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An L-2-hydroxyglutarate biosensor based on
specific transcriptional regulator LhgR
Zhaoqi Kang1, Manman Zhang2, Kaiyu Gao1, Wen Zhang3, Wensi Meng1, Yidong Liu1, Dan Xiao1, Shiting Guo1,

Cuiqing Ma1, Chao Gao 1✉ & Ping Xu 4✉

L-2-Hydroxyglutarate (L-2-HG) plays important roles in diverse physiological processes, such

as carbon starvation response, tumorigenesis, and hypoxic adaptation. Despite its importance

and intensively studied metabolism, regulation of L-2-HG metabolism remains poorly

understood and none of regulator specifically responded to L-2-HG has been identified. Based

on bacterial genomic neighborhood analysis of the gene encoding L-2-HG oxidase (LhgO),

LhgR, which represses the transcription of lhgO in Pseudomonas putida W619, is identified in

this study. LhgR is demonstrated to recognize L-2-HG as its specific effector molecule, and

this allosteric transcription factor is then used as a biorecognition element to construct an

L-2-HG-sensing FRET sensor. The L-2-HG sensor is able to conveniently monitor the con-

centrations of L-2-HG in various biological samples. In addition to bacterial L-2-HG generation

during carbon starvation, biological function of the L-2-HG dehydrogenase and hypoxia

induced L-2-HG accumulation are also revealed by using the L-2-HG sensor in human cells.
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l-2-Hydroxyglutarate (L-2-HG) is an important metabolite in
various domains of life. In mammals and plants, it is produced
by lactate dehydrogenase (LDH) and malate dehydrogenase

(MDH)-mediated 2-ketoglutarate (2-KG) reduction under hypoxic
conditions1–5. In microorganisms, it is a metabolic intermediate of
glutarate catabolism produced by a glutarate hydroxylase, CsiD6–8.
L-2-HG dehydrogenase (L2HGDH) or L-2-HG oxidase (LhgO), an
FAD-containing oxidoreductase that converts L-2-HG to 2-KG, plays
an indispensable role in the catabolism of L-2-HG7,9. While extensive
efforts have been devoted to investigating L-2-HG anabolism and
catabolism, the molecular machinery that specifically senses L-2-HG
and regulates its metabolism has not been identified until now.

L-2-HG is an inhibitor of 2-KG dependent dioxygenases with
specific pro-oncogenic capabilities10,11. Thus, this oncometabolite
is viewed as a biomarker for a variety of cancers and its rapid and
sensitive measurement in body fluids is of clinical
significance12–15. Importantly, L-2-HG also has endogenous
functions in healthy animal cells. For example, this compound
was recently identified to aid the proliferation and anti-
tumorigenic abilities of CD8+ T-lymphocytes16, to contribute to
relieving the cellular reductive stress3, and to coordinate glyco-
lytic flux with epigenetic modifications17. Considering the various
roles of L-2-HG in cell metabolism, the development and opti-
mization of real-time monitoring assays for this metabolite in
living cells are required.

Liquid chromatography-tandem mass spectrometry (LC-MS/
MS)18,19 and gas chromatography-tandem mass spectrometry
(GC-MS/MS)20,21 are often used to assess the extracellular con-
centrations of L-2-HG. These state-of-the-art methods are time-
consuming, expensive to perform, and require highly skilled
personnel. In addition, these destructive methods are also
incompatible with real-time monitoring of the fluctuations of L-2-
HG concentrations in intact living cells. In this study, we identify
and characterize LhgR, an L-2-HG catabolism regulator in Pseu-
domonas putida W619. Mechanistically, LhgR represses the
transcription of LhgO encoding gene lhgO. L-2-HG is a specific
effector molecule of LhgR and prevents LhgR binding to the
promoter region of lhgO. We then report the development and
application of the LhgR-based L-2-HG biosensor via Förster
resonance energy transfer (FRET), a technology widely applied to
investigate temporal dynamics of various small molecules, such as
potassium22,23, glycine24, and cAMP25,26. As-designed sensor
quantitatively responds to L-2-HG concentrations in various
biological samples with high accuracy and precision. We also use
this biosensor to identify the carbon starvation-induced L-2-HG
production in bacteria and to demonstrate hypoxia-induced L-2-
HG production by LDH and MDH in human cells. Therefore, the
LhgR-based biosensor can prove to be a useful tool for real-time
measurement of the L-2-HG concentrations in living cells.

Results
LhgR regulates L-2-HG catabolism. In this study, bacteria con-
taining LhgO encoding gene lhgO were selected to study the
regulation of L-2-HG metabolism. Homologs of LhgO can be
found in 612 different bacterial strains. Similarly organized
chromosomal clusters are found in many bacterial genomes,
which contain various combinations of genes related to glutarate
metabolism (csiD, lhgO, gabT, gabD, and gabP) (Fig. 1a). In
Pseudomonas putida KT2440, the glutarate regulon is regulated
by allosteric transcription factor CsiR, which is encoded upstream
of csiD27. The glutarate sensing allosteric transcription factor
CsiR and its cognate promoter were cloned into broad host range
vectors to create a glutarate biosensor28. Interestingly, a different
pattern of lhgO gene neighborhood was observed in a few species
that do not contain csiD homologs (Fig. 1a). For example, a gene

encoding a GntR family protein, lhgR, was found directly
upstream of lhgO in P. putida W619. The absence of csiD gene
related to glutarate catabolism made us to reason that lhgO of
P. putida W619 might be solely involved in L-2-HG metabolism
and be L-2-HG inducible.

The lhgO gene in P. putida W619 was cloned into pME6032
vector and transferred into P. putida KT2440 (ΔlhgO). As shown
in Fig. 1b, c, the complement of lhgO in P. putida W619 could
restore glutarate and L-2-HG utilization abilities of P. putida
KT2440 (ΔlhgO), confirming that lhgO encodes a functional L-2-
HG catabolic enzyme. To identify the function of LhgR in P.
putida W619, the gene segment F2-lhgR-F1-lhgO, which contains
the promoter of lhgR (F2), lhgR, the promoter of lhgO (F1), and
lhgO, was cloned into pME6032 vector, and the resulting plasmid
was transferred into different derivatives of P. putida KT2440
(Fig. 1d). As shown in Fig. 1e, exogenous L-2-HG, but not its
mirror-image enantiomer D-2-HG, can induce the expression of
lhgO in the gene segment F2-lhgR-F1-lhgO and restore LhgO
activity in P. putida KT2440 (ΔcsiRΔlhgO). In addition, the
activity of LhgO was also detected in P. putida KT2440
(ΔcsiRΔlhgO) harboring pME6032-F2-lhgR-F1-lhgO when cul-
tured with glutarate as the sole carbon source. However, no
activity of LhgO was detected in P. putida KT2440 (ΔcsiRΔc-
siDΔlhgO), in which the key gene responsible for L-2-HG
production from glutarate was deleted. These results indicated
that LhgR represses the expression of LhgO and L-2-HG, but
neither D-2-HG nor glutarate can serve as the effector molecule
of LhgR.

