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A B S T R A C T

In this paper, a mathematical epidemiological model in the form of reaction diffusion is proposed for the
transmission of the novel coronavirus (COVID-19). The next-generation method is utilized for calculating the
threshold number R0 while the least square curve fitting approach is used for estimating the parameter values.
The mathematical epidemiological model without and with diffusion is simulated through the operator splitting
approach based on finite difference and meshless methods. Further, for the graphical solution of the non-
linear model, we have applied a one-step explicit meshless procedure. We study the numerical simulation of
the proposed model under the effects of diffusion. The stability analysis of the endemic equilibrium point is
investigated. The obtained numerical results are compared mutually since the exact solutions are not available.
. Introduction

The coronavirus family is a well-known dangerous community of
iruses that have caused millions of deaths all over the world. In this
amily, SARS has infected eight thousand plus infections with more
han eight hundred deaths all over the world. Another member is
ERS, which spread out from Saudi Arabia to many different countries

nd affected around 25,000 population in which nearly thousands of
umans lost their life. Now recently in December 2019, one more
ember came called COVID-19 which is first recognized in Wuhan,
hina.1 At the start of the new year 2020, this disease started to

irst spread in China and then all over the world and affected almost
30 million population by today (2nd November). This disease spread
ut very badly because of specific reasons like the exact treatment
long with the vaccine is not present, a high epidemic transmission
ate, the exact nature of the virus is not well-known, etc. So today
round 210 territories and countries have seen infected by this deadly
irus. Currently, lockdown is the common initial action that is taken
y all governments to stop the transmission of COVID-19.2–7 Despite
he unavailability of the vaccine and any permanent treatment, the
echnique worked well by protecting the population from this virus.
ut the lockdown has given a big economic loss to many countries and
hey have faced a measurable financial crisis. It has been observed that
ockdowns in high-population nations may decrease the transmission
ate of the epidemic partially. Also, from the financial loss point of
iew, such a lockdown cannot be taken for a long time. So at this
ough time, it is becoming a tough task to make maintenance between
ockdown and financial crash.8–10

As per initial medical research, the most general indications of
OVID-19 along with the latency period of 11 to 14 days are diarrhea,

E-mail address: rahat.zarin@uetpeshawar.edu.pk.

myalgia, shortness of breath, fever, and cough. The most dangerous of
this virus is for those people who are above 60 years old. The trans-
mission rate of this virus is much high and the value basic reproduction
number is probably near around 2.2 and 3.58 for a number of countries.
That is the reason for its rapid spreading throughout the world and
affecting 213 countries. Hence, on 30 January 2020, the world health
organization (WHO) announced COVID-19 as one of a global epidemics.
One-to-one physical interaction with infected people and respiratory
droplets generated from COVID-19 patients are the main reason for
transmission.11–13

After the big spread of COVID-19 in China, this virus spread out to
Iran and Italy. As we know that Iran is a closed country to Pakistan
and thousands of population enter Iran for commercial and religious
reasons. So after traveling to this nation, when people came back from
Iran then some of them were recognized as COVID-19 positive and
then they infected many persons in Pakistan. The government restricted
travel between these countries but the first positive individual was
recognized officially on 26 February 2020, from Karachi, which came
back from Iran. So the government ruled out a strict lockdown and
suggested the quarantine of infected ones at their home.

Right now, no legitimate and successful treatment is accessible
for individuals infected by COVID-19 with the exception of certain
medications such as Remdesivir which are endorsed by certain nations
like the European Union and Australia.14 Subsequently, there is no
power and approved antibody for this novel contamination albeit not
many nations have guaranteed it. The best avoidance methodologies
utilized in near nations to diminish and postpone the pandemic pick
(straightening everything out) are the successive tests to decide the
contaminated people, detachment and lockdown, social separating,
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utilization of severe SOPs, and so forth until successful medicines
and antibodies become accessible. Preventive measures are just the
best approach to lessen the shot at diseases and slow the spread of
the infection. Analyst all throughout the planet is centering on the
plain procedure to conquer the COVID-19 pandemic. For this reason,
they have taken on various approaches to investigate the perplexing
transmission elements of this contamination. ‘‘Numerical models are
one of the most impressive instruments in such a manner. Numerous
epidemic models were acquainted with investigating the dynamic of
COVID-19 and talk about the conceivable control systems for the illness
end in various districts of the world. For example, a model of COVID-
19 with Lockdown is proposed in Ref. 15, and the effect of undetected
cases by means of a numerical model is investigated. The effect of
some preventive measures on the abridging of COVID-19 in Pakistan
by means of another numerical model is introduced in’’ Refs. 16, 17.
A transmission numerical model considering the ecological spread of
the infection with a contextual analysis of Saudi Arabia is concentrated
in Refs. 18, 19.

