Phosphorus Chemistry

Nacnac-Cobalt-Mediated P_{4} Transformations

Fabian Spitzer, ${ }^{[a]}$ Christian Graßl, ${ }^{[a]}$ Gábor Balázs, ${ }^{[a]}$ Eric Mädl, ${ }^{[a]}$ Martin Keilwerth, ${ }^{[b]}$ Eva M. ZoInhofer, ${ }^{[b]}$ Karsten Meyer, ${ }^{[b]}$ and Manfred Scheer ${ }^{*[a]}$

Dedicated to Professor Walter Frank on the occasion of his 60th birthday

Abstract

A comparison of P_{4} activations mediated by lowvalent β-diketiminato (L) cobalt complexes is presented. The formal Co^{0} source $\left[\mathrm{K}_{2}\left(\mathrm{~L}^{3} \mathrm{Co}\right)_{2}\left(\mu_{2}: \eta^{1}, \eta^{1}-\mathrm{N}_{2}\right)\right]$ (1) reacts with P_{4} to form a mixture of the monoanionic complexes $\left[\mathrm{K}\left(\mathrm{thff}_{6}\right]\right.$ $\left[\left(\mathrm{L}^{3} \mathrm{Co}\right)_{2}\left(\mu_{2}: \eta^{4}, \eta^{4}-\mathrm{P}_{4}\right)\right]$ (2) and $\left[\mathrm{K}(\mathrm{thf})_{6}\right]\left[\left(\mathrm{L}^{3} \mathrm{Co}\right)_{2}\left(\mu_{2}: \eta^{3}, \eta^{3}-P_{3}\right)\right]$ (3). The analogue Co^{\prime} precursor $\left[\mathrm{L}^{3} \mathrm{Co}(\mathrm{tol})\right]$ (4 a), however, selectively yields the corresponding neutral derivative $\left[\left(L^{3} C o\right)_{2}\left(\mu_{2}: \eta^{4}, \eta^{4}-P_{4}\right)\right]$ (5a). Compound 5 a undergoes thermal P atom loss to form the unprecedented complex $\left[\left(\mathrm{L}^{3} \mathrm{Co}\right)_{2}\left(\mu_{2}: \eta^{3}, \eta^{3}-\mathrm{P}_{3}\right)\right]$ (6). The products 2 and 3 can be ob-

tained selectively by an one-electron reduction of their neutral precursors 5a and 6, respectively. The electrochemical behaviour of 2,3,5a, and 6 is monitored by cyclic voltammetry and their magnetism is examined by SQUID measurements and the Evans method. The initial Co'-mediated P_{4} activation is not influenced by applying the structurally different ligands L^{1} and L^{2}, which is proven by the formation of the isostructural products $\left[(\mathrm{LCo})_{2}\left(\mu_{2}: \eta^{4}, \eta^{4}-\mathrm{P}_{4}\right)\right]\left[\mathrm{L}=\mathrm{L}^{3}(\mathbf{5 a}), \mathrm{L}^{1}\right.$ (5b), $\left.L^{2}(5 c)\right]$.

Introduction

The activation of white phosphorus $\left(\mathrm{P}_{4}\right)$ with transition metal (TM) complexes with the objective of generating organophosphorus compounds has been an ongoing research topic. ${ }^{[1]}$ For this purpose, an understanding of the P_{4} transformation pathway in the coordination sphere of transition metals is necessary. Thus, a variety of P_{n} ligand moieties were stabilized to give insight into the stepwise P_{4} degradation and aggregation processes using well-established ligand systems such as the Cp^{R} family ($C p=$ cyclopentadieny)). ${ }^{[1]}$ However, over the last years, β-diketiminato (nacnac $=\mathrm{L}$) ligand systems have gained increasing attention in mild P_{4} activations using M^{\prime} precursors: The initial P_{4} fixation step of an intact P_{4} tetrahedron at a metal center was achieved at an electron-rich Cu^{\prime} nacnac compound. ${ }^{[2]}$ In reactions with transition metal complexes of

[^0]Groups $5^{[3]}$ and $8-10,{ }^{[4]}$ products with modified $\left[P_{2}\right]^{2-},\left[P_{4}\right]^{0}$, $\left[P_{4}\right]^{2-}$ and $\left[P_{8}\right]^{4-}$ ligands, respectively, were obtained. So far, for nacnac systems, a $\left[P_{3}\right]^{3-}$ ligand was found solely in compound $\left[\left(\mathrm{L}^{3} \mathrm{VR}\right)_{2}\left(\text { cyclo }-\mathrm{P}_{3}\right)\right]^{n-}\left(\mathrm{R}=\mathrm{N}(\text { tolyl })_{2}, n=0,1 ; \mathrm{R}=\mathrm{O}(\right.$ dipp $\left.), n=0\right)$ and $\left[\left\{\mathrm{L}^{3} \mathrm{~V}\left(\mathrm{~N}(\text { tolyl) })_{2}\right)\right\}_{2}\left(\mu_{2}: \eta^{3}, \eta^{2}\right.\right.$-cyclo- $\left.\left.\mathrm{P}_{3}\right)\right]$ (A, Scheme 1). ${ }^{[3]}$
However, cyclo-P P_{3} complexes of the type $\left[\mathrm{LM}\left(\mu_{2}: \eta^{3}, \eta^{3}-\right.\right.$ $\left.\left.\mathrm{P}_{3}\right) \mathrm{M}^{\prime} \mathrm{L}^{\prime}\right]^{ \pm n}$ have been structurally characterized using neutral, tridentate triphos (1,1,1-tris(diphenylphosphinomethyl)ethane)

