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ABSTRACT The evaluation of prediction machines is an important step for a successful implementation of
genomic-enabled selection in plant breeding. Computation time and predictive ability constitute key
metrics to determine the methodology utilized for the consolidation of genomic prediction pipeline. This
study introduces two methods designed to couple high prediction accuracy with efficient computational
performance: 1) a non-MCMC method to estimate marker effects with a Laplace prior; and 2) an iterative
framework that allows solving whole-genome regression within mixed models with replicated observations
in a single-stage. The investigation provides insights on predictive ability and marker effect estimates.
Various genomic prediction techniques are compared based on cross-validation, assessing predictions
across and within family. Properties of quantitative trait loci detection and single-stage method were
evaluated on simulated plot-level data from unbalanced data structures. Estimation of marker effects by the
new model is compared to a genome-wide association analysis and whole-genome regression methods.
The single-stage approach is compared to a GBLUP fitted via restricted maximum likelihood, and a two-
stages approaches where genetic values fit a whole-genome regression. The proposed framework provided
high computational efficiency, robust prediction across datasets, and accurate estimation of marker effects.
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Genome-wide markers are utilized in plant and animal breeding to
capturequantitative trait loci (QTL) and relationship among individuals
for prediction and selection (Meuwissen et al. 2001, Habier et al. 2007,
VanRaden 2008). Most individuals in the plant breeding pipeline are
genotyped, whereas in animal breeding genomic information enhances
the pedigree-based relationship (Henryon et al. 2014). With the ever
increasing volume of genotypic and phenotypic data, various statistical
methods have been developed to handle large datasets, enabling better
use of genomic information for more accurate selection and better
allocation of resources (Heslot et al. 2012).

Evaluating the predictive performance of these various methodol-
ogies has become an important step for a successful implementation of
genomic-enabled selection (de los Campos et al. 2013, Heslot et al.

2015), since the prediction method utilized to generate breeding
values may have major impact on the short-term genetic gain, as
well as long-term changes on the germplasm (Daetwyler et al. 2015,
Hickey et al. 2017).

Genomic predictions models are used to estimate breeding values of
observed individuals and to predict breeding values of unobserved
individuals in early-generations. Accuracy is the most important crite-
rion to define which technique will be used to generate the breeding
values. Besides accuracy, the computational efficiency has also become a
key component of prediction pipelines due to the growing number of
genotyped individuals, observations per individuals, traits, and genotyp-
ing density (Georges et al. 2018). Hence themethod of choicemust have
two desirable features: computational feasibility and accurate prediction
across various scenarios (VanRaden 2008, Misztal and Legarra 2017).

In plant breeding, the calibration of such models are typically
done in two steps: 1) Estimate the genetic values from phenotypes of
replicated trials; 2)Calibratemarker effects upon the genetic values to
estimate the breeding values and enable prediction. This approach is
referred to as a ”two-stage” approach. However, single-stage analysis
can benefit genomic evaluation by jointly modeling genotypes and
replicated phenotypes (Liu et al. 2014).

Few studies have attempted to estimate marker effects directly from
replicated trials. Taskinen et al. (2017) proposed using pedigree infor-
mation of ungenotyped individuals for imputation and subsequent
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estimation of marker effects. Da et al. (2014) provided two frameworks
to fit genomic models to estimate variance components and marker
effects, one approach suitable for large number of observations and
another for large number of markers, but not for both. However, such
methods often translate into poor computational performance or con-
vergence issues (Misztal 2016).

Fernando et al. (2014, 2016) provided a framework where marker
effects can be estimated fromwhole-genome regression (WGR)methods
via Markov chain Monte Carlo (MCMC), enabling a broader range of
prior assumptions for the distribution of marker effects that can provide
predictive advantages in single-stage approaches (Zhou et al. 2018).

Flexible models that enable the estimation of marker effects among
other parameters are commonly based on MCMC method (Fernando
et al. 2014), but these techniques can be computationally prohibitive at
times (Wang et al. 2015) and must be replaced by Gauss–Seidel itera-
tions (Garrick et al. 2014).

This study proposes an efficient non-MCMC solver for WGR and
mixedmodelsbasedonconditioningand iterativeupdates.The idea is to
develop a single-stage solver by jointly iterating the steps of the multi-
stage analysis. Predictive ability and computing time of the proposed
framework are evaluated through simulations and cross-validation on
real data, comparing it to other methods.