LhgR specifically responds to L-2-HG. To determine whether
LhgR directly interacts with the promoter region of lhgO, LhgR in
P. putida W619 was overexpressed in E. coli BL21(DE3) and
purified by Ni-chelating chromatography (Fig. 2a). Based on the
results of gel filtration and sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (SDS-PAGE), LhgR behaved
as a dimer (Fig. 2b). Subsequently, electrophoretic mobility shift
assays (EMSAs) were conducted using lhgO promoter (F1) and
purified LhgR. As shown in Fig. 2c, LhgR bound to F1 in a
concentration-dependent manner. LhgR completely shifted frag-
ment F1 gel band when an 8-fold molar excess was used. A
DNase I footprinting assay was also performed using purified
LhgR and fragment F1. A protected region containing palin-
dromic NyGTNxACNy consensus binding motif of GntR-family
allosteric transcription factor29, 5′-TAGTCTGACAA-3′, was
observed (Fig. 2d). In addition, LhgR also bound to its promoter
(F2) in EMSAs. A similar consensus binding motif, 5′-
TTGTCTGACAA-3′, was protected in DNase I footprinting assay
(Supplementary Fig. 1a-b).

Effects of L-2-HG, D-2-HG, glutarate, 2-KG, L-lysine, 5-
aminovalerate, and succinate on LhgR binding to the lhgO
promoter region F1 were also assessed by EMSAs. The release of
LhgR from fragments F1 was observed only in the presence of
L-2-HG (Fig. 2e). These results suggested that L-2-HG can
specifically prevent the binding of LhgR to the promoter of lhgO
and induce its expression. LhgR may help P. putida W619 to
specifically sense L-2-HG generated by intracellular metabolism
or present in habitats and stimulate the catabolism of L-2-HG. In
addition, LhgR may self-repress its expression and L-2-HG can
also contribute to inducing the expression of lhgR (Supplemen-
tary Fig. 1c).

Design and optimization of the L-2-HG-sensing reporter. FRET
sensors, which combine a ligand-binding moiety and a pair of
donor-acceptor fluorescent pair, allow measurement of ligand
concentrations based on the ligand-binding induced changes of
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FRET efficiency22–26. In this study, the L-2-HG-sensing fluor-
escent reporter (LHGFR) was constructed by fusion of the opti-
mized cyan and yellow fluorescent protein variants, mTFP30 and
Venus31, to the N-terminus and C-terminus of LhgR (Supple-
mentary Fig. 2). This first LHGFR was named LHGFR0N0C, where
the subscript indicates the number of amino acids truncated from
the N-terminus and C-terminus of LhgR. Subsequently,
LHGFR0N0C was overexpressed in E. coli BL21(DE3) and purified
by a Ni-chelating chromatographic column (Supplementary
Fig. 3). Spectra properties of LHGFR0N0C reveal the addition of L-
2-HG could reduce the emission peak at 492 nm of mTFP and
increase the emission peak at 526 nm of Venus (Supplementary
Fig. 4). Thus, the conformational change of LhgR after the L-2-
HG binding may lead to a shortened relative distance and/or
favorable orientation of mTFP and Venus, resulting in an
increase in FRET (Fig. 3a). In addition, L-2-HG increased the
emission ratio of Venus to mTFP in a dose-dependent manner,
with a maximum ratio change (ΔRmax) of 11.47 ± 0.38%, an
apparent dissociation constant (Kd) of 2.74 ± 0.73 μM, and a Hill
slope close to 1 (Fig. 3b).

To increase the magnitude of responses, LHGFR was optimized
by truncating N-terminal and C-terminal amino acids of LhgR or
by adding a series of artificial linkers between LhgR and various
fluorescent proteins23,32–34 (Fig. 3c and Supplementary Fig. 5).
Truncation of three to seven C-terminal amino acids in LhgR
could significantly increase ΔRmax of the sensor (Fig. 3c, d and
Supplementary Fig. 5). Among the five sensors with increased
response magnitude values, LHGFR0N7C exhibited the highest
ΔRmax of 60.37 ± 1.30% and Kd of 7.22 ± 0.38 μM (Fig. 3d and

Supplementary Fig. 6a–e). In addition, LHGFR0N3C was also a
promising sensor with a high ΔRmax of 56.13 ± 0.29% and a high
Kd of 29.33 ± 1.24 μM (Fig. 3d and Supplementary Fig. 6a).

Then, the properties of LHGFR0N3C and LHGFR0N7C were also
investigated. Both LHGFR0N3C and LHGFR0N7C behave as
tetramers and have lost the ability to bind DNA (Supplementary
Fig. 7). L-2-HG binding increased FRET between the fluorophores
in LHGFR0N3C and LHGFR0N7C (Supplementary Fig. 8). D-
Lactate, L-lactate, as well as a set of intermediates of TCA cycle
and L-lysine catabolism, were used to examine the specificity of
LHGFR0N3C and LHGFR0N7C. None of D-lactate, L-lactate,
oxaloacetate, citrate, isocitrate, 2-KG, succinate, fumarate, cis-
aconitate, L-malate, pyruvate, L-lysine, 5-aminovalerate, and
glutarate induced the emission ratio changes of LHGFR0N3C or
LHGFR0N7C (Fig. 3e, f). The addition of these compounds also
had no influence on the response of LHGFR0N3C or LHGFR0N7C

to L-2-HG (Supplementary Fig. 9a–b). Both LHGFR0N3C and
LHGFR0N7C exhibited much higher affinity for L-2-HG than that
for D-2-HG (Supplementary Fig. 9c–d and Supplementary
Table 1). The limits of detection (LODs) of LHGFR0N3C and
LHGFR0N7C for L-2-HG and D-2-HG were 4.34 μM and 872.59
μM, 0.70 μM and 128.34 μM, respectively (Supplementary
Table 1). The dose-response curves of LHGFR0N3C and
LHGFR0N7C for L-2-HG in the absence or presence of D-2-HG,
2-KG, and ATP were also assayed (Supplementary Fig. 9e–j).
Similar LODs, Kd values, and ΔRmax of LHGFR0N3C were detected
(Supplementary Fig. 9e–j and Supplementary Table 1). Kinetic
analyses of LHGFR0N3C and LHGFR0N7C were performed and
values for the association rate constant (kon) and dissociation rate
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Fig. 1 Regulation of L-2-HG catabolism by LhgR in P. putida W619. a Schematic representation of genomic neighborhood analysis of lhgO in different
bacteria. Orthologs are shown in the same color and the direction of gene transcription is indicated by arrows. CsiR, GntR family allosteric transcription
factor regulating glutarate catabolism; CsiD, glutarate hydroxylase; LhgO, L-2-HG oxidase; GabD, succinate semialdehyde dehydrogenase; GabT, 4-
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plasmid pME6032-lhgO (black lines with squares) and P. putida KT2440 (ΔlhgO) harboring empty plasmid pME6032 (red lines with circles) were
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constant (koff) of LHGFR0N3C and LHGFR0N7C were determined
to be 5.50 × 10−1 μM−1 s−1 and 15.75 s−1, 2.84 × 10−1 μM−1 s−1

and 5.79 s−1, respectively (Supplementary Fig. 10a–d). Effects of
temperature on LHGFR0N3C and LHGFR0N7C were analyzed,
respectively, and the affinity of LHGFR0N3C to L-2-HG remained
unaffected from 25 °C to 37 °C (Supplementary Fig. 10e–h).
L-2-HG-dependent emission ratio changes of LHGFR0N3C or
LHGFR0N7C were reversible by L-2-HG oxidation catalyzed by 5
μM LhgO (Fig. 3g, h and Supplementary Fig. 10i-j) and both
biosensors were stable for the detection of L-2-HG from pH 6.0 to
8.0 (Supplementary Fig. 10k-l).