A

B

$n=0, L=L^{0}(E 1), L^{4}(E 2)$ $n=1, L=L^{0}($ F1 $), L^{4}($ F2 $)$

L^{1}

L 2

Scheme 1. Selected examples of $P_{n}-T M$ complexes containing ligands $L^{0}-L^{4}$ ($\mathbf{L}^{0}=\mathrm{CH}\left[\mathrm{CHN}\left(2,6-\mathrm{Pr}_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right)\right]_{2}, \mathrm{~L}^{1}=\mathrm{CH}\left[\mathrm{C}(\mathrm{Me}) \mathrm{N}\left(2,6-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right)\right]_{2}, \mathrm{~L}^{2}=\mathrm{CH}[\mathrm{CHN}(2,6-$ $\left.\left.\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right]_{2}, \mathrm{~L}^{3}=\mathrm{CH}\left[\mathrm{C}(\mathrm{Me}) \mathrm{N}\left(2,6-\mathrm{Pr}_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right)\right]_{2}, \mathrm{~L}^{4}=\mathrm{CH}\left[\mathrm{C}(\mathrm{Me}) \mathrm{N}\left(2,6-\mathrm{Et}_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right)\right]_{2}\right)$. Bottom: Comparison of the nacnac ligands used in this study, $\mathrm{L}^{1}, \mathrm{~L}^{2}$ and L^{3}. ${ }^{[5]}$
and etriphos (1,1,1-tris(diethylphosphinomethyl)ethane) ligands in different combinations with 3d metals ($\mathrm{Fe}, \mathrm{Co}, \mathrm{Ni}$) and 4d metals (Rh, Pd). ${ }^{[6]}$ The influence of the ligand substituents in Fe'-mediated P_{4} transformation has recently been illustrated by a comparative study using a set of ligands L' ${ }^{1} L^{3}$ (Scheme 1). ${ }^{[7]}$ Despite the application of the same reaction conditions, different products were obtained, which are sensitively dependent on small changes of the ligand substituents. 2,6-Diisopropylphenyl (dipp) substituents as the ligands' aromatic flanking groups support the formation of the dinuclear complexes $\left[\left(L^{3} \mathrm{Fe}\right)_{2}\left(\mu_{2}: \eta^{4}, \eta^{4}-\mathrm{P}_{4}\right)\right] \quad(\mathbf{B})^{[7]}$ and $\left[\left(\mathrm{L}^{0} \mathrm{Fe}\right)_{2}\left(\mu_{2}: \eta^{2}, \eta^{2}-\mathrm{P}_{2}\right)_{2}\right] \quad(\mathbf{C}){ }^{[4]]}$ The latter was synthesized by the Driess group. ${ }^{[4 c]}$ The ligands L^{0} and L^{3} only differ in their backbone substituents. However, for sterically less demanding 2,6-dimethylphenyl (dmp) substituents, the formation of the tetranuclear complexes $\left[(\mathrm{LFe})_{4}\left(\mu_{4}: \eta^{2}, \eta^{2}, \eta^{2}, \eta^{2}-\mathrm{P}_{8}\right)\right]\left[\mathrm{L}=\mathrm{L}^{1}\right.$ (D1), L^{2} (D2)] with dimerized P_{4} units was observed. ${ }^{[7]}$ These results demonstrate that the product formation is affected by both the aromatic flanking groups and the ligand backbone substituents. Simultaneously, we investigated the $\left[L^{3} \mathrm{Co}\right]$-mediated transformations of white phosphorus, which resulted in novel $\mathrm{P}_{4^{-}}$and P_{3}-containing complexes (vide infra). In the meantime, Driess and co-workers reported P_{4} activation by [LCo] fragments leading to the neutral complexes $\quad\left[(\mathrm{LCo})_{2}\left(\mu_{2}: \eta^{4}, \eta^{4}-P_{4}\right)\right] \quad\left[\mathrm{L}=\mathrm{L}^{0} \quad\right.$ (E1), $\quad \mathrm{L}^{4} \quad$ (E2) $]$ (Scheme 1). ${ }^{[4]]}$ One-electron reduction led to the monoanionic products $\left[K(d m e)_{4}\left[(L C o)_{2}\left(\mu_{2}: \eta^{4}, \eta^{4}-P_{4}\right)\right]\left[L=L^{0}(F 1), L^{4}(F 2)\right]\right.$ and transformed the $\left[\mathrm{P}_{4}\right]^{0}$ middle deck into a $\left[\mathrm{P}_{4}\right]^{2-}$ ligand. Recently, Wolf and co-workers have reported on [(BIAN)Co] -mediated P_{4} activations with a nacnac-related bidentate redox non-innocent BIAN (1,2-bis(2,6-diisopropylphenylimino)acenaphthene) ligand system yielding compounds containing $\left[\mathrm{P}_{4}\right]^{4-}$ moieties. ${ }^{[8]}$
Motivated by our first results with $\left[L^{3} \mathrm{Co}\right.$] compounds, we speculated that the P_{4} activation outcome should be sensitive to the oxidation state of the precursor (Co° versus Co^{\prime}). Additionally, we wanted to address the question of the ligands' influence ($L^{1}-L^{3}$) in Co'-mediated P_{4} activations and we were intrigued by the observed P -atom extrusion from the initially obtained P_{4} middle deck to form P_{3} compounds. The latter ones are still quite rare in comparison to P_{4} ligand complexes.
Here, we report on the P_{4} activation by a formal Co° precursor yielding the monoanionic $\left[K(t h f)_{6}\right]\left[\left(\mathrm{L}^{3} \mathrm{Co}\right)_{2}\left(\mu_{2}: \eta^{4}, \eta^{4}-\mathrm{P}_{4}\right)\right]$ (2) and $\left[K(\text { thff })_{6}\right]\left[\left(\mathrm{L}^{3} \mathrm{Co}\right)_{2}\left(\mu_{2}: \eta^{3}, \eta^{3}-\mathrm{P}_{3}\right)\right]$ (3). Through a Co'-mediated P_{4} transformation at room temperature or under thermolytic conditions, the corresponding neutral relatives are obtained, which generate $\mathbf{2}$ and $\mathbf{3}$ selectively after subsequent one-electron reduction. The redox chemistry of the products was investigated by cyclic voltammetry (CV), and their magnetic behavior was examined both in solution (Evans method) and in the solid state (SQUID).