Sources reveal that the virus originated in Huanan and infected the
human population through animals.20 However, evidence is provided
by a genomic study where it is considered that from another, yet
unknown location, the virus was introduced into the fish market and
hence a more rapid spreading started from here.21 The transmission
due to person-to-person interaction is confirmed by infection in clusters
of family members and medical workers.22 After January 1, 2020,
tatistics show that more than 70% of the patients had no market
xposure.20 It is thought that respiratory droplets due to coughing and
neezing, from an infected person, are the main transmission sources
n human-to-human interactions. Up to 96 hours and 9 days persis-
ence of SARS-Cov and other coronaviruses respectively have been
ecorded and therefore, fomites may also be among the main sources
f transmission.22

Meshless methods based on Radial Basis Functions (RBFs) appeared
requently in the numerical solution of different physical problems.23–27

n 1990 Kansa established a collocation method based on MQ RBFs to
nterpolate random data27 and to approximate PDEs.28 The approach
aused much fame to the meshless methods due to its meshless na-
ure and handling of complex geometries in higher dimensions. Kansa
ethod is based on global interpolation through RBFs and the exis-

ence of non-singularity of the coefficient matrix obtained in Kansa’s
ethod has been comprehensively studied in Refs. 29–31. Some of the

esearchers used the spectral element method for the PDEs models.32–35

. Formulation of the epidemiological model

In this section, I consider a mathematical epidemiological model for
he transmission of COVID-19 pandemic which was recently proposed
y M. Mandala et al.36

𝑑S
𝑑𝑡

= 𝐴 − 𝛽𝛾1𝛾2SE + 𝑏1Q − 𝑑S

𝑑E
𝑑𝑡

= 𝛽𝛾1𝛾2SE − 𝑏2E − 𝛼E − 𝜎E − 𝑑E

𝑑Q
𝑑𝑡

= 𝑏2E − 𝑏1Q − 𝑐Q − 𝑑Q

𝑑I
𝑑𝑡

= 𝛼E + 𝑐Q − (𝜂 + 𝑑 + 𝛿)I

𝑑R
𝑑𝑡

= 𝜂I + 𝜎E − 𝑑R.

(2.1)

The above model (2.1) expects a homogeneous population, where the
population blends in such a path that there is no distinction between
individual in one spot and individual in somewhere else. In any case,
in genuine situations, the infection may spread quicker in one spot
than in another in light of various conditions like diverse climate
conditions, and so on Consequently, it is fundamental for the factors
 w

2

to rely upon space too. Subsequently, we extend model (2.1) to the
following system:

𝜕S(X, 𝑡)
𝜕𝑡

= 𝐴 − 𝛽𝛾1𝛾2S(X, 𝑡)E(X, 𝑡) + 𝑏1Q(X, 𝑡) − 𝑑S(X, 𝑡) + 𝑑1
𝜕2S(X, 𝑡)
𝜕X2

𝜕E(X, 𝑡)
𝜕𝑡

= 𝛽𝛾1𝛾2S(X, 𝑡)E(X, 𝑡) − (𝑏2 + 𝛼 + 𝜎 + 𝑑)E(X, 𝑡) + 𝑑2
𝜕2E(X, 𝑡)
𝜕X2

𝜕Q(X, 𝑡)
𝜕𝑡

= 𝑏2E(X, 𝑡) − 𝑏1Q(X, 𝑡) − 𝑐Q(X, 𝑡) − 𝑑Q(X, 𝑡) + 𝑑3
𝜕2Q(X, 𝑡)
𝜕X2

𝜕I(X, 𝑡)
𝜕𝑡

= 𝛼E(X, 𝑡) + 𝑐Q(X, 𝑡) − (𝜂 + 𝑑 + 𝛿)I(X, 𝑡) + 𝑑4
𝜕2I(X, 𝑡)
𝜕X2

𝜕R(X, 𝑡)
𝜕𝑡

= 𝜂I(X, 𝑡) + 𝜎E(X, 𝑡) − 𝑑R(X, 𝑡) + 𝑑5
𝜕2R(X, 𝑡)
𝜕X2

,

(2.2)

the initial conditions for the above model as follows:

S(X, 0) = 𝛹1(X), E(X, 0) = 𝛹2(X), I(X, 0) = 𝛹3(X),

Q(X, 0) = 𝛹4(X), R(X, 0) = 𝛹5(X)
(2.3)

and with no flux boundary conditions;

SX(0, 𝑡) = 0, SX(Ł, 𝑡) = 0,EX(0, 𝑡) = 0,EX(Ł, 𝑡) = 0, IX(0, 𝑡) = 0,

IX(Ł, 𝑡) = 0,QX(0, 𝑡) = 0,QX(Ł, 𝑡) = 0,RX(0, 𝑡) = 0,RX(Ł, 𝑡) = 0.
(2.4)

3. Equilibrium points and reproductive number 𝑹𝟎

In the absence of disease the equilibrium point called disease free
equilibrium (DFE) point. The DFE point for the above model is given
as follows:

𝐷𝐹𝐸 = (S0,E0,Q0, I0,R0) =
(

𝐴
𝑑
, 0, 0, 0, 𝐴

𝑑2

)

. (3.1)

he endemic equilibrium (EE).