Characterization of LHGFR in biological samples. Next, we
investigated whether LHGFR could be used to quantify L-2-HG
concentrations in different biological samples. When L-2-HG
with increasing concentrations (0 to 2 mM) were added into
serum and urine samples of healthy adults, the response curves
were nearly identical with that in assay buffer for both
LHGFR0N3C and LHGFR0N7C (Fig. 4a–d, Supplementary Fig. 6a
and Fig. 6e). Thus, quantitative determination of L-2-HG could be
conducted by mixing the target samples with LHGFR and mea-
suring the emission ratios with a conventional fluorescence
microplate reader. Based on the response curves established for
L-2-HG quantification, both biosensors were used to assay the
concentrations of L-2-HG in human serum and urine (Fig. 4e, f).

The results of LHGFR0N3C and LHGFR0N7C showed close
agreement with the results of LC-MS/MS, the current standard
method for clinical assays of L-2-HG (Fig. 4e, f and Supplemen-
tary Table 2).

In a previous report, L-2-HG was identified to be a metabolic
intermediate of glutarate metabolism in P. putida KT24407.
LHGFR0N3C and LHGFR0N7C also exhibited high accuracy in the
quantification of L-2-HG in bacterial culture medium (Fig. 4g-i).
When cultured in the medium containing 20 mM glucose and 5
mM glutarate as carbon sources, the growth of P. putida KT2440
(ΔlhgO) was significantly delayed, which might be due to the
possible toxicity of accumulated L-2-HG (Fig. 4j). Nearly identical
results of L-2-HG quantification were also obtained by either
using LHGFR0N3C, LHGFR0N7C, or using LC-MS/MS (Fig. 4k, l
and Supplementary Fig. 11). Mutual corroboration between the
two biosensors further confirmed their applicability in in vitro
L-2-HG quantification of various biological samples. In addition,
the response curves of LHGFR0N3C and LHGFR0N7C for D-2-HG
in serum, urine, and bacterial culture medium were also
determined (Supplementary Fig. 12). The LODs of LHGFR0N3C

and LHGFR0N7C for D-2-HG were more than 100-fold higher
than those for L-2-HG (Supplementary Table 3 and Table 4).

Monitoring L-2-HG fluctuations in living bacteria by LHGFR.
We also investigated whether the LhgR-based L-2-HG sensor
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LHGFR could detect possible variations of L-2-HG in living bac-
teria. LHGFR0N3C and LHGFR3N7C, a control biosensor that did not
respond to L-2-HG in vitro (Fig. 3c), were expressed in E. coli BL21
(DE3). Exogenous L-2-HG was added to the culture system of E. coli
BL21(DE3) to achieve final concentrations between 0 and 10mM
and the emission ratio was continuously recorded. As shown in
Fig. 5a, exogenous L-2-HG could increase emission ratios of
LHGFR0N3C in a dose-dependent manner. The apparent Kd of
LHGFR0N3C expressed in E. coli BL21(DE3) was determined to be
891.72 ± 32.10 μM by fitting emission ratios against exogenous L-2-

HG concentrations (Fig. 5b). Maturation time lag and degradation
of biosensors may be reasons responsible for higher apparent Kd of
LHGFR0N3C when expressed in E. coli35. The specificity of
LHGFR0N3C expressed in E. coli BL21(DE3) was also characterized.
As shown in Fig. 5c, only exogenous L-2-HG could significantly
increase the emission ratio in E. coli BL21(DE3), while glutarate, D-
2-HG, and glucose could not.

Besides being a metabolic intermediate of exogenous glutarate
catabolism in P. putida KT2440, L-2-HG is also reported as a
metabolite produced from endogenous L-lysine during carbon
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starvation of E. coli36,37. Thus, whether carbon starvation could
induce intracellular L-2-HG accumulation of E. coli was
investigated. As shown in Fig. 5d, no change in the emission
ratio was detected when 20 mM glucose was added to the culture
system. However, the emission ratio increased during carbon
starvation of E. coli BL21(DE3), suggesting that carbon
starvation induced L-2-HG production. The emission ratios also
increased after culturing E. coli cells for 6 h with glucose addition
(Fig. 5e), which might be due to carbon starvation induced by
depletion of exogenous glucose. In addition, the emission ratio
increased at the beginning of carbon starvation, reaching a
maximum value at 3 h and then decreased to initial levels at 8 h
(Fig. 5e). These results confirmed that L-2-HG is a temporary
metabolite during carbon starvation and LHGFR0N3C can be used
to monitor the real-time change in intracellular L-2-HG
concentrations.

To identify whether carbon starvation-induced endogenous
L-2-HG production also results from the glutarate hydroxylase
activity of CsiD, gene csiD was disrupted and LHGFR0N3C was
expressed in E. coli MG1655(DE3). Gene lhgO in E. coli MG1655
(DE3) was also disrupted to investigate its role in endogenous
L-2-HG catabolism. As expected, the emission ratio of

LHGFR0N3C in E. coli MG1655(DE3) (ΔcsiD) remained unaf-
fected during carbon starvation, whereas disruption of lhgO
significantly increased the emission ratio of LHGFR0N3C in E. coli
MG1655(DE3) (ΔlhgO) (Fig. 5f), indicating the roles of CsiD and
LhgO in endogenous L-2-HG metabolism during carbon starva-
tion. The performance of LHGFR0N7C in monitoring L-2-HG
fluctuations in living bacteria was also studied and similar results
were acquired (Supplementary Fig. 13). As for the control
biosensor LHGFR3N7C, no change of emission ratio could be
detected in living bacteria for any of the above-mentioned
experiments (Supplementary Fig. 14).

Monitoring L-2-HG production in human cells by LHGFR.
Next, LHGFR0N3C, LHGFR0N7C, and LHGFR3N7C were expressed
in the cytosol of HEK293FT cells. The addition of 10 mM L-2-HG
affected mTFP and Venus fluorescence intensities, which caused a
non-uniform increase in the emission ratio of LHGFR0N3C-
expressing single cell (Fig. 6a and Supplementary Movie). The
average emission ratio reached a maximum value at 5 min and
remained constant during the subsequent confocal imaging per-
iod (Fig. 6b). The apparent Kd of LHGFR0N3C expressed in
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Fig. 4 Validation of purified LHGFR for determination L-2-HG levels in body fluids and bacterial culture system. a–d Dose-response curves of purified
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results of LHGFR0N3C and LHGFR0N7C, respectively. Black line indicates a reference line. g, h Dose-response curves of purified LHGFR0N3C (g) and
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HEK293FT cells for L-2-HG was determined to be 43.79 ± 3.05
μM (Fig. 6c). Based on the emission ratio of non-permeabilized
HEK293FT cells under physiological conditions, the basal L-2-HG
concentration in LHGFR0N3C-expressing cells was 22.95 ± 11.22
μM (Fig. 6c). Only exogenous L-2-HG could significantly increase
the emission ratio of LHGFR0N3C in 10 μM digitonin-
permeabilized HEK293FT cells, suggesting the specificity of the
biosensor inside living human cells (Fig. 6d). L2HGDH, the only
reported enzyme that is able to catabolize L-2-HG in human cells,
is localized in mitochondria13. The mitochondrial targeting
sequence was appended to LHGFR0N3C to localize the biosensor
in mitochondria (Supplementary Fig. 15a). Exogenous L-2-HG
also induced an increase in the emission ratio of mitochondrial
LHGFR0N3C (Supplementary Fig. 15b). The emission ratio of
LHGFR0N3C localized in mitochondria was similar to that of in
cytosol (Supplementary Fig. 15c). The uniform distribution of
L-2-HG confirmed the presence of a transporter responding for
the transport of L-2-HG between cytosol and mitochondria.