Statistical models
Iterative conditional modeling enables solving complex models without the
computationally demanding operations (Graser et al. 1987, Thompson and
Shaw 1992,Misztal and Legarra 2017). In these methods, conditional expec-
tations are used to efficiently estimate variance components, fixed effects,
breeding values, andmarker effects (Da et al. 2014, Liu et al. 2014, Fernando
et al. 2014, Taskinen et al. 2017). Two statistical approaches are introduced
in this section. First, an iterative algorithm for WGR that speeds up the
marker calibration. Second, a framework to enables solving WGR into a
model with replicated observations using a specific type of conditioning.

Whole-genome model
This section describes the implementation of the fast Laplace model
(FLM), an iterative method to fit a WGR using a Laplace prior. Laplace
priors are popular in genetic analysis for QTL detection and genomic
prediction (Xu 2007, Xu 2010, Cai et al. 2011, Legarra et al. 2011).

The implementation below is based on iterative conditional expec-
tation (ICE) estimates of regression coefficients alongside their associ-
ated parameters, updating one parameter at a time (Meuwissen et al.
2009). This type of algorithm is commonly referred to as coordinate
descent (Friedman et al. 2010).

Consider the following univariate linearmodel fitting phenotypes as
a function of an intercept and genotypic information:

y ¼ 1mþMbþ e (1)

where y corresponds to a vector of phenotypes,m is the intercept,M is
a matrix of parameters where each mij cell corresponds to jth locus of
the ith individual coding fAA;Aa; aag as f21; 0; 1g, b refers to the
vector of marker effects, e represent the vector of residuals.

The first operation in each iteration is the intercept update as:

m ¼ n21
Xn
i¼1

�
yi 2Mib

�
(2)

Marker effects and regularization parameters are updated one at a time
until convergence. Conditioning the response to all but the jth marker
(~y ¼ y2 1m2M2jb2j) provides a simple probabilistic structure:

~yjm;b � N
�
mjbj;s

2
e

�
(3)

bj

���t2j � N
�
0; t2j s

2
e

�
(4)

wheremj is a vector containing the information of the jth marker, t2j is
the parameter that regularizes bj, as the marker effect associated with
the jth marker is estimated as:

bj ¼
m9j~y

m9jmj þ t22
j

(5)

Each marker has an independent regularization. The regularization
parameter t22

j , which shapes the marker effects collectively into a
Laplace distribution, is derived from an inverse-Gaussian density
with expectation (Park and Casella 2008):

t22
j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2s2

es
22
bj

q
(6)

The scale parameter l2 was adapted from Legarra et al. (2011), as the
sum of marker variances:

l2 ¼
Xp

j¼1

s2
mj

(7)

Residual variance and full-conditional marker variance are estimated
by maximum likelihood (Patterson and Thompson 1971, Harville
1977, Searle et al. 1992):

s2
bj
¼ bj9bj þ trð~C21Þs2

e

q
¼ b2

j þ
s2
e

m9mþ t22
j

(8)

s2
e ¼

y9Py
n2 rX

¼ y9e
n2 rX

(9)

where n corresponds to the total number of observations, q is the
number of parameters (q ¼ 1), ~C

21
represents the inverse of the full-

conditional left-hand side, P is the projection matrix of the whole
model (Py ¼ y2Hy ¼ e), and rX represents the rank of the design
matrix of fixed effects (rX ¼ 1).

The optimization path consists of iteratively updating m, b1,
s2
b1
, t22

b1
, b2, s

2
b2
, t22

b2
, . . . and s2

e . The pseudo-code for the imple-
mentation is provided below (Algorithm 1) and an implementa-
tion for R is provided in the appendix. In this study, the
convergence criteria was set as 1028 for marker effects or a max-
imum of 300 iterations.

Iterative single-stage method
The previous section presented how the algorithm for FLM
works in the case where each individual has a single phenotypic
value. Now consider the scenario of replicated trials, where
genotyped individuals are replicated across multiple environ-
ments. This approach is here referred to as fast Laplace model
in single-stage (FLM-SS). The term ”single-stage” has been
used to define the joint modeling of replicated observations
at the phenotypic level (Piepho et al. 2012) or with genomic
information (Schulz-Streeck et al. 2013), which is not to be
confused with the ”single-step” that elsewhere defines models
that combine pedigree and genomic information (Misztal
et al. 2009).
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Algorithm 1 Fast Laplace model

Setup initial values:

1. Compute mj9mj for each marker
2. Compute l2 ¼ Pp

j¼1s
2
mj

3. Set l2 as initial value for all t22
j

Repeat until convergence:

1. Update intercept

mtþ1 ¼ mt þ n21
Xn

i¼1
ei

etþ1 ¼ et 2
�
mtþ1 2mt�

2. Loop for jth marker in 1 : p

btþ1
j ¼

mj9et þ bt
j

�
mj9mj

�

mj9mj þ t22
j

etþ1 ¼ et 2mj9
�
btþ1
j 2bt

j

�

s2
bj
¼ b2

j þ
s2
e

mj9mj þ t22
j

t22
j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2s2

es
22
b

q

3. Update residual variance

s2
e ¼

y9e
n2 1

Most iterativemethodsprovideanalternativewayoffittingmixedmodel
without changing its statistical properties. Efficient algorithms to solve
complexmodels withmarker information use conditional expectations,
going back and forth with the estimation of fixed and random effect
coefficients, without altering the outcome (Garrick 2007, Legarra and
Misztal 2008, VanRaden 2008). The following model can illustrate the
single-stage procedure:

y ¼ Xbþ Zaþ e (10)

where y is the vector of phenotypes, X and b represent the design matrix
and fixed effect coefficients used to capture nuisance parameters, such as
environmental sources of variation. The random termsZ and a correspond
to the incidence matrix of individuals and additive genetic effects, hereby
estimated from the WGR (a ¼ Mb). Residuals (e ¼ y2Xb2Za) are
assumed to be normally distributed as e � Nð0;Rs2

eÞ, such that residuals
can be autocorrelated (R 6¼ I) or not (R ¼ I).

Fixed effect coefficients are solved via least squares, conditioning the
response variable to all terms but the fixed effect. This conditioning
works by reshaping the linear model into:

y2Za ¼ Xbþ e (11)

Providing the following solution of coefficients:

b ¼ �
X9R21X

�21
X9R21ðy2ZaÞ (12)

To avoid building large and dense design matrix of marker effects
(ZM), the random effect coefficients are updated using a link function

in two steps (u0/a). First, estimate the least-squared genetic values
(u0) as follows:

y2Xb ¼ Zu0 þ e (13)

The coefficients are solved as:

u0 ¼
�
Z9R21Z

�21
Z9R21ðy2XbÞ (14)

Note the values of u0 are not the final random coefficients, but in-
termediary outcomes serving as input to WGR. The shrinkage of
genetic values occurs when u0 is updated into a.

Subsequently, theWGRalgorithmintroduced in theprevious section
takesplace, solving the followingequation toestimatemarker effects and
breeding values:

u0 ¼ Mbþ e (15)

In this case, the vector of residuals (e) represents genetic signal not
captured by the markers. Genotypes may have variable number of
observations and weights can be assigned to the genotypes to account
for the unbalancedness. The WGR step can be solved assuming un-
weighted observations for computational convenience, or weighted
according to the number of observations of each genotype, thus
v ¼ DiagðZ9ZÞ. The last step of the iteration regards updating the
vector of breeding values as:

a ¼ Mb (16)

In summary, this single-stage algorithm works through the iterative
update of b, a, and b until convergence (Figure 1). Using Gauss-Seidel
(Legarra and Misztal 2008) to update coefficients, this system of
equations mitigates the computational burden of building and invert-
ing large matrices. It must be acknowledged that the proposed algo-
rithm is a computational trick and it may not replicate the same exact
outcome of modeling the ZM matrix.

Additional random effects
The study has focused on simple mixed models with fixed effects
and a single random effect to model genetics. However, it often
necessary to include random terms to capture genotype-environ-
ment interactions and spatial trends. This section describes how
additional random effects can be included into the single-stage
approach through conditioning.

Consider a model with one additional random effect:

y ¼ Xbþ ZaþWg þ e (17)

Conditioning the response variable to all effects but the additional
random effect (~y ¼ y2Xb2Za), yields:

~y ¼ Wg þ e (18)

Assuming g � Nð0; Is2
gÞ, the solution for the the random effect co-

efficients is given by:

g ¼ �
W9R21W þ kI

�21
W9R21~y (19)

where k ¼ s2
es

22
g . The solution for the residual variance is provided

in equation (9) replacing e by e.
Conditional to other model terms, the variance component associ-

ated to this random effect is estimated as (Patterson and Thompson
1971, Harville 1977):
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s2
g ¼

g9g

nw 2 trð~C21Þk
¼ g9g

nw 2 k
Pnw

j¼1

�
wj9wj þ k

�21 (20)

where nw is the number of columns ofW, and ~C is the full-conditional
left hand-side equation. For random effects with non-orthogonal design
matrices, such as adjacent matrices to model spatial auto-correlation,
the variance component can be efficiently approximated as
(Schaeffer 1986):

s2
g ffi

ðy2XbÞ9Wg
n
Pnw

j¼1s
2
wj

(21)

With more random terms in the model, all coefficients (b, a, and b)
must be updated conditional to g.