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

S∗ =
(𝛼 + 𝑏2 + 𝑑 + 𝜎)

𝛽𝛾1𝛾2
,

E∗ =
(𝑏1 + 𝑐 + 𝑑)[𝑑(𝛼 + 𝑏2 + 𝑑 + 𝜎)(𝑅0 − 1)]
𝛽𝛾1𝛾2[𝑏2(𝑐 + 𝑑) + (𝑏1 + 𝑐 + 𝑑)(𝛼 + 𝜎 + 𝑑)]

,

Q∗ =
𝑏2[(𝑑 + 𝑝𝑀)(𝛼 + 𝑏2 + 𝑑 + 𝜎)(𝑅0 − 1)]

𝛽𝛾1𝛾2[𝑏2(𝑐 + 𝑑) + (𝑏1 + 𝑐 + 𝑑𝜒 )(𝛼 + 𝜎 + 𝑑)]
,

I∗

=

{

𝛼
(

𝑏1 + 𝑐 + 𝑑
)

+ 𝑏2𝑐
} [

𝑑(𝛼 + 𝑏2 + 𝑑 + 𝜎)(𝑅0 − 1)
}

𝛽
(

1 − 𝜌1
) (

1 − 𝜌2
) (

𝑏2(𝑐 + 𝑑) + (𝑑 + 𝜎 + 𝛼)
(

𝑏1 + 𝑐 + 𝑑
)}

(𝜂 + 𝑑 + 𝛿)
,

R∗ =
𝜂I∗ + 𝜎E∗

𝑑
.

(3.2)

‘An illness’ spread and control are linked to the reproduction number
0. In the event of 𝑅0 < 1, the disease eliminates from the popula-

tion, resulting in a regionally and globally stable state of disease-free
equilibrium. In addition, it prevents the spread of an epidemic through
prevention. Additionally, if 𝑅0 > 1, we have both locally and globally
endemic equilibrium, but subject to specific conditions. As a result,
diseases persist in populations permanently and become epidemics’’.37

The reproductive number 𝑅0 for the above model is given as:

𝑅0 =
𝐴𝛽𝛾1𝛾2

𝑑(𝛼 + 𝑑 + 𝜎 + 𝑏2)
, (3.3)

hen, 𝑑 = 0, 𝑑 = 0, 𝑑 = 0, 𝑑 = 0, 𝑑 = 0.
1 2 3 4 5
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Fig. 1. Confirmed COVID-19 cumulative cases time series in Pakistan38.
Table 1
Parameters description and estimated values.

Symbols Description Values References

𝐴 Influx rate 1.4057 day−1 Estimated
𝛽 Disease transmission rate 0.0477 day−1 Estimated
𝛿 COVID-19 induced death rate 0.0005 day−1 Estimated
𝑏1 Transmission rate from Q to S 0.0057 day−1 Estimated
𝑏2 Transmission rate from E to Q 0.0805 day−1 Estimated
𝛾1 Rate of contact from E to S 0.0876 day−1 Estimated
𝛾2 Rate of contact from S to E 0.0205 day−1 Estimated
𝛼 Transmission rate from E to I 0.3506 day−1 Estimated
𝜂 Recovery rate infected individuals I 0.1805 day−1 Estimated
𝑑 Natural death rate 0.0009 day−1 Estimated
3

4. Stability of the SEQIR model at equilibrium point

In order to obtain a small perturbations S̄(X, 𝑡), Ē(X, 𝑡), Q̄(X, 𝑡), 𝐼𝑎
(X, 𝑡), R̄(X, 𝑡), we linearized system (2.2) about 𝐸∗, as like in Ref. 39.

𝜕S̄
𝜕𝑡

= V11S̄ + V12Ē + V13Q̄ + V14 Ī + V15R̄ + 𝑑1
𝜕2S̄
𝜕X2

𝜕Ē
𝜕𝑡

= V21S̄ + V22Ē + V23Q̄ + V24 Ī + V25R̄ + 𝑑2
𝜕2Ē
𝜕X2

𝜕Q̄
𝜕𝑡

= V31S̄ + V32Ē + V33Q̄ + V34 Ī + V35R̄ + 𝑑3
𝜕2Q̄
𝜕X2

𝜕Ī
𝜕𝑡

= V41S̄ + V42Ē + V43Q̄ + V44 Ī + V45R̄ + 𝑑4
𝜕2 Ī
𝜕X2

𝜕R̄ = V S̄ + V Ē + V Q̄ + V Ī + V R̄ + 𝑑 𝜕2R̄ .