HEK293FT cells were then co-transfected with siRNA targeting
L2HGDH and LHGFR0N3C. As shown in Fig. 6e, the transfection of
siRNA targeting L2HGDH increased the emission ratio of
LHGFR0N3C, indicating an accumulation of intracellular L-2-HG
due to a decrease in L2HGDH levels. Cells with different emission

ratios could be easily distinguished in a mixture of HEK293FT cells
with or without L2HGDH knockdown (Supplementary Fig. 16a–b).
As expected, overexpression of L2HGDH decreased the emission
ratio of LHGFR0N3C, further supporting the function of L2HGDH
in L-2-HG catabolism (Supplementary Fig. 16c).

The response of LHGFR0N3C to changes in hypoxia-induced
production of L-2-HG in human cells was also studied. The
emission ratio of LHGFR0N3C in HEK293FT cells after 24 h
exposure to 2% oxygen was higher than the ratio obtained under
normoxic conditions and hypoxia induced a 3.5-fold increase in the
concentration of L-2-HG (Fig. 6f). In addition, exogenous cell-
permeable dimethyl-2-ketoglutarate significantly increased the
emission ratio of LHGFR0N3C under hypoxic conditions, suggesting
that hypoxia-induced L-2-HG might originate from 2-KG (Fig. 6f).

LDHA and MDH2 have been reported to participate in
hypoxia-induced L-2-HG production due to their “promiscuous”
catalytic activities1–4. In support of this conclusion, siRNAs
targeting LDHA and MDH2 were transfected separately or in
combination into LHGFR0N3C-expressing HEK293FT cells. As
shown in Fig. 6g, the decrease of LDHA and MDH2 reduced the
emission ratio of LHGFR0N3C under hypoxic conditions,
suggesting that these enzymes indeed contribute to the produc-
tion of L-2-HG from 2-KG.
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The performance of LHGFR0N7C in monitoring L-2-HG
fluctuations in living HEK293FT cells was also studied and
similar results were acquired (Supplementary Fig. 17). In
addition, the emission ratio of control cells expressing
LHGFR3N7C remained unaffected by exogenous L-2-HG addition
and hypoxia treatment (Supplementary Fig. 18).

Discussion
Bacteria have evolved to respond and catabolize a wide range of
metabolites. The availability of genomic information from dif-
ferent organisms provided researchers with a new route to predict
transcriptional regulators and their physiological functions. In
this study, we used a genomic neighborhood analysis approach
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combined with genetic and biochemical techniques to discover
the transcriptional regulator of L-2-HG catabolism. The identified
transcriptional regulator, LhgR, was present directly upstream of
LhgO in P. putida W619 (Fig. 1a). It specifically binds to the
promoter region of lhgO and represses the transcription of lhgO
gene. L-2-HG interferes with the DNA-binding activity of LhgR
and induces expression of LhgO. LhgR is an example of the
bacterial allosteric transcription factor that specially responds to
L-2-HG. This finding showed the application of a collection of
sequenced genomes in the identification of transcriptional reg-
ulators and the approach can be expanded to target other tran-
scriptional regulators in diverse bacteria.

L-2-HG is a harbinger of altered metabolism and participates in
the pathogenesis of L-2-hydroxyglutaric acidurias and
cancer12–15,38,39. Standard methods to measure L-2-HG are based
on MS techniques that are time-consuming and require highly
skilled workers. LhgR can bind to L-2-HG and then undergo
conformational changes, which in turn affects DNA-binding.
Thus, a FRET biosensor, LHGFR0N0C, utilizing the allosteric
transcription factor LhgR as an L-2-HG biorecognition element
was constructed for a convenient assay of L-2-HG concentrations.
As a ratiometric sensor, the emission ratio changes of LHGFR are
not affected by the amount of sensor in biological samples or in
living cells, and thus allows more accurate measurements. The
biosensor was optimized by truncating the N-terminal and C-
terminal domains of LhgR or by adding an artificial linker to the
N-terminal and C-terminal regions of LhgR. The optimized
variants, LHGFR0N3C and LHGFR0N7C, increased ΔRmax from
11.47 ± 0.38% to 56.13 ± 0.29% and 60.37 ± 1.30%, respectively,
with significantly improved sensitivity for L-2-HG detection
(Fig. 3b, Supplementary Fig. 6a and Fig. 6e). Besides signal
recognition, signal transduction is also an essential aspect of the
development of biosensors. Various biosensing systems, including
CRISPR-Cas12a- and allosteric transcription factors-mediated
small molecule detector (CaT-SMelor)40, allosteric transcription
factors-based nicked DNA-template-assisted signal transduction
(aTF-NAST)41, and quantum-dot-allosteric transcription factors-
FRET42, have been reported. Other biosensors based on L-2-HG
responding LhgR and the corresponding transduction mechan-
isms could also be developed for the detection of L-2-HG.

L-2-HG is a biomarker for L-2-hydroxyglutaric aciduria and a
variety of cancers. The rapid, sensitive, and specific measurement
of L-2-HG in body fluids is of clinical significance12–15,38,43. The
LODs of LHGFR0N3C and LHGFR0N7C for L-2-HG in serum and
urine were 5.84 μM and 15.74 μM, 1.68 μM and 0.92 μM,

respectively (Supplementary Table 3). The reported concentration
of L-2-HG in plasma of patients with L-2-hydroxyglutaric
aciduria and L-2-HG-associated brain malignancies is about 7–84
μM38,43. Thus, these biosensors especially LHGFR0N7C are sui-
table for the measurement of the endogenous L-2-HG in body
fluids of patients with L-2-HG related diseases. D-2-HG con-
centration in the urine, plasma, and cerebrospinal fluid of
patients with combined D,L-2-hydroxyglutaric aciduria or
D2HGDH mutation-associated D-2-hydroxyglutaric aciduria was
reported to be less than 100 μM38. Serum 2-HG in IDH1-mutated
and IDH2-mutated cancers like acute myeloid leukemia is about
300 μM44. LHGFR0N3C has high LODs for D-2-HG in serum and
urine (781.90 μM and 3876.40 μM), which can prevent the false-
positive results in patients with D-2-hydroxyglutaric aciduria and/
or IDH-mutant cancers (Supplementary Table 4). Compared with
LHGFR0N3C, LHGFR0N7C has a higher affinity with D-2-HG.
However, this biosensor is a sensitive variant with low LOD for
L-2-HG (Supplementary Table 3). Assessment of L-2-HG by
LHGFR0N7C can be easily conducted after a simple dilution to
prevent the possible interference induced by D-2-HG-related
diseases. Besides higher sensitivity and specificity, LHGFR0N3C

and LHGFR0N7C also have superior accuracy and precision over
previous MS-based methods for L-2-HG detection (Fig. 4 and
Supplementary Table 2). Being genetically encoded, LHGFR0N3C

and LHGFR0N7C could be produced in great quantities by
recombinant bacteria with low cost and could be applied in future
rapid and sensitive clinical diagnosis of L-2-HG-related diseases.