Results and Discussion

The formal Co^{0} precursor $\left[\mathrm{K}_{2}\left(\mathrm{~L}^{3} \mathrm{Co}\right)_{2}\left(\mu_{2}: \eta^{1}, \eta^{1}-\mathrm{N}_{2}\right)\right]$ (1) was synthesized by a one-pot reaction and was isolated as two different solvomorphs, 1 -solv (solv $=n$-hexane ${ }^{[9]}$ or OEt_{2}). ${ }^{[10]}$ The X -ray structures of 1 -solv consist of two $\left[L^{3} \mathrm{Co}\right]$ fragments bridged by a N_{2} unit. Two potassium atoms cover the N_{2} moiety and are
coordinated in the phenyl pockets of the dipp substituents. ${ }^{[11]}$ The $\mathrm{N}-\mathrm{N}$ distance in $1 \cdot n$-hexane/ OEt_{2} is $1.215(3)$ and $1.220(4) \AA$, respectively, which is in line with the that (1.220(2) \AA) of the previously reported $\left[\mathrm{K}_{2}\left(\mathrm{~L}^{5} \mathrm{Co}\right)_{2}\left(\mu_{2}: \eta^{1}, \eta^{1}-\mathrm{N}_{2}\right)\right]$ $\left[L^{5}=\mathrm{CH}\left[\mathrm{C}(t \mathrm{Bu}) \mathrm{N}\left(2,6-\mathrm{iPr}_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right)\right]_{2}\right] .{ }^{[12]}$ The presence of a $\left[\mathrm{N}_{2}\right]^{2-}$ moiety in $1 \cdot n$-hexane is supported by Raman spectroscopy $\left(v_{\mathrm{NN}}=1568 \mathrm{~cm}^{-1}\right) .{ }^{[9]}$ The reaction of 1 with P_{4} proceeds by N_{2} evolution, showing that the formal $\left[\mathrm{N}_{2}\right]^{2-}$ species is re-oxidized and revealing 1 as a formal dicobalt(0) starting material.

Conducting the reaction in 1:1 stoichiometry leads to the complete consumption of P_{4} and the formation of a mixture of the monoanionic complexes $\left[\mathrm{K}(\mathrm{thf})_{6}\right]\left[\left(\mathrm{L}^{3} \mathrm{Co}\right)_{2}\left(\mu_{2}: \eta^{4}, \eta^{4}-\mathrm{P}_{4}\right)\right]$ (2) and $\left[K\left(t h f_{6}\right]\left[\left(\mathrm{L}^{3} \mathrm{Co}\right)_{2}\left(\mu_{2}: \eta^{3}, \eta^{3}-\mathrm{P}_{3}\right)\right]\right.$ (3), which were detected by ${ }^{1} \mathrm{H}$ NMR spectroscopy. ${ }^{[13]}$ The appearance of a cyclo- P_{3} moiety in product 3 indicates that an extrusion of one P atom from the cyclo- P_{4} moiety in $\mathbf{2}$ is possible. However, if the reaction is conducted with two equivalents of P_{4}, compound $\mathbf{2}$ is the only product found in the ${ }^{1} \mathrm{H}$ NMR spectrum.

The solid state structure of $\mathbf{2 \cdot 2}$ thf reveals a salt consisting of two $\left[\mathrm{K}(\mathrm{thf})_{6}\right]^{+}$cations and two crystallographically distinguishable $\left[\left(L^{3} \mathrm{Co}\right)_{2}\left(\mu_{2}: \eta^{4}, \eta^{4}-P_{4}\right)\right]^{-}$monoanions (Figure 1). ${ }^{[9]}$ Each anion is a centrosymmetric dicobalt complex that consists of two [L ${ }^{3} \mathrm{Co}$] fragments bridged by a planar cyclo- P_{4} ligand. The $\mathrm{P}-\mathrm{P}$

Figure 1. Anionic part of the molecular structure of 2. Hydrogen atoms and aromatic flanking groups are omitted for clarity; thermal ellipsoids are drawn at 50% probability level. The torsion angle Θ is depicted spanning between the Co...Co' axis and the plane formed by the nitrogen atoms and the methine carbon in the ligand backbone.
distances amount to $2.1913(10)-2.1951(10) \AA$ in anion 1 and $2.1897(10)-2.2004(10) \AA$ in anion 2 , respectively. These values correspond well with the cyclo- $\left[\mathrm{P}_{4}\right]^{2-}$ moiety (2.178(1) and $2.207(1) \AA$) of the reported compound $\left[\left(L^{3} \mathrm{Fe}\right)_{2}\left(\mu_{2}: \eta^{4}, \eta^{4}-\mathrm{P}_{4}\right)\right](\mathbf{B}){ }^{[7]}$ The central P_{4} ligands in 2 are almost square planar with interior angles of 86.07(3) and 93.92(3) ${ }^{\circ}$ in anion 1 and 86.38(3) and $93.62(3)^{\circ}$ in anion 2. The Co-P distances range from 2.3362(7)$2.4149(7) \AA$ in anion 1 and $2.3441(7)-2.4190(7) \AA$ in anion 2 . Selected atomic distances of compound 2 are summarized in Table 1. Minor deviations within the atomic parameters of compound $2 \cdot 2$ thf and the related compounds $\left[\mathrm{K}(\mathrm{dme})_{4}\right]$ $\left[(\mathrm{LCo})_{2}\left(\mu_{2}: \eta^{4}, \eta^{4}-P_{4}\right)\right]\left[L=L^{0}\right.$ (F1), L^{4} (F2)] can be explained by small changes in the organic environment of the counter ion and the nacnac ligands of the complex monoanions. They may affect the Co...Co' distances and their coordination geometry (torsion angle Θ between the Co...Co' axis and the plane formed by the nitrogen atoms and the methine carbon in the ligand backbone; Figure 1 for graphical presentation of Θ). ${ }^{[14]}$

The monoanionic $\left[\left(L^{3} \mathrm{Co}\right)_{2}\left(\mu_{2}: \eta^{3}, \eta^{3}-P_{3}\right)\right]^{-}$was obtained in two different solvomorphs $\left[\mathrm{K}(\mathrm{dme})_{4}\right]\left[\left(\mathrm{L}^{3} \mathrm{Co}\right)_{2}\left(\mu_{2}: \eta^{3}, \eta^{3}-\mathrm{P}_{3}\right)\right] \cdot d m e \quad(3 \mathrm{a})$

[a] Anion of F2 is not centrosymmetric. Therefore, four individual $d(\mathrm{P}-\mathrm{P})$ and two Θ values are given.
and $\left[K(t h f)_{6}\right]\left[\left(L^{3} \mathrm{Co}\right)_{2}\left(\mu_{2}: \eta^{3}, \eta^{3}-\mathrm{P}_{3}\right)\right] \cdot 2$ thf (3 b). Both compounds are ionic and consist of solvent (DME or THF) molecules, one sol-vent-saturated potassium counter ion, and the $\left[\left(\mathrm{L}^{3} \mathrm{Co}\right)_{2}\left(\mu_{2}: \eta^{3}, \eta^{3}\right.\right.$ -$\left.P_{3}\right)^{-}$monoanion (Figures 2 and 3). In both X-ray structures, the complex anions are built from two $\left[L^{3} \mathrm{Co}\right]$ fragments bridged

Figure 2. Comparison of the anions in the molecular structures of 3a (left) and $\mathbf{3} \mathbf{b}$ (right). Hydrogen atoms and aromatic flanking groups are omitted for clarity; thermal ellipsoids of Co and P atoms are drawn at 50% probability level; major component of disordered cyclo- P_{3} ligand is drawn in $\mathbf{3 a}$.