(4.1)
𝜕𝑡 51 52 53 54 55 5 𝜕X2
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Fig. 2. Profile of the initial condition-1 of the Table 2.

Fig. 3. Profile of the initial condition of the Table 2.

4
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W

Fig. 4. Outcomes of the FDOSM for the IC-2 of Table 2, at X = 0.0.
et the solution of (4.1) be written in Fourier series:

S̄(X, 𝑡) =
∑

𝑘
S̄𝑘𝑒𝜆𝑡 cos(𝑘X)

Ē(X, 𝑡) =
∑

𝑘
Ē𝑘𝑒𝜆𝑡 cos(𝑘X)

̄ (X, 𝑡) =
∑

𝑘
Q̄𝑘𝑒

𝜆𝑡 cos(𝑘X)

Ī(X, 𝑡) =
∑

𝑘
Ī𝑘𝑒𝜆𝑡 cos(𝑘X)

R̄(X, 𝑡) =
∑

𝑘
R̄𝑘𝑒𝜆𝑡 cos(𝑘X).

(4.2)

here 𝑘 = 𝑛𝜋
2 , (𝑛 = 1, 2, 3,…) and using in Eqs. (4.1) we get

∑

𝑘

(

V11 − 𝑑1𝑘2 − 𝜆
)

S̄𝑘 +
∑

𝑘
V12Ē𝑘 +

∑

𝑘
V13Q̄𝑘

+
∑

𝑘
V14 Ī𝑘 +

∑

𝑘
V15R̄𝑘 = 0

∑

𝑘
V21S̄𝑘 +

∑

𝑘

(

V22 − 𝑑2𝑘2 − 𝜆
)

Ē𝑘 +
∑

𝑘
V23Q̄𝑘

+
∑

𝑘
V24 Ī𝑘 +

∑

𝑘
V25R̄𝑘 = 0

∑

𝑘
V31S̄𝑘 +

∑

𝑘
V32Ē𝑘 +

∑

𝑘

(

V33 − 𝑑3𝑘2 − 𝜆
)

Q̄𝑘

+
∑

𝑘
V34 Ī𝑘 +

∑

𝑘
V35R̄𝑘 = 0

∑

𝑘
V41S̄𝑘 +

∑

𝑘
V42Ē𝑘 +

∑

𝑘
V43Q̄𝑘

+
∑

𝑘

(

V44 − 𝑑4𝑘2 − 𝜆
)

Ī𝑘 +
∑

𝑘
V45R̄𝑘 = 0

∑

𝑘
V51S̄𝑘 +

∑

𝑘
V52Ē𝑘 +

∑

𝑘
V53Q̄𝑘 +

∑

𝑘
V54 Ī𝑘

+
∑

𝑘

(

V55 − 𝑑5𝑘2 − 𝜆
)

R̄𝑘 = 0.

(4.3)

The Variational matrix 𝑉 1 for the system (4.3)

𝑉 1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

V11 − 𝑑1𝑘2 V12 V13 V14 V15
V21 V22 − 𝑑2𝑘2 V23 V24 V25
V31 V32 V33 − 𝑑3𝑘2 V34 V35
V41 V42 V43 V44 − 𝑑4𝑘2 V45
V51 V52 V53 V54 V55 − 𝑑5𝑘2

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

(4.4)
5

where

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

V11 = −𝛽𝛾1𝛾2E∗ − 𝑑 V12 = −𝛽𝛾1𝛾2§∗ V13 = 𝑏1,

V14 = 0, V15 = 0,

V21 = 𝛽𝛾1𝛾2E∗, V22 = −𝛽𝛾1𝛾2§∗ −
(

𝑏2 + 𝛼 + 𝜎 + 𝑑
)

,

V23 = 0, V24 = 0,

V31 = 0, V32 = 𝑏2, V33 = −
(

𝑏1 + 𝑐 + 𝑑
)

, V34 = 0,

V35 = 0, V25 = 0,

V41 = 0 ,V42 = 𝛼, V43 = 𝑐, V44 = −(𝑛 + 𝑑 + 𝛿), V45 = 0,

V51 = 0,V52 = 0,V53 = 𝜎,V53 = 𝜂,V55 = −𝑑.