L-2-HG plays important roles in diverse physiological processes
such as hypoxic adaption, immunity, and tumorigenesis, and the
establishment of the intracellular detection method of this
metabolite is of great research significance3,12,14,16. Intracellular
L-2-HG concentrations of activated CD8+ T-lymphocytes, renal
cancer cells, and various cells under hypoxic conditions were
about 25 μM to several hundred micromoles3,12,16. Compared
with LHGFR0N7C, LHGFR0N3C with a higher Kd for L-2-HG
(29.33 ± 1.24 μM) is a more viable alternative for the detection of
intracellular L-2-HG (Supplementary Fig. 6a and Fig. 6e, Sup-
plementary Table 1). Based on the in vivo response curves of
LHGFR0N3C, the basal L-2-HG concentration in HEK293FT cells
under physiological conditions was determined to be 22.95 ±
11.22 μM (Fig. 6c), which is similar to results acquired using MS-
based approaches after complicated sample handling and data
analysis2,3. LHGFR0N3C also has a low affinity with D-2-HG. The
LOD of LHGFR0N3C for D-2-HG was 872.59 μM and the Kd value
could not be determined accurately because of the relatively low

Fig. 6 Monitoring L-2-HG fluctuations in human cells by LHGFR0N3C. a Sequential images of mTFP (top), Venus (middle), and Venus/mTFP emission
ratio (bottom, pseudocolored) of single HEK293FT cell expressing LHGFR0N3C. 10mM L-2-HG was added at time point zero (min). Elapsed time (in
minutes) after the addition of L-2-HG is shown at the top of the images. Scale bar, 10 μm. b Time course of the emission ratio changes inside the region of
interest (ROI) depicted from the top-left image of a. c Normalized dose-response curve of LHGFR0N3C expressed in HEK293FT cells with increasing
concentrations (10 nM to 10mM) of L-2-HG. Cells were permeabilized with 10 μM digitonin. The emission ratio of non-permeabilized HEK293FT cells
under physiological conditions is indicated with a black dash line. d Responses of LHGFR0N3C expressed in HEK293FT cells to exogenously added 1 mM
glutarate, L-2-HG, D-2-HG, and glucose. Cells were permeabilized with 10 μM digitonin. All data were normalized to the control (ratio in the absence of any
tested compounds). e Identification of the function of L2HGDH in L-2-HG catabolism by LHGFR0N3C. The emission ratio was measured after co-transfecting
siRNA targeting L2HGDH and LHGFR0N3C for 48 h. ***a: P= 0.0002, **b: P= 0.0058, ***c: P= 0.0002, *d: P= 0.0303. f Detection of hypoxia-induced L-
2-HG accumulation by LHGFR0N3C. Emission ratio changes were recorded after LHGFR0N3C-expressing HEK293FT cells cultured in normoxia or hypoxia in
the absence and presence of 5 mM dimethyl-2-ketoglutarate (DMαKG) for 24 h. The emission ratio was normalized to normoxic conditions without
DMαKG. **a: P= 0.0029, **b: P= 0.0030, ***c: P < 0.0001, ***d: P= 0.0002, **e: P= 0.0016, **f: P= 0.0068, *g: P= 0.0126, *h: P= 0.0139. g
Identification of the functions of LDHA and MDH2 in L-2-HG anabolism by LHGFR0N3C. HEK293FT cells were cultured in the presence of 5 mM DMαKG.
The emission ratio was normalized to the normoxic conditions treated with negative siRNA. **a: P= 0.0011, *b: P= 0.0400, ***c: P= 0.0002, ***d: P=
0.0004, **e: P= 0.0021, ***f: P= 0.0002. Inconsistent initial emission ratios were detected in HEK293FT cells under different conditions. The normalized
emission ratios were thus used to monitor the changes of L-2-HG in different HEK293FT cells. All data shown are means ± s.d. (n= 3, 3, 4, 4, and 4
independent experiments for c, d, e, f, and g). *P < 0.05; **P < 0.01; ***P < 0.001; ns, no significant difference (P≥ 0.05); one-way ANOVA test with
Tukey’s Multiple Comparison Test for e and g; two-tailed t-test for f.
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affinity (Supplementary Fig. 9c and Supplementary Table 1). D-2-
HG at a concentration of 240 μM, which is much higher than its
basal intracellular concentrations, could barely affect the response
of LHGFR0N3C to L-2-HG (Supplementary Fig. 9e). IDH1-R132H
mutation can lead to an extreme intracellular D-2-HG accumu-
lation at millimolar levels45. The expression of IDH1-R132H
resulted in a 4.9% increase in the emission ratio of LHGFR0N3C

under extreme conditions (Supplementary Fig. 19). Calibrated
dose-response curves of LHGFR0N3C for L-2-HG would be
required for monitoring the fluctuations of L-2-HG in cells with
IDH mutations.

The potential of LHGFR for real-time monitoring of fluctua-
tions in intracellular L-2-HG concentrations was illustrated by
using bacterial cells and HEK293FT cells. It was revealed that
carbon starvation also induced temporary intracellular accumu-
lation of L-2-HG in E. coli cells. CsiD and LhgO played indis-
pensable roles in endogenous anabolism and catabolism of L-2-
HG, respectively (Fig. 5f and Supplementary Fig. 13f). In addi-
tion, it was identified that the growth of the strain containing
lhgO mutation was inhibited when high levels of L-2-HG were
present (Fig. 4j-l). Besides being a pathogenic metabolite inducing
various cancers and L-2-hydroxyglutaric aciduria in
humans12–15,38,43, L-2-HG would also be a toxic metabolite to
bacterial cells. L-2-HG catabolizing enzymes, including L2HGDH
in humans9, dL2HGDH in Drosophila17, and LhgO in P. putida7,8

and E. coli6,46, might all exist as detoxification proteins of L-2-HG.
The functions of L2HGDH in L-2-HG catabolism and LDHA and
MDH2-mediated 2-KG reduction in hypoxia-induced L-2-HG
production were also confirmed in HEK293FT cells using LHGFR
as an indicator of L-2-HG. LHGFR can be added to the emerging
list of metabolite sensors that have been established in mamma-
lian cells, such as probes for ATP47, acetylcholine48, glycine24,
and NAD+/NADH49. Several genetically encoded fluorescent
metabolite sensors, like the NAD+/NADH probe SoNar, have
been successfully applied in the screening of anti-tumor agents49.
L-2-HG has been exploited as a potential therapeutic target in
renal cancer14 or a biomarker for cancer diagnosis and prognostic
assessment15,50. The L-2-HG biosensors might also be utilized in
the diagnosis and screening of anti-tumor agents for L-2-HG-
related cancer.

In summary, a regulatory protein LhgR, which is involved in
L-2-HG catabolism and specifically responds to L-2-HG, was
identified in P. putida W619. Two LhgR-based L-2-HG bio-
sensors, LHGFR0N3C and LHGFR0N7C, with high sensitivity,
specificity, and stability, were then constructed. The methods for
quantitative estimation of L-2-HG concentrations in various
biological samples and living cells by using L-2-HG biosensors
were also established. We expect these LhgR-based L-2-HG bio-
sensors to be of practical interest in future research on the
metabolism of L-2-HG and the diagnosis and treatment of
L-2-HG-related diseases.

Methods
Bacterial strains and culture conditions. The bacterial strains used in this study
are listed in Supplementary Data 1. E. coli and its derivatives were cultured in
Luria–Bertani (LB) broth at 37 °C and 180 rpm. P. putida KT2440 and its deri-
vatives were grown in minimal salt mediums (MSMs) containing different carbon
sources at 30 °C and 200 rpm. Antibiotics were used at the following concentra-
tions: tetracycline at 30 μg mL−1; kanamycin at 50 μg mL−1; ampicillin at
100 μg mL−1; spectinomycin, at 50 μg mL−1; and chloramphenicol at 40 μg mL−1.