MATERIALS AND METHODS

Dataset
The soybean dataset described below was utilized to assess genomic
prediction methodologies. The cross-validation analyses were per-
formed on the genetic merit the genotypes estimated beforehand.
These data were not used for the evaluation of the single-step
procedure.

The soybean dataset contains 40 bi-parental families that share a
common parent. Phenotypes and genotypes were obtained using the
function ’BLUP’ from the R package SoyNAM. Each family contains
approximately 140 individuals genotyped with 4320 markers, and
the number of polymorphic markers ranged from 547 to 1262 within
family. The soybean trait under evaluation was the best linear unbiased
predictors (BLUP) of grain yield collected in as many as 18 environ-
ments under a modified augmented design (Lin and Poushinsky 1983).
BLUPs were generated by modeling grain yield as a function of en-
vironment (random effect), genetic merit (random effect) and local
block effects estimated from the checks (fixed effect). The population
and experimental settings are described in details by Diers et al. (2018)
and Xavier et al. (2018).

The BLUPs are not optimal for conducting second stage analyses
(Smith et al. 2001), but were used for demonstration here, as raw plot
level data were not available. BLUPs may create a heteroscedastic sce-
nario that may or may not affect the prediction accuracy if not
accounted for (de los Campos et al. 2013, Ou et al. 2016). This pitfall
can be addressed by the deregression of coefficients (Garrick et al.
2009), where the genetic merit of individuals is unshrunken based on
the individual’s reliability.

Cross-validation
The cross-validation focused on two criteria: 1) the predictive ability
measured as the correlation between predicted and observed genetic
values, computed within-family from fivefold cross-validations with
individuals were sampled at random (80% calibration, 20% validation)
in each round and this procedure was repeated 20 times, and leave-
family-out cross-validation by using 39 families to predict the family left
out, and repeating this procedure for all 40 families; and 2) the elapsed
time for calibrating the model using the whole data.

Prediction methods
FLM was compared to a set of methods designed for high dimensional
problems that are implemented and freely available in R. Including:
Bayesian alphabet (A,B,C,RR,L) and reproducingkernelHilbert spaces
(RKHS) implemented in BGLR (Pérez and de Los Campos 2014);
BayesCp and BayesDp implemented in the bWGR; GBLUP with
REML variance components implemented in rrBLUP (Endelman
2011); boosting implemented in gbm (Ridgeway 2007); L1L2
machines - ridge regression, elastic-net and LASSO implemented in
glmnet (Friedman et al. 2010); partial least square (PLS) implemented
in pls (Mevik and Wehrens 2007); random forest implemented in
ranger (Wright and Ziegler 2015); n and e support vector machines
(SVM) implemented in kernlab (Karatzoglou et al. 2004); the empir-
ical Bayesian LASSO (Cai et al. 2011) implemented in EBglmnet
(Huang and Liu 2016); and the extended Bayesian LASSO (Legarra
et al. 2011) implemented in VIGoR (Onogi and Iwata 2016). The
latter two methods are efficient implementations with Laplace prior.

Methods above were deployed with default settings. Tuning param-
eters for ridge, LASSO and elastic-net were computed through 10-fold
cross validation in the training set. To mitigate the computational
burden necessary to tune parameters, PLS used 5 components and
the empirical Bayes Lasso hyperparameters a-b were set to 0.5. The
Gaussiankernel employed forRKHSwas computed asK ¼ expð2dD2Þ
where D2 is the squared Euclidean distance matrix computed from
the marker information and d is the average value of D2. The
GBLUP model utilized the genomic relationship matrix described
by VanRaden (2008).

Detection of QTL
An experimental population was generated through simulation to
evaluate FLM estimates of large effect parameters. From an F2
bi-parental cross with 1000 individuals, 250 individuals were randomly
selected and randomly mated to generate a new population of 1000 in-
dividuals. This bottle-necking with subsequent random mating was
repeated 5 times.The resulting allele frequency ranged from0.32 to0.63.
The simulated genome had 10 chromosomes of length 100 cM. The
genotypingdensitywas0.5marker/cM.Acausativemarkerwasassigned
to the center of each chromosomewith alternating values of positive and
negative one.