(4.5)

At the endemic equilibrium point 𝐸∗ the is characteristic equation of
the model (2.2) takes the following form:

[𝜆 + (𝑑5𝑘2 + 𝑑)][𝜆 + (𝑑4𝑘2 + 𝜂 + 𝑑 + 𝛿)][𝜆3 + 𝐶1𝜆
2 + 𝐶2𝜆 + 𝐶3] = 0, (4.6)

where

𝐶1 =V11 − 𝑑1𝑘2 + V22 − 𝑑2𝑘2 + V33 − 𝑑3𝑘2,

𝐶2 =V11V22 − V11𝑑2𝑘
2 − V22𝑑1𝑘

2 + 𝑑1𝑑2𝑘2𝑘2 + V11V33

− V33𝑑1𝑘
2 − 𝑑3𝑘2V11 + 𝑑1𝑑3𝑘2𝑘2

+ V22V33 − V22𝑑3𝑘
2 − V33𝑑2𝑘

2 + 𝑑2𝑑3𝑘2𝑘2 − V12V21,

𝐶3 = − V11V22V33 + V11V33𝑑2𝑘
2 + V22V33𝑑1𝑘

2

− V33𝑑1𝑑2𝑘
2𝑘2 + V11V22𝑑3𝑘

2 − V11𝑑2𝑘
2𝑑3𝑘

2

− V22𝑑1𝑘
2 + 𝑑1𝑑2𝑑3𝑘2𝑘2𝑘2.

(4.7)

The Routh–Hurwitz criterion36 for stability gives 𝐶𝑖 > 0, 𝑖 = 1, 2, 3 and
𝐶1𝐶2 − 𝐶3 > 0.

5. Discretization space and time

In the present section, we utilize MEM, FDOSM and MOSM for the
numerical solutions of the system (2.2). In all cases, time step 𝛥𝑡 = 0.024

days and spatial step 𝛥X = 0.1 are used.
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Fig. 5. Outcomes of the MOSM (L) and the MEM (R) for the IC-1 of Table 2, at X = 0.0.
w

Table 2
Initial condition.

Symbols Initial condition-1 Initial condition-1 Domain

S 0.799 0.71 exp
(

−(X∕1.4)2
)

X ∈ [−2.5, 2.5]
E 0.2 0.41 exp

(

−(X∕1.4)2
)

X ∈ [−2.5, 2.5]
Q 0.01 0.3 X ∈ [−2.5, 2.5]
I 0.2 0.25 exp

(

−X2) X ∈ [−2.5, 2.5]
R 0.0 0.0 X ∈ [−2.5, 2.5]

5.1. Explicit discretization of time based on forward difference operator

Forward difference approximation of the first-order is applied on
the system (2.2) gives us:

S𝑛+1 − S𝑛
𝑑𝑡

= 𝐴 − 𝛽𝛾1𝛾2S𝑛E𝑛 + 𝑏1Q𝑛 − 𝑑𝑆𝑛 + 𝑑1
𝜕2S𝑛

𝜕X2

E𝑛+1 − E𝑛
𝑑𝑡

= 𝛽𝛾1𝛾2S𝑛E𝑛 − 𝑏2E𝑛 − 𝛼E𝑛 − 𝜎E𝑛 − 𝑑E𝑛 + 𝑑2
𝜕2E𝑛

𝜕X2

Q𝑛+1 −Q𝑛

𝑑𝑡
= 𝑏2E𝑛 − 𝑏1Q𝑛 − 𝑐𝑄𝑛 − 𝑑Q𝑛 + 𝑑3

𝜕2Q𝑛

𝜕X2

I𝑛+1 − I𝑛
𝑑𝑡

= 𝛼E𝑛 + 𝑐Q𝑛 − (𝜂 + 𝑑 + 𝛿)I𝑛 + 𝑑4
𝜕2I𝑛

𝜕X2

R𝑛+1 − R𝑛
𝑑𝑡

= 𝜂I𝑛 + 𝜎E𝑛 − 𝑑R𝑛 + 𝑑5
𝜕2R𝑛

𝜕X2
.

(5.1)

5.2. Discretization of time based on operator splitting

The discretization is carried out in two phase. In the first phase the
first-order time difference is discretized by considering the half time
step from 𝑡𝑛 to 𝑡𝑛 + 𝑑𝑡∗ as:

S𝑛+
1
2 − S𝑛
𝑑𝑡∗

= 𝐴 − 𝛽𝛾1𝛾2S𝑛E𝑛 + 𝑏1Q𝑛 − 𝑑S𝑛

E𝑛+
1
2 − S𝑛
𝑑𝑡∗

= 𝛽𝛾1𝛾2S𝑛E𝑛 − 𝑏2E𝑛 − 𝛼E𝑛 − 𝜎E𝑛 − 𝑑E𝑛

Q𝑛+ 1
2 −Q𝑛

𝑑𝑡∗
= 𝑏2E𝑛 − 𝑏1Q𝑛 − 𝑐Q𝑛 − 𝑑Q𝑛

I𝑛+
1
2 − I𝑛
𝑑𝑡∗

= 𝛼E𝑛 + 𝑐Q𝑛 − (𝜂 + 𝑑 + 𝛿)I𝑛

R𝑛+
1
2 − R𝑛 = 𝜂I𝑛 + 𝜎E𝑛 − 𝑑R𝑛.