Figure 3. Anionic part of the molecular structure of $\mathbf{3} \mathbf{b}$. Hydrogen atoms are omitted for clarity; thermal ellipsoids are drawn at 50% probability level.
by a P_{3} triangle. In 3 a, the L^{3} ligand planes are almost parallel to each other with an dihedral angle of $2.00(7)^{\circ}$ (N1-N2 versus N3-N4). However, in $\mathbf{3} \mathbf{b}$, the ligand planes are in a twisted conformation with a dihedral angel of $74.2(4)^{\circ}$ (N1-N2 versus N3N4, Figure 2).

The different complex anion conformations may originate from packing effects directed by the unequally shaped counter cations. The cyclo- P_{3} middle deck is disordered over two positions in $3 \mathbf{a}$ (occupancy 81:19). ${ }^{[15]}$ The middle deck in $\mathbf{3 b}$, however, is localized at one distinct position. As can be seen in Table 2, the P-P distances in $\mathbf{3 a}$ are similar to the ones in the

Table 2. Comparison of selected atomic distances and angles in the $\left[\left(L^{3} \mathrm{Co}\right)_{2}\left(\mu_{2}: \eta^{3}, \eta^{3}-\mathrm{P}_{3}\right)\right]^{-}$anion in $3 \mathbf{a}$ (major component) and 3b, $\left[\left\{L^{3} \mathrm{~V}\left(\mathrm{~N}(\text { tolyl })_{2}\right)\right\}_{2}\left(\mu_{2}: \eta^{3}, \eta^{2}-\right.\right.$ cyclo- $\left.\left.\mathrm{P}_{3}\right)\right] \quad(\mathrm{A})^{[3 c]}$ and the dication in [(triphos) $\mathrm{Co}\left(\mu_{2}: \eta^{3}, \eta^{3}-\right.$ cyclo- $\left.\mathrm{P}_{3}\right) \mathrm{Fe}$ (etriphos)] $\left(\mathrm{PF}_{6}\right)_{2}(\mathrm{G})^{[66]}$

Complex	$\mathbf{3 a}$	$\mathbf{3} \mathbf{b}$	$\mathbf{A}^{[3 \mathrm{Cc}]}$	$\mathbf{G}^{[6 \mathrm{~b}]}$
	$2.1674(13)$	$2.217(4)$	$2.1658(10)$	$2.226(8)$
$d(\mathrm{P}-\mathrm{P})[\AA \AA]$	$2.1790(16)$	$2.224(4)$	$2.1804(9)$	$2.229(8)$
	$2.3303(17)$	$2.237(4)$	$2.2155(9)$	$2.234(8)$
$\Varangle(\mathrm{P}-\mathrm{P}-\mathrm{P})\left[{ }^{\circ}\right]$	$57.34(5)$	$59.59(13)$	$59.03(3)$	
	$57.82(5)$	$59.93(14)$	$59.68(3)$	-
	$64.84(5)$	$60.48(13)$	$61.29(3)$	
$d\left(\mathrm{M} \cdots \mathrm{M}^{\prime}\right)[\AA]$	$3.7359(5)$	$3.724(2)$	4.460	3.80
$\Theta\left[{ }^{\circ}\right]$	$9.43(7)$	$8.7(3)$	-	-
	$12.22(7)$	$13.5(6)$		

nacnac containing compound $\left[\left\{L^{3} \mathrm{~V}\left(\mathrm{~N}(\text { tolyl) })_{2}\right)\right\}_{2}\left(\mu_{2}: \eta^{3}, \eta^{2}\right.\right.$-cyclo- $\left.\left.\mathrm{P}_{3}\right)\right]$ (A), ${ }^{[3 c]}$ displaying a cyclo- $\left[\mathrm{P}_{3}\right]^{3-}$ moiety. In $3 \mathbf{b}$, they compare better with the ones in [(triphos) $\mathrm{Co}\left(\mu_{2}: \eta^{3}, \eta^{3}\right.$-cyclo$\left.P_{3}\right) \mathrm{Fe}($ etriphos $\left.)\right]\left(\mathrm{PF}_{6}\right)_{2}(G){ }^{[66]}$ Overall, they are in line with $\mathrm{P}-\mathrm{P}$ single bonds [for comparison: $\mathrm{P}-\mathrm{P}$ single bond in white phosphorus determined by X-ray diffraction: 2.209(5) $\AA_{,}^{[16]}$ electron diffraction: 2.1994(3) $\AA_{,}{ }^{[17]}$ Raman spectroscopy: 2.2228(5) $\AA_{,}^{[18]}$ and DFT calculations: 2.1994(3) $\left.\AA^{[17]}\right]$. The Co-P distances in 3 a are between 2.2046(17) and $2.3684(8) \AA$ and for $\mathbf{3} \mathbf{b}$ in the range of $2.248(3)$ and $2.277(3) \AA$. The Co...Co' distance in 3 a is $3.7359(5)$ and amounts to 3.724 (2) \AA in $\mathbf{3 b}$, which is slightly elongated compared to 2 (3.603 and $3.625 \AA$, Table 1).
The ${ }^{1} \mathrm{H}$ NMR spectra in $\left[\mathrm{D}_{8}\right]$ THF display signals between 11.42 and -35.29 ppm for $\mathbf{2}^{[9]}$ and 8.15 and -12.85 ppm for 3 , respectively. Except for the THF and DME signals, respectively, the ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{3 a}, \mathbf{b}$ do not deviate from each other. No signals are detected in the ${ }^{31}{ }^{1}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra for 2 and 3 due to their paramagnetic nature. Their magnetic moment ($\mu_{\text {eff }}$) in $\left[D_{8}\right]$ THF solution (RT) was determined by the Evans method: $3.90 \mu_{B}$ (2) and $3.51 \mu_{B}$ (3). In the solid state, these values are confirmed by SQUID measurements displaying a gradual decrease of the magnetic moment in the temperature range from 300 to 2 K of 3.80 to $3.30 \mu_{\mathrm{B}}$ in 2 and 3.58 to $1.70 \mu_{\mathrm{B}}$ in $\mathbf{3}$ a. Therefore, the electronic structure of 2 is best described as containing a $\left[P_{4}\right]^{2-}$ moiety bridging mixed valence Co^{\prime} and $\mathrm{Co}^{\prime \prime}$ centers. This is in agreement with the previously reported compounds F1 and F2. ${ }^{[46]}$ Compound 3, however, contains a $\left[P_{3}\right]^{3-}$ ligand, which is bridged by two $\mathrm{Co}{ }^{\circ}$ metal centers.

