(at) n Utla)
Serexp(_©)

18 LAMBA, FRANK, FELDMANHALL, PSycHoL Sci. 31, 592—-603 (2020).

This paper used a dynamic Bayesian reinforcement learning model for two conditions — a social and non-
social condition. We used only parameters from the non-social condition as none of our benchmarking
tasks involved a social element.

In this dynamic model, participants kept track of whether a slot machine was worth playing. This belief
was approximated by a Beta distribution, with:

_ ( alpha
He(ar) alpha +beta

alphaxbeta

2 _
a —
t(ar) ((alpha +beta)?+(alpha+beta+1)
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Each reward incremented alpha by 1, and each punishment incremented beta by 1. In our benchmarking
tasks, for stimuli which could receive outcomes of +1, 0 or -1, we incremented alpha for outcomes of +1
only; for the go-nogo task in which different stimuli could either receive +1 or 0; or 0 or -1, we
incremented alpha for +1 in the first case and 0 (omission of punishment) in the second case, and beta
for 0 in the first case (omission of reward) and -1 in the second case.

These parameters were converted to probabilities using a form of softmax with an inverse temperature:

b exp(B * Uecay)
tao) exp(B * Mea,y) +exp(f * P)

Where 3 is a bias term that governed tendency to invest or play a slot machine. If the subject was
optimal the bias would be 0.5, which is the value we used for generation of choices in a benchmarking
task as bias terms are likely to be specific to a task context. The probability of taking the other action
was calculated as

Pray = 1= Py

Entropy (H;) and change in entropy (AH,) were also calculated, in order to keep track of the probability
of a change-point.

H; = _[Pt(at) X lng(Pt(at)) - Pt(a’t) X logz(Pt(a’t))]
AHy= H— H;

These parameters were used to inform the decay of both alpha and beta, such that higher decay meant
more forgetting of previous outcomes, which would be optimal just after a change-point.

lOgit(ypos) = Yopgs + ylpos ~AH:
lOgit(yneg) = Yoneg + Ylneg "AH:
A1 = At Vpos

ﬁt+1 = B¢ Yneg

Yo parameters correspond to the overall decay of previous outcomes, and y1 captures the extent to
which decay is scaled by changes in entropy (AH).

19 Liu, VALTON, WANG, ZHU, ROISER, SOCIAL COGNITIVE AND AFFECTIVE
NEUROSCIENCE. 12,1520-1533 (2017).

Standard Q-learning models were used in this paper. Note that one temperature was recorded as being
0.000, which we edited to 0.001, to avoid the intractability of dividing by O.

Qt+1(an = Qea T A * 8¢(ay)

8t(ay) = outcome; — Qu(ay)
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Qt(an

exp( )
P = 5
t(at) n Ytla)
Zazl exp ( T ¢ )

20 MILLNER ETAL., JOURNAL OF ABNORMAL PSYCHOLOGY. 128, 106—118
(2019).

This model was a combined reinforcement learning model with a drift diffusion model (DDM). Q
learning was used to update learnt values:

Qt+1(a) = Qe(an T @ * S(ay)
8t(ay) = outcome; — Qu(ay)
These learnt values determined the drift rate y;
U = Po + :Bl[Qt(at) - Qt(a't)]

Note that here the two available actions were go and nogo, and 5o reflected a constant go bias, and 51
represents a go bias shared across responses. The drift diffusion process was then calculated as the
Wiener first-passage time (WFPT), parameterised by the non-decision time T, the boundary separation
parameter w, the starting point z, and the drift rate ;.

¢, t ~WFPT(T,w,z,w)

Note that they parameterised the starting point as

z
w=_
W
Which caused it to vary between 0 and 1.

They estimated the starting point separately for their ‘escape’ and ‘avoid’ conditions — we took the
mean of these.

We were not interested in the reaction time t estimated, so we input the reaction time as 10s, to ensure
that the majority of the cumulative distribution would be considered.

21 MKRTCHIAN, AYLWARD, DAYAN, ROISER, ROBINSON, BIOLOGICAL
PSYCHIATRY. 82,532-539 (2017).

Qt+1(at,st) = Qt(at,st) +ax 6t(at,st)
Visiso = Viesy T @ * Orisp
6t(at,st) = p * Outcomet - Qt(at,st)

Oe(ap) = p * outcome, — Vs,
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Note that values were not updated separately for different actions — therefore, in the majority of our
benchmarking tasks, the value was updated based on the outcome received, and didn’t differ between
stimuli (for all reversal learning tasks and random walk tasks), and differed between stimuli only on go-
no-go tasks.

Subsequently, these learnt values were converted into action weights:
weighti(q,) = Qt(a,s) + ActionBias + PavlovianBias * V()

exp(weightea,)) 4 5
Ya—1exp (weightya)) n

Pt(at) =[1-&)=

Where
stimulus = rewarding = & = Qreward; P = Preward; PavlovianBias = approach
stimulus = punishing = & = Qpunishmenss P = Ppunishmens; PavlovianBias = avoid

Additionally, in the majority of our benchmarking tasks participants had to make a choice between two
stimuli rather than to go or not go —in these cases, action weights were calculated including the
‘ActionBias’ parameter for all choices. For benchmarking tasks where choices could result in reward or
punishment, the bias used depended on the value of Vs, — if positive, the approach bias was used, if
negative, the avoid bias was used. Similarly, if the outcome was greater than 0, we used the reward
learning rate, otherwise, we used the punishment learning rate.