(5.2)
𝑑𝑡∗

6

From 𝑡𝑛 + 𝑑𝑡∗ to 𝑡𝑛+1 in the 2nd step

S𝑛+1 − S𝑛+
1
2

𝑑𝑡∗
= 𝑑1

𝜕2S𝑛+
1
2

𝜕X2
,

E𝑛+1 − E𝑛+
1
2

𝑑𝑡∗
= 𝑑2

𝜕2E𝑛+
1
2

𝜕X2
,

Q𝑛+1 −Q𝑛+ 1
2

𝑑𝑡∗
= 𝑑3

𝜕2Q𝑛+ 1
2

𝜕X2
,

I𝑛+1 − I𝑛+
1
2

𝑑𝑡∗
= 𝑑4

𝜕2I𝑛+
1
2

𝜕X2
,

R𝑛+1 − R𝑛+
1
2

𝑑𝑡∗
= 𝑑5

𝜕2R𝑛+
1
2

𝜕X2
,

(5.3)

here 𝑑𝑡∗ = 𝑑𝑡
2 .

5.3. Discretization of space based on MQ RBF

In second-order finite difference scheme Eq. (5.3) is:

𝜕2𝜂∗𝑛+
1
2

𝜕X2
=
𝜂
∗𝑛+ 1

2
𝑖−1 + 2𝜂

∗𝑛+ 1
2

𝑖 + 𝜂
∗𝑛+ 1

2
𝑖+1

𝛥X2
, (5.4)

where the symbol 𝜂∗ = S,E,Q, I,R. Considering 𝑁 centers, 𝜁1, 𝜁2,… ,
𝜁𝑁 ,∈ 𝑅𝑑 , we have

𝑃 (𝜻) =
𝑁
∑

𝑗=1
𝛼𝑗𝜓

(

‖

‖

‖

𝜻 − 𝜁𝑗
‖

‖

‖2

)

=
𝑁
∑

𝑗=1
𝛼𝑗𝜓(𝑟), 𝜻 ∈ 𝑅𝑑 . (5.5)

Where 𝜓(𝑟) is radial basis function (RBF) and 𝑟 =
√

(

𝜁𝑖 − 𝜁𝑘
)2, 𝑖, 𝑘 =

1, 2,… , 𝑁 . Here we obtained 𝛼𝑖, 𝑗 = 1,… , 𝑁 from

𝑃
(

𝜁𝑖
)

= 𝑖, 𝑖 = 1, 2,… ,𝑀 (5.6)

at a set of nodal points 𝜁𝑖, 𝑖 = 1, 2,… ,𝑀 . As centers and collocation
points are same. Hence

𝐁𝛼 = 𝐟 . (5.7)

Where 𝐁 is an 𝑁 ×𝑁 interpolation matrix and the coefficients 𝛼𝑗 , 𝑗 =
1,… , 𝑁 is 𝑁 × 1, having the following entries;

𝐁 = (𝜓) = 𝜓 ‖𝜁 − 𝜁 ‖ =
√

(

𝜁 − 𝜁
)2 + 𝑐2, 𝑖, 𝑗 = 1, 2,… , 𝑁 (5.8)
𝑖𝑗 ‖

‖

𝑖 𝑗‖
‖2 𝑖 𝑗
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w

𝐁

Fig. 6. Outcomes of the FDOSM for the IC-1 of Table 2, at X = 0.0.
Fig. 7. Outcomes of the MOSM (L) and the MEM (R) for the IC-1 of Table 2, at X = 1.0.
here

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝜓
(

‖

‖

𝜁1 − 𝜁1‖‖2
)

𝜓
(

‖

‖

𝜁1 − 𝜁2‖‖2
)

… 𝜓
(

‖

‖

𝜁1 − 𝜁𝑁‖

‖2
)

𝜓
(

‖

‖

𝜁2 − 𝜁1‖‖2
)

𝜓
(

‖

‖

𝜁2 − 𝜁2‖‖2
)

… 𝜓
(

‖

‖

𝜁2 − 𝜁𝑁‖

‖2
)

⋮ ⋮ ⋮ ⋮

𝜓
(

‖

‖

𝜁𝑁 − 𝜁1‖‖2
)

𝜓
(

‖

‖

𝜁𝑁 − 𝜁2‖‖2
)