Cloning of F2-lhgR-F1-lhgO and lhgO. All the plasmids and primers used in this
study are listed in Supplementary Data 1 and Data 2, respectively. The gene seg-
ment F2-lhgR-F1-lhgO of P. putida W619 was synthesized by Tongyong Biosystem
Co., Ltd (China). The lhgO gene of P. putida W619 was amplified and cloned into
pME6032 plasmid using the restriction sites of EcoRI and KpnI to construct
pME6032-lhgO, and the Ptac promoter of pME6032 was replaced by the gene
segment F2-lhgR-F1-lhgO using the restriction sites of SacI and BamHI to

construct pME6032-F2-lhgR-F1-lhgO, then both recombinant plasmids were
transferred into different derivatives of P. putida KT2440 by electroporation,
respectively.

Construction of P. putida KT2440 and E. coli MG1655(DE3) mutants. Genes of
P. putida KT2440 were deleted via allele exchange using the pK18 mobsacB
system51. Briefly, the homologous arms upstream and downstream of the target
gene were PCR amplified and fused together by recombinant PCR. The generated
fusion fragment was cloned into the suicide plasmid pK18mobsacB. The resulting
plasmid was transferred into P. putida KT2440 by electroporation. The single
crossover cells and the second crossover cells were sequentially screened from LB
plates containing 50 μg mL−1 kanamycin or 10% (wt/vol) sucrose, respectively.

To construct the E. coli MG1655(DE3) (ΔcsiD) mutant strain, the homologous
arm upstream of the csiD gene, kanamycin resistance cassette, and the homologous
arm downstream of the csiD gene were PCR amplified using the primers csiD-F1/
csiD-R1, csiD-F2/csiD-R2, and csiD-F3/csiD-R3, respectively. The PCR products
were fused together by recombinant PCR, and the resulting fusion was transferred
into E. coli MG1655(DE3) harboring pTKRed plasmid following isopropyl-β-D-1-
thiogalactopyranoside (IPTG) induction. The recombinant cells were selected on
LB plates containing 50 μg mL−1 kanamycin at 37 °C. The pCP20 plasmid was
transferred into the selected cells, followed by a second screening on LB plates
containing 40 μg mL−1 chloramphenicol at 30 °C, then cultured in LB medium at
42 °C to eliminate pCP20 plasmid. The lhgO mutant of E. coli MG1655(DE3) was
generated by the same process. All mutants were verified by PCR and sequencing.

Enzymatic assay of LhgO. The derivatives of P. putida KT2440 were cultured in
50 mL MSMs with 5 g L−1 different compounds as carbon sources at 30 °C and
200 rpm. The cells were harvested at mid-log phase, washed twice and resuspended
in phosphate-buffered saline (PBS), then lysed by sonication on ice after the
addition of 1 mM phenylmethylsulfonyl fluoride (PMSF). The supernatants
obtained were used for further enzyme activity measurements after a centrifugation
process (13,000 × g for 10 min at 4 °C). Protein concentrations of the supernatants
were determined using the Bradford protein assay kit (Sangon, China).

The activity of LhgO was assayed at 30 °C by monitoring the reduction of
dichlorophenol-indophenol (DCPIP) corresponding to the change of absorbance at
600 nm using a UV/visible spectrophotometer (Ultrospec 2100 pro, Amersham
Biosciences, USA). The 800 μL reaction solution contained 0.1 mM L-2-HG,
0.05 mM DCPIP, 0.2 mM phenazine methosulfate (PMS) in PBS and 40 μL crude
extracts. One unit of LhgO activity was defined as the amount of enzyme that
catalyzed the reduction of 1 μmol of DCPIP per minute.

Expression, purification, and characterization of LhgR. To express and purify
the recombinant LhgR, the lhgR gene was PCR amplified using the primer pair
lhgR-F/lhgR-R, which contained BamHI and HindIII restriction sites, respectively,
and then cloned into the pETDuet-1 plasmid to construct pETDuet-lhgR. The E.
coli BL21(DE3) strains harboring pETDuet-lhgR plasmid were grown to an OD600

of 0.6 in LB medium at 37 °C, after which the cells were induced for 12 h with
1 mM IPTG at 16 °C. The cells were harvested, washed twice, and resuspended in
buffer A (20 mM sodium phosphate and 500 mM sodium chloride, pH 7.4), then
lysed by sonication on ice after the addition of 1 mM PMSF and 10% (vol/vol)
glycerol. The cell lysate was centrifuged at 13,000 × g for 40 min at 4 °C, and the
resultant supernatant was loaded onto a HisTrap HP column (5 mL) equilibrated
with buffer A. The target protein was eluted with buffer B (20 mM sodium
phosphate, 500 mM sodium chloride, and 500 mM imidazole, pH 7.4), analyzed by
12.5% sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE),
and quantified by the Bradford protein assay kit (Sangon, China).

To determine the native molecular weight of LhgR, gel-filtration
chromatography was performed using a Superdex 200 10/300 GL column (GE
Healthcare, USA) and standard proteins including thyroglobulin (669 kDa), ferritin
(440 kDa), aldolase (158 kDa), conalbumin (75 kDa), ovalbumin (43 kDa), and
ribonuclease A (13.7 kDa). The eluent buffer contained 50 mM sodium phosphate
and 150 mM sodium chloride (pH 7.2).

Electrophoretic mobility shift assays. Electrophoretic mobility shift assays
(EMSAs) were carried out using the DNA fragment (F1 or F2) and purified LhgR.
The DNA fragments were first amplified by primer pairs F1-F/F1-R and F2-F/F2-R,
respectively. Then, either fragment at a concentration of 10 nM DNA was incu-
bated with LhgR (0–160 nM) in 20 μL EMSA binding buffer (10 mM Tris-HCl [pH
7.4], 50 mM KCl, 0.5 mM EDTA, 10% [vol/vol] glycerol, and 1 mM dithiothreitol
[DTT]). The binding reactions were carried out at 30 °C for 30 min. Electro-
phoresis was performed on 6% native polyacrylamide gels at 4 °C and 170 V
(constant voltage) for about 45 min, followed by staining with SYBR green I
(TaKaRa, China) and photographing. Analysis of the interaction between lhgO
promoter region (F1) and LHGFR was performed using the same procedure.

To characterize the effector of LhgR, purified LhgR was first incubated with L-
lysine, 5-aminovalerate, glutarate, L-2-HG, D-2-HG, 2-KG, or succinate at 30 °C for
15 min, followed by incubation with the added DNA fragments at 30 °C for 30 min.
The mixtures were subsequently subjected to electrophoresis.
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DNase I footprinting. DNase I footprinting assays were performed using the 6-
carboxyfluorescein (FAM) labeled probe and purified LhgR. The DNA fragment F1
was PCR amplified using the primer pair F1-F/F1-R. The PCR products were
cloned into the pEASY-Blunt plasmid using pEASY-Blunt Cloning Kit (TransGen,
China). The FAM-labeled probes were PCR amplified using the resulting plasmid
and the primer pair M13F-FAM/M13R. Then, 350 ng probes were incubated with
2 μg purified LhgR in a total volume of 40 μL for 30 min at 30 °C. The DNase I
digestion reaction was carried out by adding a total volume of 10 μL solution
containing approximately 0.015 units of DNase I (Promega, USA) and 100 nmol
CaCl2 and further incubating for 1 min at 37 °C, then stopped by adding a total
volume of 140 μL stop solution containing 0.15% (wt/vol) SDS, 200 mM unbuffered
sodium acetate, and 30 mM EDTA. The digested DNA fragments were first
extracted with phenol-chloroform, then precipitated with ethanol and resuspended
in 30 μL MiliQ water. The binding region of LhgR to DNA fragment F2 was
analyzed using the same procedure.