22 MOUTOUSSIS ETAL., PLOS ONE. 13,E0201451 (2018).

The model used in this paper is very similar to Mkrtchian et al.
Qt+1(ans) = Qelars) T A * O(arsp)
Viriso = Viso T @ 8(sp
St(ays) = P * outcome, — Quays)
Oe(a) = p * outcome, — Vs,
Here, however, the bias terms were only used if the state value was greater than 0:
weighty(q,) = Qi) + ActionBias + PavlovianBias * Vt(s:)t
Visp, > 0= PavlovianBias = TRUE; ActionBias = TRUE
Visp,> 0 = PavlovianBias = FALSE; ActionBias = TRUE

Additionally, the action had to be ‘go’ for the ActionBias to be used.
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exp(weightia,)) 4 &

Pigy=(1— n
t(ar) ( &) ZZ=1 exp (weighty,)) N

Again, as above, we assumed that the ActionBias was true for all tasks in which there was no ‘no-go’
option. The sensitivity parameter depended on the value of the outcome — if positive, the reward
sensitivity was used, otherwise the punishment sensitivity was used.

23 MUKHERIEE, FILIPOWICZ, VO, SATTHERWAITE, KABLE, JOURNAL OF
ABNORMAL PsycHoLoGY (2020).

In this paper, a form of Q learning was used for both actions and fractals.
Qt+1(a) = Qt(ad T Ot(an

Qer1(ry = Qu(ro T A *be(ry

The log odds that the participant would choose a fractal were then calculated as:

V= Bf[Qt(fl) - Qt(fz)]+ﬁa[Qt(a=f1) - Qt(a=fz)] tprtp.tmptm,
Which was then converted into probabilities

1
P o=
ta) =™ 1 ¥ exp(=V,)

This model was fit separately to reward and punishment conditions. For benchmarking tasks where
stimuli could have any outcome (reward, punishment, or neutral), we took the mean of the reward and
punishment perseveration terms, and the mean of the reward and punishment frand 8, terms. We
used the positive learning rate if the outcome was positive, and otherwise we used the negative learning
rate. We set all bias terms (indicating preference for a particular stimulus) to 0, as they are unlikely to
generalise to entirely new hypothetical stimuli. We only added the perseveration bias terms if the
choice was one that had been repeated on the previous trial. Notably there was nothing to distinguish
fractal from action learning; nevertheless, both terms were included.

24 MYERS ET AL., PLOS ONE. 8, E72508 (2013).

This model is very similar to that used by Kunisato et al. or Frey et al., with the exception that the value
of neutral outcomes (0, vs. +1 or -1) was estimated by a free parameter, r0.

Qt+1(an = Qra) T A * 8¢(ay)
Where
St > O > a = awin

6t<0$a=aloss
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A softmax was used to convert these learnt values into action probabilities, including a temperature
parameter.

Qt(an

exp( )
P = 5
t(at) n Ytla)
Za=1 exp ( T ‘ )

25 RUPPRECHTER ET AL., BRAIN. 143, 1946—1956 (2020).

Qt+1@a) = Qe(an T @ * S¢(ap)
8t(ap) = outcome; — Qr(a,)
These values were converted to choice probabilities using a sigmoid:
1
P60 = T exp (=B * @utan — Qo)

In this paper there were two separate learning rates for different conditions - where participants were
permitted to make a choice, or where they just had to observe an outcome. We chose to only use the
learning rate that was associated with making an active choice, as none of our tasks involved observing
choices only.

We used a softmax rather than a sigmoid to convert learnt values to probabilities.

26 RUPPRECHTER, STANKEVICIUS, HUYS, STEELE, SERIES, S/ REP. 8, 13798
(2018).

The best fitting model for this paper was a leaky beta model.
Qt+1(a) = A * Qq(q,) + outcome,

Where A is a memory parameter, bounded between 0 and 1, that suggests the extent to which
participants remember previously obtained outcomes.

1
Pt(at) = 1+ exp(—p * (f(Qt(at)) - 9))

Where @ referred to the displayed reward probability, and f(x) was x/4, to make this similar to the
displayed reward probabilities. As none of our benchmarking tasks had one option with a known
probability and one unknown, we used a sigmoid function including the difference between the two
presented options (either two stimuli, or go and no-go).
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27 WHITE ETAL., AJP.174,110-117 (2017).

The model fit to choice data in this paper was a standard Q learning model:
Qt+1@a) = Qe(a T @ * S¢(ap)
8t(ap = Outcome, — Qt(ap

With a sigmoid equation:

o e * B)
tla) 11 exp(Qe(ap * B)

Note that we used a standard softmax to convert probabilities into choices in our paper.
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