As mentioned above, starting from the formal Co^{0} precursor 1, we obtained the compounds 2 and 3 as a mixture of products, the ratio of which is sensitively dependent on stoichiometry and reaction conditions. To discover an alternative approach, we targeted the use of the Co^{\prime} starting material [$\left.\mathrm{L}^{3} \mathrm{Co}(\mathrm{tol})\right]$ (4a), which was speculated to yield the neutral analogues of 2 and 3. After their one-electron reduction, the compounds 2 and 3 should be accessible.

Therefore, the Co^{1} compound $\left[\mathrm{L}^{3} \mathrm{Co}(\mathrm{tol})\right]$ (4a) was reacted with P_{4}, and $\left[\left(L^{3} C o\right)_{2}\left(\mu_{2}: \eta^{4}, \eta^{4}-P_{4}\right)\right]$ ($5 a$) was selectively formed. Metric parameters and the characterization of compound 5 a are discussed in detail below.

Refluxing 5a for three hours $\left(110^{\circ} \mathrm{C}\right.$, toluene) gives rise to the loss of one phosphorus atom and the formation of $\left[\left(\mathrm{L}^{3} \mathrm{Co}\right)_{2}\left(\mu_{2}: \eta^{3}, \eta^{3}-\mathrm{P}_{3}\right)\right](6),{ }^{[19]}$ which was clearly characterized by mass spectrometry ${ }^{[20]}$ and ${ }^{1} \mathrm{H}$ NMR spectroscopy. ${ }^{[21]}$ The dinuclear compound contains two [$\mathrm{L}^{3} \mathrm{Co}$] fragments, and the bridging middle deck exhibits a savage disorder within its cyclo- P_{3} moiety. We emphasize that the $\mathrm{P}-\mathrm{P}$ distances cannot be precisely described. However, the initially localized electron density unambiguously displays triangle-shaped cyclo- P_{3} constitution and enables an estimation of the $P-P$ distances in 6 (approx. $d(\mathrm{P}-\mathrm{P}): 2.147(3), 2.223(2), 2.235(2) \AA$). These values are comparable with the ones found in 3 a (2.1674(13), 2.1790(16), $2.3303(17) \AA$) and 3 b (2.217(4), 2.224(4) and 2.237(4) \AA) and are elongated compared to the ones in A (2.1658(10), 2.1804(9) and $2.2155(9) \AA$). ${ }^{[3 c]}$ The Co...Co' distance in 6 is $3.747 \AA$ and therefore comparable to the ones in $3 \mathbf{a}$ (3.7359(5) \AA) and $3 \mathbf{b}$ (3.724(2) Å), but elongated compared to its precursor complex 5 a (3.610 \AA, vide infra).

The ${ }^{1} \mathrm{H}$ NMR spectrum of 6 reveals signals between 20.06 and -12.68 ppm . No signal is detected in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectrum. The magnetic moment ($\mu_{\text {eff }}$) of 6 in $C_{6} D_{6}$ solution is $2.97 \mu_{\mathrm{B}}$ at room temperature (Evans method). ${ }^{[22]}$ This value is confirmed in the solid state by a SQUID measurement. A successive decrease from 2.7 to $2.0 \mu_{B}$ was measured in the temperature range from 300 to 2 K (see the Supporting Information). The values are in agreement with antiferromagnetically coupled Co" and Co ${ }^{\text {III }}$ metal centers.

Electrochemistry

The electrochemical properties of the complexes 5 a and 6 were probed by cyclic voltammetry (CV) in THF solution containing $\mathrm{Bu}_{4} \mathrm{NPF}_{6}$ electrolyte ($0.1 \mathrm{molL}^{-1}, 295 \mathrm{~K}$, see Supporting Information for further details). ${ }^{[20]}$ An irreversible oxidation was detected at $E_{1 / 2}=-0.34 \mathrm{~V}$ for 5 a and $E_{1 / 2}=-0.11 \mathrm{~V}$ for 6 (vs. $\mathrm{Cp}_{2} \mathrm{Fe} / \mathrm{Cp}_{2} \mathrm{Fe}^{+}$). The compounds 5 a and 6 each reveal one reversible reduction at $E_{1 / 2}=-1.62 \mathrm{~V}$ (vs. $\mathrm{Cp}_{2} \mathrm{Fe} / \mathrm{Cp}_{2} \mathrm{Fe}^{+}$). The complexes $2^{[9]}$ and 3 confirm these values by the corresponding electrochemical behavior. For 3, an additional reduction event was monitored at -2.52 V (vs. $\mathrm{Cp}_{2} \mathrm{Fe} / \mathrm{Cp}_{2} \mathrm{Fe}^{+}$).