The response variable was evaluated under heritability of 0.25 and
0.50. The ability of FLM to detect major genes was compared to the
Bayesian ridge regression and Bayesian LASSO implemented in the R
package BGLR (Pérez and de Los Campos 2014), and a mixed model
association based on P3D algorithm (Zhang et al. 2010) implemented
in the R packageNAM (Xavier et al. 2015). Three population sizes were
evaluated to estimate the allele effects: 250, 500 and 1000 individuals.

Evaluation of single-stage method
Breeding data are inherently unbalanced. Genotypes are often unrepli-
cated or not equally distributed across environments, and observations

Figure 1 Approaches for modeling breeding values (a) and marker
effects (b) from two-stages and different single-stage models.
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from different environments present a variable degree of noise. The
single-stage approach was evaluated on simulated datasets that rec-
reated such condition.

Simulated dataset: The simulations were based on assigning the
simulated individuals described in the previous section, a genetic pool
with 1000 genotypes, to a random set of environments. Each simulated
scenario was performed with a combination of number of observations
across trials (n = 250, 500, 1000, 2500, 5000, 10000) and genetic
architectures (10, 50 and 100 QTL). The number of environments
for each simulation was sampled from a uniform distribution between
4 and 10 with effect Nðm ¼ 100;s ¼ 20Þ. To simulate heteroscedas-
ticity, each environment had a different heritability sampled from a
uniform distribution between 0.25 to 0.75. Individuals were sampled
with replacement, such that each environment had an unequal number
of entries. Each scenario (combination of size and genetic architecture)
was repeated 20x with different seeds to sample the individuals, number
of locations, and heritability of the locations.

For the simulated scenarios with less than 1000 observations, most
genotypes were unreplicated since the observed individuals were sam-
pled from a pool of 1000 genotypes. Selection across unreplicated trials
are not unusual when genomic prediction is deployed (Sebastian et al.
2010) since genotypes are connected through the relationship informa-
tion captured by markers (Habier et al. 2007). Phenotypic values were
generated by adding an environmental effect and random noise to the
true breeding values. For simplicity, genotype-by-environment inter-
actions, non-additive genetics, and spatial noise were not considered.

Prediction methods: Threemethodswere evaluated. 1) Iterative single-
stage with Laplace (FLM-SS) and Gaussian prior (ridge regression,
RR-SS), implemented in RcppEigen (Eddelbuettel et al. 2011). 2)
Two-stage approach described by Schulz-Streeck et al. (2013) based
on fitting the best linear unbiased estimators (BLUE) of genetic values
without using genomic information (first step), treating environment as
a random effect, and subsequently fitting a WGR (second step) to
estimate breeding values. The first-stage BLUEs were computed with
the lme4 package (Bates et al. 2015), and markers were fitted with the
Bayesian LASSO implemented the BGLR package (Pérez and de Los
Campos 2014), carrying over the covariances from the first-stage to
account for the environmental heteroscedasticity, assuming the sec-
ond-stage residual covariances to be inherited from the first-stage. 3)
GBLUP fitted with the commercial software ASReml (Gilmour et al.
2008) using a genomic additive relationship matrix (Zeng et al. 2005,
Xu 2013). GBLUP is also a single-stage procedure to generate breeding
values (Figure 1), however marker effects are not explicitly computed
for the prediction on new individuals.

Evaluation criteria: The criteria for comparison was the computation
time necessary to fit the model as the elapsed time, and the prediction
accuracy as the correlation between estimated breeding values and true
breeding values.

Statistical models: The evaluated models aim to estimate breeding
values (a ¼ Mb) from phenotypes (y). GBLUP and Single-Stage fit
environment (Xb) as fixed effect and genetics as random effect, as Za
and ZðMbÞ, respectively. The two-stages fits environment (Xb) as
random and genetic merit as fixed effect (Zu) in the first stage, followed
by modeling the genetic merit (u) as function of intercept (m) and
marker effects (Mb), weighting observations with the coefficient vari-
ance, S ¼ DiagðZ9V21ZÞ, where V ¼ XX9s2

b þ Is2
e , which translates

into observations with weights S21.