Construction and purification of LHGFR. The genes encoding mTFP and Venus
were synthesized by Tongyong Biosystem Co., Ltd (China). The mTFP gene and
Venus gene were amplified and cloned into pETDuet-1 plasmid using the BamHI
and SacI restriction sites, and SalI and NotI restriction sites, respectively. Then
either the full-length lhgR gene, its truncated variants, or variants with artificial
linkers were inserted between mTFP and Venus by the T5 exonuclease DNA
assembly (TEDA) method52, respectively. The L-2-HG biosensor LHGFR and its
derivatives were expressed and purified using the same procedure. For expression
in HEK293FT cells, the codon-optimized LHGFR0N3C, LHGFR0N7C, or
LHGFR3N7C sequence was synthesized and cloned into pcDNA3.1(+) plasmid
behind a Kozak sequence, 5′-GCCACC-3′. To construct the plasmid for mito-
chondrial expression of LHGFR, the gene of mitochondrial targeting sequence
(MLSLRQSIRFFKPATRTLCSSRYLL) was PCR amplified using primer pair Mito-
F/Mito-R, and primer pair Mito-LHGFR-F/Mito-LHGFR-R was used to amplify
the LHGFR fragment. The products were assembled using overlap PCR with Mito-
F/Mito-LHGFR-R, and cloned into pcDNA3.1(+) plasmid behind a Kozak
sequence using the NheI and NotI restriction sites.

Characterization of LHGFR in vitro. Purified L-2-HG biosensors and different
compounds were diluted by 50 mM Tris-HCl buffer (pH 7.4), mixed together in a
black 96-well plate at a volume ratio of 3:1, and the fluorescence intensities were
measured using an EnSight microplate reader (PerkinElmer, USA) with excitation
at 430 nm, emission at 485 nm (mTFP) and 528 nm (Venus). The dose-response
curves were fitted by OriginPro 2016 software (OriginLab) according to the fol-
lowing formula:

R ¼ Rmax þ
Rmin � Rmax

1þ ð½L-2-HG�=KdÞp
ð1Þ

where R, Rmin, and Rmax refer to the emission ratio of Venus to mTFP, ratio in the
absence of L-2-HG, and ratio at saturation with L-2-HG, respectively. The [L-2-
HG], Kd, and p refer to the L-2-HG concentration, apparent dissociation constant,
and Hill slope, respectively. Emission spectra were recorded at 430 nm excitation,
in steps of 2 nm. Excitation spectra were recorded using emission at 550 nm,
excitation from 380 to 535 nm in steps of 2 nm.

Kinetics of L-2-HG binding by LHGFR were assessed by using SX-20 stopped-
flow fluorimeter (Applied Photophysics, UK). Equal volumes of 1 μM purified
LHGFR in 50 mM Tris-HCl buffer (pH 7.4) and L-2-HG-containing buffer (varying
concentrations) were mixed, with data detected every four milliseconds at 430 nm
excitation. Emission was detected by using a photomultiplier and a 515 nm long-
pass filter, and the detector voltage was set to 400 V. Apparent rate constants (kapp

= kon[L-2-HG]+ koff) determined by fitting the Venus fluorescence increase after
L-2-HG addition with a single exponential equation were plotted against L-2-HG
concentrations ([L-2-HG]). Effects of temperature on LHGFR were detected by
analyzing the dose-response curves for L-2-HG at 25, 28, 31, 34, 37, 40, and 45 °C,
respectively. The reversibility of LHGFR was determined by recording the emission
ratios every minute after the addition of 5 μM purified LhgO, the control test
without the addition of L-2-HG or purified LhgO was run in parallel. The pH
stability of LHGFR was determined using 50 mM Tris-HCl buffer with pH adjusted
from 4.0 to 9.0. The background fluorescence without the addition of LHGFR was
subtracted.

In order to test the ability of LHGFR for quantitative analysis L-2-HG in
different biological samples, purified LHGFR was diluted by 50 mM Tris-HCl (pH
7.4), while varying concentrations of L-2-HG were added into the serum and urine
of a healthy adult and bacteria culture medium and filtered through a 0.22 μm
filter, respectively. The serum and urine were collected from a healthy adult (the
first author of this article). The blood was collected by using promoting coagulating
tubes and venous blood collection method, placed for 2 h at room temperature, and
serum was prepared by centrifugation for 10 min at 2000 × g and 4 °C. The urine
collected from the experiment operator was diluted with an equal volume of
50 mM Tris-HCl buffer (pH 7.4). The processed serum and urine were filtered
through a 0.22 μm filter and stored at −20 °C until L-2-HG addition. The mixtures
of purified LHGFR and L-2-HG in different biological samples were then incubated
in a black 96-well plate at a volume ratio of 3:1, and the emission ratios were
determined using an EnSight microplate reader. The background fluorescence

without the addition of LHGFR was subtracted. The formulas for the quantitative
analysis of L-2-HG in different biological samples by LHGFR0N3C and LHGFR0N7C

were as follows:

½L-2-HG�ðμMÞ ¼ 26:20974 ´
0:79781

2:17827� R
� 1

� �1:1705

ð2Þ

where R refers to the emission ratio of Venus to mTFP determined by LHGFR0N3C,
and

½L-2-HG�ðμMÞ ¼ 7:71913 ´
0:99281

2:67083� R
� 1

� �1:0787

ð3Þ

where R refers to the emission ratio of Venus to mTFP determined by LHGFR0N7C.

Quantification of L-2-HG by HPLC and LC-MS/MS. When L-2-HG was used as a
carbon source to cultivate P. putida KT2440, its consumption was analyzed by
using high-performance liquid chromatography (HPLC) system (Agilent
1100 series, Agilent Technologies, USA) equipped with an Aminex HPX-87H
column (300 × 7.8 mm, Bio-Rad, USA) and a RID detector at 55 °C. The mobile
phase was 0.1% formic acid at a flow rate of 0.4 mLmin−1.

To detect L-2-HG concentrations in various biological samples by liquid
chromatography-tandem mass spectrometry (LC-MS/MS) system, the samples
containing D,L-2-hydroxyglutarate disodium salt (2,3,3-D3) as internal standard
(ITSD) were centrifuged at 13,000 × g for 15 min, then filtered through a 0.22 μm
filter. The serum samples were mixed with methanol at a volume ratio of 1:3 and
vortexed for 2 min to remove protein before centrifugation. Samples were analyzed
by using a Thermo ultimate 3000 rapid separation liquid chromatography system
(ThermoFisher, USA) coupled with a Bruker impact HD ESI-Q-TOF mass
spectrometer (Bruker Daltonics, Germany) in negative ion mode and equipped
with a Chirobiotic R column (250 × 4.6 mm, Supelco Analytical, USA). The mobile
phase was prepared from (A) 0.1% triethylamine adjusted to pH 4.5 with acetic
acid or (B) methanol. The quantification was conducted with an injection volume
of 20 μL, a constant 5% gradient of (B) at a flow rate of 0.5 mLmin−1, and a total
analysis time of 15 min.

Characterization of LHGFR in living bacteria. E. coli BL21(DE3) strains har-
boring either pETDuet-LHGFR0N3C, pETDuet-LHGFR0N7C, or pETDuet-
LHGFR3N7C were grown to an OD600 of 0.6 in LB medium at 37 °C, after which the
cells were induced overnight in the presence of 1 mM IPTG at 16 °C. The cultures
were collected by centrifugation at 6000 × g for 5 min, washed three times, and
resuspended to an OD600 of 2.5 by carbon starvation medium (MSM containing no
carbon source) or glucose medium (MSM containing 20 mM glucose).