… 𝜓
(

‖

‖

𝜁𝑁 − 𝜁𝑁‖

‖2
)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(5.9)

and

𝐟 =
[

1,2,… ,𝑁
]𝑡 . (5.10)

The MQ RBF method is currently applied to track down the graphical
outcomes of the model (2.2) which is known as the meshless strategy.
The RBFs estimate for the derivatives of 𝑓 (𝜻) can be addressed by

𝑃 (𝜻) =
𝑁
∑

𝜓(𝐫)𝛼𝑘 = 𝐁d𝛼 (5.11)

𝑘=1

7

where

𝐁𝐝 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝜓
(

‖

‖

𝜁1 − 𝜁1‖‖2
)

𝜓
(

‖

‖

𝜁1 − 𝜁2‖‖2
)

… 𝜓
(

‖

‖

𝜁1 − 𝜁𝑁‖

‖2
)

𝜓
(

‖

‖

𝜁2 − 𝜁1‖‖2
)

𝜓
(

‖

‖

𝜁2 − 𝜁2‖‖2
)

… 𝜓
(

‖

‖

𝜁2 − 𝜁𝑁‖

‖2
)

⋮ ⋮ ⋮ ⋮

𝜓
(

‖

‖

𝜁𝑁 − 𝜁1‖‖2
)

𝜓
(

‖

‖

𝜁𝑁 − 𝜁2‖‖2
)

… 𝜓
(

‖

‖

𝜁𝑁 − 𝜁𝑁‖

‖2
)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

(5.12)

Here  is like this;

(∗) = 𝜕2∗
𝜕𝜁2

if ∗∈ 𝛺
(∗) = 𝜕∗

𝜕𝜁 if ∗∈ 𝜕𝛺,
(5.13)

hence the system (2.2) can be written as;
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Q

Fig. 8. Profiles for the first set of initial conditions of Table 2 by FDOSM method.
Step 1
From 0 to 𝑑𝑡∗

S𝑛+
1
2 = S𝑛 + 𝑑𝑡∗[𝐴 − 𝛽𝛾1𝛾2S𝑛E𝑛 + 𝑏1Q𝑛 − 𝑑S𝑛]

E𝑛+
1
2 = E𝑛 + 𝑑𝑡∗[𝛽𝛾1𝛾2S𝑛E𝑛 − 𝑏2E𝑛 − 𝛼E𝑛 − 𝜎E𝑛 − 𝑑E𝑛]

𝑛+ 1
2 = Q𝑛 + 𝑑𝑡∗[𝑏2E𝑛 − 𝑏1Q𝑛 − 𝑐Q𝑛 − 𝑑Q𝑛]

I𝑛+
1
2 = I𝑛 + 𝑑𝑡∗[𝛼E𝑛 + 𝑐Q𝑛 − (𝜂 + 𝑑 + 𝛿)I𝑛]

R𝑛+
1
2 = R𝑛 + 𝑑𝑡∗[𝜂I𝑛 + 𝜎E𝑛 − 𝑑R𝑛].

(5.14)

Step 2
8

From 𝑑𝑡∗ to 𝑑𝑡

𝐁𝐝𝛼
𝑛+ 1

2 = 𝐅. (5.15)

𝐅(𝜻) =
[

𝑓
(

𝜁1
)

, 𝑓
(

𝜁2
)

,… , 𝑓
(

𝜁𝑁
)]𝑡 . (5.16)

𝛼𝑛+
1
2 =

[

𝛼
𝑛+ 1

2
1 , 𝛼

𝑛+ 1
2

2 ,… , 𝛼
𝑛+ 1

2
𝑁

]𝑡

. (5.17)

Here

𝑖 = 𝜂∗𝑛+
1
2 𝑑𝑡 + 𝑑∗

𝜕2𝜂∗𝑛+
1
2

𝑗 = 1,… , 5, 𝑖 = 1, 2,… , 𝑁 (5.18)
𝑗 𝜕𝜁2
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𝜂

E
t

Fig. 9. Outcomes of the FDOSM for the IC-2 of Table 2, at X = 0.0.
Fig. 10. Outcomes of the MOSM (L) and the MEM (R) for the IC-2 of Table 2, at X = 0.0.
where 𝜂∗ = S,E,Q, I,R

∗𝑛+ 1
2 =

𝑁
∑

𝑗=1
𝛼
𝑛+ 1

2
𝑗 𝜓

(

‖

‖

‖

𝜻 − 𝜁 𝑐𝑗
‖

‖

‖2

)

, 𝜻 ∈ 𝑅. (5.19)

𝜕2𝜂∗𝑛+
1
2

𝜕𝜁2
=

𝑁
∑

𝑗=1
𝛼
𝑛+ 1

2
𝑗

𝜕2𝜓
(

‖

‖

‖

𝜻 − 𝜁 𝑐𝑗
‖

‖

‖2

)