The three models can be summarized as follows:

1. Iterative single-stage (FLM-SS, RR-SS):

y ¼ Xbþ ZðMbÞ þ e (22)

2. Two-stage approach:

y ¼ Xbþ Zuþ e
u ¼ mþMbþ e;     e � N

�
0; Ss2

e

� (23)

3. GBLUP:

y ¼ Xbþ Zaþ e;     a � N
�
0;MM9s2

b

�
(24)

Data availability
Thesoybeandataare available in theRpackageSoyNAM.TheRcode for
FLM is in the appendix. Cross-validation scripts are available onGitHub
(github.com/alenxav/FLM). The FLM-SS code can be made available
for research purposes.

RESULTS

Genomic prediction analysis
The summary of prediction statistics from cross-validation is presented
in Figure 2. FLM was the most predictive methodology within-family
and the secondmost predictive under leave-family-out cross-validation.
Most methods provided satisfying predictive ability. Considering com-
putation time (Figure 2), PLS and the three non-MCMC implementa-
tions of the Laplace prior had the lowest computational cost. Kernel
methods had high computational cost.

Learning properties
The ability of different approaches to correctly estimate major effects
through simulation is presented in Figure 3. Marker effects estimated
from genome-wide association analysis were the closest to the true
simulated values, however GWA resulted in an abundance of false
signals across the genome as the marker effects are not estimated con-
ditional to the neighbor markers.

The allele effect estimatedbyFLMwas closer to the true value than
its MCMC counterpart, the Bayesian LASSO, and this difference was
more evident in the low heritability scenario (Figure 3 bdf). Bayesian
ridge regression captured the large effects reasonably well in sce-
narios with where the heritability was 0.5, but the estimates were not
close to the real values in any situation. In general, more realistic
values were achieved by all methods as the population size and
heritability increased.

Single-stage efficiency
The comparison of accuracy and speed among GBLUP, two-stages
approach, and iterative single-stage (FLM-SS, RR-SS) is presented in
Figure 4. As the number of observations increased, all methods con-
verged to the simulated true values. GBLUP was slightly better than its
iterative single-stage counterpart, RR-SS, indicating that the proposed
algorithm provides a comparable, however not identical, predictive
outcome. This small difference is likely due to howwell methods handle
information unbalancedness.

The accuracy of Gaussian prior models (GBLUP and RR-SS) was
sensitive tothenumberofobservationswhen the traitwascontrolledbya
small number of QTL. As the number of QTL increased, the predictive
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advantageofFLM-SSand two-stagesoverGBLUPandRR-SSdecreased,
and GBLUP outperformed the other methods under the scenario with
the lowest number of observations.

The computation time of GBLUP was considerably larger than
iterative single-stage, and two-stage approach yielded intermediate
computational performance. The discrepancy in computation time
between iterative single-stage and two-stages can be attributed to the
MCMC sampling in the second step and the estimation of variance
components in the first step.

DISCUSSION
The discussion section frames FLM as a potential method of choice for
genomic prediction in plant breeding. The proposed methodology
provided accurate prediction across datasets, as well as computational
efficiency. Besides the predictive and computational performance, the
FLM is an easy-to-implement regressionmethod (Algorithm1)without
the need for tuning or matrix inversion.

Predictive ability
Most methods provide comparable predictive performance (Pérez-
Rodríguez et al. 2012, Howard et al. 2014, Xavier et al. 2016). This
study compared prediction methods within-family and family-out
predictions, with predictive ability around 0.3 and 0.5, respectively,

consistent with literature (Legarra et al. 2008, Lian et al. 2014, Xavier
et al. 2016). Within-family predictions rely on modeling the Mende-
lian segregation between markers and QTL, whereas across-family
predictions are based on capturing the relationship among families
(Habier et al. 2007, Daetwyler et al. 2013, Lehermeier et al. 2014).
FLM provided competitive values of predictive ability for both vali-
dation methods. However, the predictive performance of models may
vary according to genetic architecture, marker density, trait heritabil-
ity, and the size of the training set (de los Campos et al. 2013, Legarra
et al. 2015).

Feature selection is a desirable statistical property known to
improve the parsimony and predictive ability of WGR models
(Wimmer et al. 2013). FLM deploys the so-called Laplacian variable
selection (O’Hara and Sillanpää 2009), which imposes strong
shrinkage without eliminating the parameters from the model.
Markers not linked to QTL often play an important role on pre-
diction by capturing relationship among individuals (Habier et al.
2007). In addition, when regression coefficients have priors shaped
by heavy tailed distribution, such as Laplace and Student’s t, models
are suited to capturing QTL because these priors relax the shrinkage
of markers with large effect (de los Campos et al. 2009, Kärkkäinen
and Sillanpää 2012). Other models with similar properties include
BayesA, BayesB, BayesC and the Bayesian LASSO (de los Campos
et al. 2009, Habier et al. 2011, Heslot et al. 2012, Kärkkäinen and
Sillanpää 2012, Legarra et al. 2015).