To characterize the sensitivity and specificity of LHGFR expressed in E. coli
BL21(DE3), 90 μL cell suspensions following 8 h carbon starvation were mixed with
10 μL increasing concentrations of L-2-HG or other compounds, and then added
into a black 96-well plate (total 100 μL/per well), the fluorescence intensities were
determined using an EnSight microplate reader (PerkinElmer, USA) and the
following instrument settings: excitation at 430 nm, emission at 485 nm (mTFP)
and 528 nm (Venus), time intervals of 5 min, the temperature at 37 °C, and shake at
180 rpm. For carbon starvation experiments, cell suspensions in carbon starvation
medium or glucose medium were added into a black 96-well plate (100 μL/per
well), then the fluorescence intensities were monitored every ten minutes. In order
to analyze functions of CsiD and LhgO in endogenous L-2-HG anabolism and
catabolism during carbon starvation, pETDuet-LHGFR0N3C, pETDuet-
LHGFR0N7C, or pETDuet-LHGFR3N7C was transferred into E. coli MG1655(DE3)
and its variants, and the assays were performed using the same procedure.

Cell culture and live-cell imaging. HEK293FT cells were cultured in high-glucose
Dulbecco’s modified eagle medium (DMEM) supplemented with 10% (vol/vol)
fetal bovine serum (FBS), 100 units mL−1 penicillin, and 100 μg mL−1 strepto-
mycin (all purchased from ThermoFisher, USA), and kept at 37 °C in humidified
air containing 5% CO2. For hypoxia experiments, cells were kept in a compact O2

and CO2 subchamber controller (ProOx C21, BioSpherix, USA) at 2% O2, 5% CO2,
and balanced with N2 for 24 h. For the construction of LHGFR expressing cell,
HEK293FT cells were plated in 24-well plates so that they reached 70-90% con-
fluency 24 h after plating, the medium was refreshed 2 h before transfection.
Lipoplexes were first prepared in 50 μL Opti-MEM Reduced Serum Medium
(ThermoFisher, USA) per well containing 1.5 μL Lipofectamine 3000 (Thermo-
Fisher, USA) and 1 μg pcDNA3.1(+) plasmid encoding either LHGFR0N3C,
LHGFR0N7C, or LHGFR3N7C, and incubated for 15 min at room temperature, then
added into the cell cultures.

For live-cell imaging, HEK293FT cells were plated on a poly-L-lysine pre-coated
35 mm glass-bottom dish and transfected with LHGFR after 24 h. Live-cell imaging
was carried out 48 h following transfection by using a Zeiss 880 confocal
microscope equipped with an Objective C-Apochromat ×40/1.2W autocorr M27
lens, a 458 nm argon laser, and a full-spectrum fluorescence detector. The emission
of LHGFR expressed in HEK293FT cells was divided into a 463–495 nm channel
(mTFP) and a 505–700 channel (Venus). Images were captured using 800 gain,
1024 × 1024 frame size, and 8 bit depth. The fluorescence intensities of each
channel were analyzed in ZEN 3.1 software, and raw data were exported to Image-
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Pro Plus software for ratio image analysis. The Venus/mTFP emission ratio was
calculated by dividing pixel-by-pixel a Venus image with a mTFP image. To real-
time monitor the emission ratio of LHGFR in single living cells, single-cell with
moderately fluorescent was imaged every 30 seconds, and 10 mM L-2-HG was
added into the cultures when the ratio of two-channel fluorescence intensities was
stable.

Characterization of LHGFR in HEK293FT cells. To characterize the sensitivity
and specificity of LHGFR expressed in HEK293FT cells, cells were trypsinized 48 h
following transfection and suspended in 1× Hank’s balanced salt solution sup-
plemented with 20 mM HEPES. Increasing concentrations of L-2-HG or other
compounds including glutarate, D-2-HG, and glucose was mixed with the cell
suspensions in a 96-well plate, respectively. Digitonin at a concentration of 10 μM
was used to induce cell permeabilization and deplete intracellular L-2-HG for
in vivo response curves construction. Then, the fluorescence intensities were
determined by a SpectraMax i3 fluorescence plate reader (Molecular Devices, USA)
with excitation at 430 nm and emission at 485 nm (mTFP) and 528 nm (Venus).
Basal L-2-HG concentration in HEK293FT cells under physiological conditions was
determined by substituting the emission ratios of non-permeabilized
HEK293FT cells into the calibrated in vivo response curves.

For the detection of hypoxia-induced production of L-2-HG, LHGFR0N3C or
LHGFR3N7C was expressed in HEK293FT cells and cultured sequentially under
normoxic conditions for 24 h and hypoxic conditions for 24 h in the absence or
presence of 5 mM dimethyl-2-ketoglutarate (DMαKG). The preparation of cell
suspensions and the measurement of emission ratios were performed using the
same procedure. The background fluorescence was subtracted at each emission
wavelength.

siRNA experiments. The following Silencer Select siRNAs used in this study were
purchased from ThermoFisher Scientific (USA): negative control (4390846),
L2HGDH-a (s36692), L2HGDH-b (s36693), LDHA (s351), and MDH2 (s8622). To
analyze L2HGDH functions in L-2-HG catabolism, siRNA targeting L2HGDH and
pcDNA3.1(+) plasmid encoding either LHGFR0N3C, LHGFR0N7C, or LHGFR3N7C

were mixed with Lipofectamine 3000 Transfection Reagent (ThermoFisher, USA)
in Opti-MEM Reduced Serum Medium, and the lipoplexes prepared were trans-
fected into HEK293FT cells according to the manufacturer’s protocol. The fluor-
escence intensities were measured by a SpectraMax i3 fluorescence plate reader 48
h following transfection. Similarly, HEK293FT cells were transfected by
LHGFR0N3C or LHGFR3N7C and siRNAs targeting LDHA and MDH2 separately or
in combination. After transfection, cells were cultured sequentially under normoxic
conditions for 24 h and hypoxic conditions for 24 h in the presence of 5 mM
DMαKG, then the fluorescence intensities were measured. The cells cultured under
the normoxic conditions in the presence of 5 mM DMαKG for 48 h were set as
control. The background fluorescence was subtracted at each emission wavelength.

Statistics and reproducibility. Software for initial data processing was Microsoft
Excel 2016, and subsequent analyses were carried out using OriginPro 2016
(OriginLab), OriginPro 2019 (OriginLab), Graphpad Prism 5 (Graphpad), and
Graphpad Prism 7 (Graphpad). The fluorescence intensities were determined by
using Kaleido 3.0 (PerkinElmer) and SoftMax Pro software 7.0.2 (Molecular
Devices). The imaging data were obtained and processed by Zen 3.1 (Zeiss) and
Image-Pro Plus 6.0. All data shown are means ± s.d. and were analyzed using one-
way ANOVA test with Tukey’s Multiple Comparison Test or two-tailed t-test
where appropriate; *P < 0.05; **P < 0.01; ***P < 0.001; ns, no significant difference
(P ≥ 0.05). For SDS-PAGE analyses, EMSAs, and fluorescence imaging experi-
ments, similar results were obtained from three independent experiments. Detailed
data analyses are described in the text.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data supporting the findings of this study are available within the article, its
Supplementary Information files, and the Source Data file provided with this paper. A
reporting summary for this article is available as a Supplementary Information
file. Source data are provided with this paper.
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