𝜕𝜁2
, (5.20)

where

𝐁𝐝 =
(

𝑏𝑠𝑘
)

= 𝜓
(

‖

‖

𝜻𝑠 − 𝜻𝑘‖‖
)

, 𝑠, 𝑘 = 1, 2,… , 𝑁 (5.21)

is the 𝑠𝑘th matrix element of the 𝑁 × 𝑁 matrix 𝐁𝐝. The coefficients

𝛼
𝑛+ 1

2
𝑘 , 𝑘 = 1, 2,… , 𝑁 can be found using the Eq. (5.15). The Gauss
limination or LU-factorization technique can be utilize for the solution
he system (5.15).
9

6. Parameter estimation

Here we utilized the least square curve fitting for the recorded
COVID-19 cases in Pakistan from 04 March to May 10, 2020. The
estimated values of the parameters are shown in Table 1.

7. Initial conditions

The following sets of initial conditions are utilized in the numer-
ical outcomes to check the effectiveness of the proposed numerical
techniques (see Figs. 1–3).

8. Numerical simulations

We consider the initial condition in Table 2. For the numerical
solution of (2.2), the parameters values given in Table 1 are considered.
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Fig. 11. Outcomes of the FDOSM for the IC-2 of Table 2, at X = 0.0.
Fig. 12. Outcomes of the MOSM (L) and the MEM (R) for the IC-2 of Table 2, at X = 1.0.
Analysis are conducted at certain points within the domain, i.e., X = 0.0
and X = 1.0 for 600 days. By using meshless methods, this study
ad the added advantage that the results were extended to nonlinear
DEs based on RBF algorithms. Compared with other approaches, this
ne can work on data scattered over a set of nodes without requiring
nderlying meshes. The meshless methods also have the advantage
f being able to be extended to high-dimensional reaction diffusion
odels. In this experiment, ultimately, we wish to determine whether
eshless epidemiological models are capable and competitive with

tate-of-the-art methods for large-scale epidemiological modeling. Our
imulated results are based on the shape parameter 𝐶 = 100

𝑁 .

.1. Initial condition-1 of Table 2 at X = 0.0

Fig. 4 shows the results from the simulation of the FDOSM with and
ithout diffusion with the initial condition 1 from Table 2. Neither the
10
model with nor without diffusion produces a significant difference in
output. MEM and MOSM computations along with the same initial con-
ditions are depicted in Fig. 5. Accordingly, the FDOSM and MOSM yield
numerical results which are similar across populations. Compared to
its counterpart FDOSM, the simulated results obtained through FDOSM
and MOSM of the class 𝑅 are a little smaller.

8.2. Initial condition-1 of Table 2 at X = 1.0

See Figs. 6–8.

8.3. Initial condition-2 of Table 2 at X = 0.0

Fig. 9 shows the results from the simulation of the FDOSM with
and without diffusion with the initial condition 1 from Table 2. MEM
and MOSM computations along with the same initial conditions are
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Fig. 13. Profiles for the second set of initial conditions of Table 2 by FDOSM method.
depicted in Fig. 10. It is clear from the figures that the graph of class 𝑆
ound about at 𝑡 = 70 days is higher in the system having diffusion. This
s due to the mobility of population reduced the chances of susceptible
lass to be exposed and which leads to the downfall in the graphs of
he classes I and R in the event of diffusion.

.4. Initial condition of Table 2 at X = 1.0

With the IC-2 of Table 2 the results produced by FDOSM without
nd with diffusion are indicated in Fig. 11. While the graphical Out-
omes along with the same initial condition produced by MEM and
OSM are shown in Fig. 12. In this case, the population at X = 1.0

is smaller is compared to the previous case at X = 0.0.
11
9. Conclusions

This paper presents a new mathematical model for capturing the
spread of diseases in moving individuals using partial differential equa-
tions. To simulate the epidemiological compartmental model with high
non-linearity 𝑆𝐸𝑄𝐼𝑅, three methods for the numerical solution have
been proposed and compared. Furthermore, the diffusion process does
not have much impact on the final simulation results of the three meth-
ods subject to a uniformly distributed and constant initial population.
Diffusion has a more visible effect when the population is normally
distributed. This happens because most junk within the population is
gathered towards the mean position, and so diffusion facilitates the
mixing of groups. In the future, the proposed model can be extended
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to a fractional order system by using fractional derivatives or inte-
gration like Caputo, Hilfer, Atangana, etc. Further control parameters
can be added to the proposed model by using optimal control theory
to minimize the infection among the infected individuals. In this re-
gard, suitable optimal control variables along with Hamiltonian and
Lagrangian need to be defined (see Fig. 13).
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