From the signal detection perspective, models able to capture
relationship and accurately detect QTL are deployed for association
studies and haplotype analysis (Fernando and Garrick 2013, Hayes
2013, Yang et al. 2014, Daetwyler et al. 2015, Fernando et al. 2017,
Goiffon et al. 2017). For the scenarios under evaluation, FLM pro-
vided a more accurate marker effects estimation than the Bayesian
LASSO and ridge regression, with less spurious association than
GWA (Figure 4). Both FLM and Bayesian LASSO have a Laplace
prior, but with substantial algorithmic differences. Empirical priors
have been reported to improve the predictive properties of Laplace
models (Xu 2007, Yi and Xu 2008, Xu 2010, Cai et al. 2011), thus
FLM likely benefits from regularization free of hyperparameters.
Moreover, iterative algorithms often outperform their MCMC
counterpart in terms of accuracy (Hayashi and Iwata 2010, Sun
et al. 2012, Wang et al. 2015). The resulting improvement in signal
detection translates into higher predictive ability in scenarios where
capturing linkage disequilibrium is more important than the rela-
tionship among individuals, as depicted in within-family predic-
tions (Figure 2).

The genetic signal captured by WGR methods is solely additive,
which is desirable to estimate breeding values but sub-optimal for the
prediction of phenotypes. Unlike additive models, semi-parametric
methods can capture non-linear relationship patterns and different
levels of epistasis. For this reason, additive models are frequently out-
performed by semi-parametric methods, such as RKHS, SVR, random
forest and neural networks (Gianola et al. 2006, De Los Campos et al.
2010, Pérez-Rodríguez et al. 2012, Desta and Ortiz 2014, Howard et al.
2014). For the datasets under evaluation, linear models were as pre-
dictive as semi-parametric methods, which suggests that most genetic
signal was due to additive genetics.

Both RKHS and e-SVR are kernel methods that utilize a Gaussian
kernel, but these methods differ with regards to their loss-functions.
Whereas RKHS follows a L2 loss that penalizes square error and coef-
ficients, e-SVR only penalizes the error greater than e (Hastie et al.
2009). Interestingly, n-SVR did not provide the same degree of pre-
dictive ability, despite sharing the same kernel as RKHS and e-SVR.

Figure 2 Box-and-whiskers plot displaying the predictive ability across
40 bi-parental soybeans families. Prediction within-family (top), leave-
family-out (center) and computation time (bottom).
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Computational performance
The time required to calibrate a prediction machine is an important
factor to chose a methodology when genomic prediction is utilized for
various traits, with often model re-calibration (Meuwissen et al. 2009,
Hayashi and Iwata 2010, Sun et al. 2012, Wang et al. 2015). Results
indicate a clear discrepancy across methods with regards to the
computing time required to fit the prediction models. Figure 2
shows the most computationally efficient methods were PLS and
the non-MCMC implementations. Other regression-type methods
provided intermediate efficiency and kernel-type methods were
computationally expensive.

Most predictionmethods display some computation burden: tuning
parameters inmachine learningmethods;MCMC iterations inBayesian
methods; variance components in GBLUP; and matrix inversion or
decomposition in kernel methods. FLM estimates full-conditional
variance components, dismissing expensive matrix operations, cross-
validation for tuning parameters, or MCMC. The other two prediction
methods thatefficiently implementLaplaceprior, theempiricalBayesian
LASSO and the extended Bayesian LASSO, did not provide satisfactory
predictive ability. Besides FLM, our results indicate that BayesB is also a
cost-effective regressionmethodbyprovidingreasonablecomputational
cost with hist predictive ability across datasets.

It is important to point out that kernel methods can be a suitable
alternative inhighdimensionalmodels, since these relyonthenumberof
individuals rather than the number of parameters. Kernel methods are

computationally demanding for two other reasons: it is necessary to 1)
build the kernel and 2) compute its inversion or Eigendecomposition.
The time needed to build the kernel depends on the number of both
individuals and parameters. Many kernels require the computation of
distance matrices, which is more computationally demanding.

For the prediction of new observations, kernels must be augmented
with the genotypes of observed and unobserved individuals, making the
inversion or spectral decomposition more challenging. This is partic-
ularly cumbersome in plant breeding where the size of the offspring
being predicted and selected can be much larger than the training set,
whereas theparameter estimates required forprediction fromregression
and treemodels can be stored and easily employed for prediction of new
observations.