We experimentally performed the reduction of 5 a and 6 , respectively, with one equivalent of potassium graphite in THF at room temperature. The corresponding anionic compounds $\left[\mathrm{K}(\mathrm{thf})_{6}\right]\left[\left(\mathrm{L}^{3} \mathrm{Co}\right)_{2}\left(\mu_{2}: \eta^{4}, \eta^{4}-\mathrm{P}_{4}\right)\right]$ (2) and $\left[\mathrm{K}(\mathrm{thf})_{6}\right]\left[\left(\mathrm{L}^{3} \mathrm{Co}\right)_{2}\left(\mu_{2}: \eta^{3}, \eta^{3}-\mathrm{P}_{3}\right)\right]$ (3), respectively, are selectively and quantitatively formed,
which was proven by ${ }^{1} \mathrm{H}$ NMR spectroscopy of the crude reaction solution. On a preparative scale, the isolated yields obtained as single crystals are 41% for 2 and 62% for 3 . Consequently, regarding selectivity, this synthetic route is superior to the Co°-mediated P_{4} activation, which, in contrast, yielded a mixture of products.

Impact of ligand design

Three β-diketimines $\left(L^{1} H, L^{2} H, L^{3} H\right)$ were synthesized to provide a comparable hybrid ligand set $L^{1}-L^{3}$ with backbone $(R=H$, Me) and aromatic ($\mathrm{Ph}^{*}=\mathrm{dmp}$ or dipp) substituents (Scheme 1 and Scheme 2), and to investigate the influence of the ligand

Scheme 2. Performed Co° - and Co^{\prime}-mediated P_{4} transformations.
design on the Co'-mediated P_{4} transformation. The [LCo(tol)] $\left[L=L^{3}(4 a), L^{1}(4 b), L^{2}(4 c)\right]$ starting materials were prepared in one-pot reactions (see the Supporting Information). All conducted P_{4} activation reactions were performed under the same conditions ([LCo(tol)]: $P_{4}=2: 1$, toluene, $2-3 \mathrm{~h}, \mathrm{RT}$) and yielded similar isolated products $\left[(\mathrm{LCo})_{2}\left(\mu_{2}: \eta^{4}, \eta^{4}-P_{4}\right)\right]\left[L=L^{3} \quad(5 a), L^{1}\right.$ (5 b$), \mathrm{L}^{2}(5 \mathrm{c})$]. The crystals of all the new compounds $5 \mathrm{a}-$ c were grown from saturated toluene solutions, and single crystal X-ray diffraction was performed. The molecular structures of $5 \mathbf{a}-\mathbf{c}$ are shown in Figure 55 in the Supporting Information. As a representative, compound 5 a is presented in Figure 4 a . Its P_{4} moiety is rectangularly shaped, consequently spanned by two shorter and two longer $\mathrm{P}-\mathrm{P}$ atom distances. Together with two coordinating Co atoms, the $\left[\mathrm{P}_{4} \mathrm{Co}_{2}\right]$ complex core builds a distorted octahedron. In $5 \mathbf{a}-\mathbf{c}$, the shorter $\mathrm{P}-\mathrm{P}$ atom distances are between 2.1256(6) and 2.1301(7) \AA and the longer P-P distances are between 2.2513(10) and 2.2980(7) Å. Compared with a phosphorus single bond in the tetrahedral P_{4}, the planar rectangular-shaped P_{4} moieties in $5 a-c$ contain a pair of shorter and a pair of elongated $P-P$ bonds. The Co...Co' distances in 5 a-c are between 3.502 and $3.610 \AA$ and, therefore, any bonding interaction can be ruled out. Due to the centrosymmetric molecular structure ($P 2_{1} / n$ in $5 \mathrm{a}-\mathrm{c}$), the ligands are parallel to each other. In 5 a-c, the torsion angels Θ

Figure 4. a) Molecular structure of the compound 5 a. Hydrogen atoms and aromatic flanking groups are omitted for clarity; thermal ellipsoids are drawn at 50% probability level. The torsion angle Θ is depicted, which spans between the Co...Co' axis and the plane formed by the nitrogen atoms and the methine carbon in the ligand backbone; b) view along Co1 \cdots Co1' axis, revealing the angles ω_{1} and ω_{2}, which span between the N N axis of coordinating nitrogen atoms and the edges of the cyclo- P_{4} unit.
(between the Co...Co' axis and the plane formed by the nitrogen atoms and the methine carbon in the ligand backbone) are between $3.40(6)$ and $12.32(6)^{\circ}$. In $\mathbf{5 b} \mathbf{b} \mathbf{C}$ (and E1, $\mathbf{2}^{[4 b]}$), the $\mathrm{P}-\mathrm{P}$ edges of the cyclo- P_{4} unit are nearly parallel or rectangular, respectively, compared to the $\mathrm{N}-\mathrm{N}$ axis of coordinating nitrogen atoms (compare $\Varangle\left(\mathrm{NN}-\mathrm{PP}_{\text {short }}\right)=\omega_{1}$ and $\Varangle\left(\mathrm{NN}-\mathrm{PP}_{\text {long }}\right)=$ ω_{2}, see Figure 4 b). The structural parameters of 5 a-c and E1,2 are summarized in Table 3.

Table 3. Comparison of $\mathrm{P}-\mathrm{P}$ and $\mathrm{Co} \cdots \mathrm{Co}^{\prime}$ atomic distances in neutral $\left[(L C o)_{2}\left(\mu_{2}: \eta^{4}, \eta^{4}-P_{4}\right)\right]\left[L=L^{3}(5 a), L^{1}(5 b), L^{2}(5 c), L^{0}(E 1), L^{4}(E 2)\right]$.

| Complex | 5a | 5b | $\mathbf{5 c}$ | E1 $^{[4 \mathrm{bb}]}$ | E2 $^{[4 \mathrm{bb]}}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $d(\mathrm{P}-\mathrm{P})$ short | $2.1295(10)$ | $2.1256(6)$ | $2.1301(7)$ | $2.1237(13)$ | $2.1298(14)$ |
| $[\AA \AA]$ | | | | | |
| $d(\mathrm{P}-\mathrm{P})$ long | $2.2513(10)$ | $2.2972(6)$ | $2.2980(7)$ | $2.2984(13)$ | $2.2889(15)$ |
| $[\AA]$ | | | | | |
| $d\left(\mathrm{Co} \cdots \mathrm{Co}^{\prime}\right)$ | 3.610 | 3.502 | 3.503 | 3.491 | 3.533 |
| $[\AA]$ | | | | | |
| $\Theta\left[{ }^{\circ}\right]$ | $12.22(8)$ | $12.32(6)$ | $3.40(6)$ | $14.88(9)$ | $7.0(1)$ |
| $\omega_{1}\left[{ }^{\circ}\right]$ | $26.34(6)$ | $2.18(4)$ | $1.97(4)$ | $1.96(7)$ | $2.58(8)$ |
| $\omega_{2}\left[{ }^{\circ}\right]$ | $62.36(6)$ | $87.87(4)$ | $87.95(4)$ | $88.02(7)$ | $87.43(8)$ |

The ${ }^{1} \mathrm{H}$ NMR spectra of the compounds $5 \mathrm{a}-\mathrm{c}$ display signals between 11.99 and -28.61 ppm and reveal their paramagnetic nature in solution. Therefore, no signals are detected in their ${ }^{31}$ P $\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra. Their magnetic moment $\left(\mu_{\text {eff }}\right)$ in solution (RT) was determined by the Evans method: $3.02 \mu_{\mathrm{B}}$ ($5 \mathrm{a}^{[22]}$ in $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right), 2.42 \mu_{\mathrm{B}}\left(5 \mathbf{b}\right.$ in $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right), 1.84 \mu_{\mathrm{B}}$ (5 c in $\left[\mathrm{D}_{8}\right] \mathrm{THF}$). In the solid state, however, the SQUID measurements of 5 a and $5 \mathbf{b}$ display diamagnetic behavior in the temperature range of $2-300 \mathrm{~K}$. Their electronic structure in the solid state is best described as two antiferromagnetically coupled Co^{\prime} centers bridged by a $\left[P_{4}\right]^{0}$ ligand similar to the previously reported compounds E1,2. ${ }^{[4 b]}$ In solution, exclusively one signal set for the ligand is observed in the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{5 a - c}$, respectively, sug-
gesting the integrity of each dinuclear compound in solution on the NMR time scale (Figure S15).

Conclusion

We reported different [LCo']-mediated P_{4} activations yielding neutral complexes $\left[(L C o)_{2}\left(\mu_{2}: \eta^{4}, \eta^{4}-P_{4}\right)\right]\left(L=L^{1}, L^{2}, L^{3}\right)$, each containing a similar rectangular-shaped $\left[\mathrm{P}_{4}\right]^{0}$ moiety. In contrast to the P_{4} activation by LFe' compounds, for the Co system, the ligand substituents ($L^{1}-L^{3}$) do not alter the reaction outcome. For the ligand system L^{3}, we demonstrate that one P atom can be extruded thermolytically to generate an unprecedented neutral cyclo- $\left[\mathrm{P}_{3}\right]^{3-}$-containing compound $\left[\left(\mathrm{L}^{3} \mathrm{Co}\right)_{2}\left(\mu_{2}: \eta^{3}, \eta^{3}-\mathrm{P}_{3}\right)\right]$. As a novel approach, we present the P_{4} transformation with a formal $\left[L^{3} \mathrm{Co}^{\circ}\right]$ precursor, which generates corresponding monoanions with cyclo- $\left[\mathrm{P}_{4}\right]^{2-}$ and cyclo- $\left[\mathrm{P}_{3}\right]^{3-}$ ligands as a mixture of products. Each product was selectively accessed through the one-electron reduction of its neutral precursor.

Acknowledgements

This work was initially supported by the Deutsche Forschungsgemeinschaft. The European Research Council (ERC) is acknowledged for the support in the SELFPHOS AdG-339072 project. We are thankful to Dr. M. Bodensteiner for his valuable support regarding the solution of X-ray structures. We extend our thanks to Dr. F. Dielmann for the initial X-ray measurement of $5 \mathbf{a}$ and to Dr. W. Patterson for the Raman measurement of 1-n-hexane.