Iterative single-stage modeling
The two-stage and iterative single-stage approaches were faster than
GBLUP by an order of magnitude. Such difference can be attributed to
the sparse nature of the algorithm and the complexity associated to the
estimation of variance components. GBLUP was fit using AI-REML, a
general-purpose algorithm, whereas FLM-SS was specifically designed
to provide efficient computation of breeding models. The two-stages
model provided an intermediate outcome.

The lower accuracy of the GBLUP and RR-SS in scenarios with few
QTL can be attributed to the statistical nature based an infinitesi-
mal model. Gaussian priors work by capturing the relationship among

Figure 3 Simulation-based evaluation of marker effect estimation (y-axis) across the genome (x-axis) with varying the heritability and number of
individuals, testing: Fast Laplace model (FLM), Bayesian ridge regression (BRR), Bayesian LASSO (BL), genome-wide associations (GWA) analysis,
and the true value (True). Effects were plotted larger at the QTL positions and smaller in every other locus.
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individuals (Habier et al. 2007), whereas FLM-SS and two-steps models
enable fitting priors that are suitable to capture both relationship and
QTL (Wolc et al. 2016). Similar results were reported by Zhou et al.
(2018), where one-step BayesA and BayesB consistently outperformed
the one-step GBLUP under various simulated scenarios. This advan-
tage is also depicted in within-family prediction (Figure 2) where the
prediction power comes from detecting LD between markers and QTL,
as well as in Figure 3, where it takes a larger number of observations
to BRR (counterpart of GBLUP) to identify large effect markers (de los
Campos et al. 2013, Henryon et al. 2014, Hickey et al. 2017).

Frameworks where marker effects are estimate alongside all other
parameters are not new, but rarely utilized (Fernando et al. 2014, Liu
et al. 2014, Taskinen et al. 2017). Methods and implementations of
genomic prediction have been incorporated from animal breeding into
plant breeding without much consideration about the large differences
in data flow and other statistical properties (Heslot et al. 2015, Hickey
et al. 2017). Two of themajor factors that differentiate plant and animal
breeding are replicated trials and offspring size. The single-stage frame-
work proposed in this study was design for genomic prediction follow-
ing the plant breeding data structure, being beneficial from the
computational and predictive standpoint.

Two-stages and iterative single-stage
Multi-stage procedures have been proposed to address the computa-
tional burden of single-stagewithout compromising in the quality of the
results (Smith et al. 2001). There are various methods to propagate
weights from one stage to the next (Möhring and Piepho 2009). How-
ever, multi-stage analysis cannot recreate the exact results of single-
stage unless the whole covariance matrix is carried over stages (Piepho
et al. 2012). Even so, the results of multi-stage only reproduce single-
stage if the variance components of the first-stage analysis are identical
to the variance components estimated from single-stage, and if the
nuisance parameters (non-target fixed effects) are estimated free of
error. In this case, sufficient statistics (means and covariance) may
fully reproduce single-stage.Multi-stage approaches commonly provide

results comparable to those from single-stage analysis (Damesa et al.
2017). However, if statistical terms introduced in the second-stage
analysis would potentially affect the variance component estimates of
first-stage terms, then the single-stage results cannot be exactly repro-
duced by two-stages. That is not necessarily the case for iterative
methods where all coefficients and the variance components are es-
timated conditional to each other, and the information of all terms is
propagated across iterations.

Future directions for this research include the comparison of breed-
ing values estimated from GBLUP, multi-stage and RR-SS to under-
stand how the proposed algorithm reproduces standard procedures on
real data. An evaluation of the estimated variance components is also a
desirable target. Further studies must contrast scenarios with genotype-
environment interaction, spatial trends, dominance and epistasis.

CONCLUSION
A robust prediction methodology is a key component for a successful
genomic-assisted breeding pipeline. This study introduced a fast and
accurate algorithm for solving a WGR with Laplace prior, alongside a
single-stage methodology that allows to connect WGR into mixed
models with replicated observations.

The proposed framework provided more accurate predictions and
higher computational efficiency than other methods based on a cross-
validation evaluation on real datasets. With a simulated dataset, it was
shown that the fast Laplace model provided reasonably accurate esti-
mation ofQTL effects, being less biased than Bayesian LASSO and ridge
regression, and proving less spurious signals than genome-wide asso-
ciation analysis. The algorithm extension to single-stage also presented
promising properties, benefiting both computation and prediction.
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