Keywords: cyclic voltammetry - paramagnetic NMR • small molecule activation \cdot white phosphorus • β-diketiminates
[1] a) D. Tofan, B. M. Cossairt, C. C. Cummins, Inorg. Chem. 2011, 50, 1234912358; b) M. Caporali, L. Gonsalvi, A. Rossin, M. Peruzzini, Chem. Rev. 2010, 110, 4178-4235; c) M. Scheer, G. Balázs, A. Seitz, Chem. Rev. 2010, 110, 4236-4256; d) S. Khan, S. S. Sen, H. W. Roesky, Chem. Commun. 2012, 48, 2169-2179; e) N. A. Giffin, J. D. Masuda, Coord. Chem. Rev. 2011, 255, 1342-1359.
[2] F. Spitzer, M. Sierka, M. Latronico, P. Mastrorilli, A. V. Virovets, M. Scheer, Angew. Chem. Int. Ed. 2015, 54, 4392-4396; Angew. Chem. 2015, 127, 4467-4472.
[3] a) B. L. Tran, M. Singhal, H. Park, O. P. Lam, M. Pink, J. Krzystek, A. Ozarowski, J. Telser, K. Meyer, D. J. Mindiola, Angew. Chem. Int. Ed. 2010, 49, 9871-9875; Angew. Chem. 2010, 122, 10067-10071; b) C. Camp, L. Maron, R. G. Bergman, J. Arnold, J. Am. Chem. Soc. 2014, 136, 17652 17661; c) B. Pinter, K. T. Smith, M. Kamitani, E. M. Zolnhofer, B. L. Tran, S. Fortier, M. Pink, G. Wu, B. C. Manor, K. Meyer, M.-H. Baik, D. J. Mindiola, J. Am. Chem. Soc. 2015, 137, 15247-15261.
[4] a) S. Yao, Y. Xiong, C. Milsmann, E. Bill, S. Pfirrmann, C. Limberg, M. Driess, Chem. Eur. J. 2010, 16, 436-439; b) S. Yao, N. Lindenmaier, Y. Xiong, S. Inoue, T. Szilvási, M. Adelhardt, J. Sutter, K. Meyer, M. Driess, Angew. Chem. 2015, 127, 1266-1270; c) S. Yao, T. Szilvasi, N. Lindenmaier, Y. Xiong, S. Inoue, M. Adelhardt, J. Sutter, K. Meyer, M. Driess, Chem. Commun. 2015, 51, 6153-6156.
[5] The ligands $L^{0}-L^{4}$ are called "nacnac" in this report due to their structural similarities. More precisely, L^{0} and L^{2} can be regarded as vinylogous amidines and therefore are part of the "vinamidine" ligand family. See: D. Lloyd, H. McNab, Angew. Chem. Int. Ed. Engl. 1976, 15, 459-468; Angew. Chem. 1976, 88, 496-504.
[6] a) For (triphos)Co,Ni(triphos) and (triphos)Ni,Ni(triphos), see: M. Di Vaira, S. Midollini, L. Sacconi, J. Am. Chem. Soc. 1979, 101, 1757-1763; b) for
(triphos)Fe,Co(etriphos) and (triphos)Co,Co(triphos) (in footnote): C. Bianchini, M. D. Di Vaira, A. Meli, L. Sacconi, Inorg. Chem. 1981, 20, 1169-1173; c) for (triphos)Co,Rh(triphos) and (triphos)Ni,Rh(triphos): C. Bianchini, M. Di Vaira, A. Meli, L. Sacconi, J. Am. Chem. Soc. 1981, 103, 1448-1452; d) for (triphos)Pd,Pd(triphos): P. Dapporto, L. Sacconi, P. Stoppioni, F. Zanobini, Inorg. Chem. 1981, 20, 3834-3839; e) for a review, see: M. Di Vaira, L. Sacconi, Angew. Chem. Int. Ed. Engl. 1982, 21, 330-342; Angew. Chem. 1982, 94, 338-351; for additional examples: f) O. J. Scherer, B. Werner, G. Heckmann, G. Wolmershäuser, Angew. Chem. Int. Ed. Engl. 1991, 30, 553-555; Angew. Chem. 1991, 103, $562-$ 563; g) E. Mädl, G. Balázs, E. V. Peresypkina, M. Scheer, Angew. Chem. Int. Ed. 2016, 55, 7702-7707; Angew. Chem. 2016, 128, 7833-7838; h) Y. Nakanishi, Y. Ishida, H. Kawaguchi, Inorg. Chem. 2016, 55, 3967-3973.
[7] F. Spitzer, C. Graßl, G. Balázs, E. M. Zolnhofer, K. Meyer, M. Scheer, Angew. Chem. Int. Ed. 2016, 55, 4340-4344; Angew. Chem. 2016, 128, 4412-4416.
[8] S. Pelties, T. Maier, D. Herrmann, B. de Bruin, C. Rebreyend, S. Gärtner, I. G. Shenderovich, R. Wolf, Chem. Eur. J. DOI: 10.1002/chem. 201603296
[9] F. Spitzer, Master thesis, University of Regensburg 2013.
[10] After lithiation of $\mathrm{L}^{3} \mathrm{H}$ and subsequent transmetalation with CoBr_{2}, its reduction was performed with an excess of potassium graphite under N_{2} atmosphere.
[11] In 1•n-hexane the NCCCN ligand planes are orientated parallel to each other. However, in $1 . \mathrm{OEt}_{2}$, they are twisted (dihedral angel of coordinating N atoms: $32.38(9)^{\circ}$). Further analytical data (X-ray, ${ }^{1} \mathrm{H}$ NMR, Evans method, EA, Raman spectrum) and pictures of $\mathbf{1}$-solv are presented in the Supporting Information.
[12] K. Ding, A. W. Pierpont, W. W. Brennessel, G. Lukat-Rodgers, K. R. Rodgers, T. R. Cundari, E. Bill, P. L. Holland, J. Am. Chem. Soc. 2009, 131, 9471-9472.
[13] For initial investigations see reference [9]. The identification of products 2 and $\mathbf{3}$ in the ${ }^{1} \mathrm{H}$ NMR spectra was enabled after their selective preparation.
[14] The dependency of torsion angle Θ and Fe ...Fe' distance was already recognized in citation [7].
[15] Due to the disorder of the cyclo- P_{3} moiety, only the geometric parameters of the major component are discussed. Furthermore, it has to be noted that the positions of the disordered P3 and P3A atoms are close to each other and hence, the involved bond lengths might not be determined with high accuracy.
[16] In $\beta-P_{4}$: A. Simon, H. Borrmann, H. Craubner, Phosphorous and Sulfur 1987, 30, 507-510.
[17] B. M. Cossairt, C. C. Cummins, A. R. Head, D. L. Lichtenberger, R. J. F. Berger, S. A. Hayes, N. W. Mitzel, G. Wu, J. Am. Chem. Soc. 2010, 132, 8459-8465.
[18] N. J. Brassington, H. G. M. Edwards, D. A. Long, J. Raman Spectrosc. 1981, 11, 346-348.
[19] The crystal structures of $\mathbf{6}$ and $\mathbf{5 a}$ were initially reported in reference [20]. However, to present improved structural values, crystals of 6 and 5 a were re-measured.
[20] C. Grassl, PhD thesis, University of Regensburg, 2013.
[21] During the thermolysis, a black, pyrophoric precipitate is formed. The CHN analysis of the washed and dried precipitate suggests only some organic content ($\mathrm{C} \%: \approx 35, \mathrm{H} \%: \approx 5, \mathrm{~N} \%: \approx 3$). Exclusively, compound 6 and $L^{3} H$ were detected in the ${ }^{1} H$ NMR spectrum (reaction control) as the only soluble products formed during the thermolysis reaction.
[22] For initial investigations see reference [20]. For further information see the Supporting Information.

Manuscript received: November 22, 2016
Accepted Article published: December 29, 2016
Final Article published: January 25, 2017

[^0]: [a] F. Spitzer, Dr. C. Graßl, Dr. G. Balázs, Dr. E. Mädl, Prof. Dr. M. Scheer Institut für Anorganische Chemie, Universität Regensburg
 Universitätsstrasse 31, 93040 Regensburg (Germany)
 E-mail: manfred.scheer@chemie.uni-regensburg.de
 Homepage: http://www.uni-regensburg.de/chemie-pharmazie/anorgani-sche-chemie-scheer/
 [b] M. Keilwerth, E. M. Zolnhofer, Prof. Dr. K. Meyer
 Department of Chemistry and Pharmacy, Inorganic Chemistry Friedrich-Alexander University Erlangen-Nürnberg (FAU) Egerlandstrasse 1, 91058 Erlangen (Germany) Supporting information and the ORCID number(s) for the author(s) of this article can be found under http://dx.doi.org/10.1002/chem.201605451.
 [f © 2017 The Authors. Published by Wiley-VCH Verlag GmbH \& Co. KGaA. This is an open access article under the terms of Creative Commons Attribution NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

