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Abstract
Purpose Growth hormone-releasing hormone (GHRH) is a hypothalamic hormone, which regulates growth hormone release
from the anterior pituitary gland. GHRH antagonists (GHRHAnt) are anticancer agents, which also exert robust anti-
inflammatory activities in malignancies. GHRHAnt exhibit anti-oxidative and anti-inflammatory effects in vascular endo-
thelial cells, indicating their potential use against disorders related to barrier dysfunction (e.g. sepsis). Herein, we aim to
investigate the effects of GHRHAnt against lung endothelial hyperpermeability.
Methods The in vitro effects of GHRHAnt in H2O2-induced endothelial barrier dysfunction were investigated in bovine
pulmonary artery endothelial cells (BPAEC). Electric cell-substrate impedance sensing (ECIS) was utilized to measure
transendothelial resistance, an indicator of barrier function.
Results Our results demonstrate that GHRHAnt protect against H2O2-induced endothelial barrier disruption via P53 and
cofilin modulation. Both proteins are crucial modulators of vascular integrity. Moreover, GHRHAnt prevent H2O2 – induced
decrease in transendothelial resistance.
Conclusions GHRHAnt represent a promising therapeutic intervention towards diseases related to lung endothelial hyper-
permeability, such as acute respiratory distress syndrome - related or not to COVID-19 - and sepsis. Targeted medicine for
those potentially lethal disorders does not exist.
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Introduction

Growth hormone-releasing hormone (GHRH) is a 44
amino-acid peptide [1], which binds to the GHRH receptors
on the somatotrophs of the anterior pituitary gland, to reg-
ulate the synthesis and secretion of growth hormone (GH).
The predominant source of GHRH production is the
hypothalamus. However, it can be produced by different
sites; such as lungs, kidney, liver, ovary, and testis [2].
GHRH is also secreted by carcinoid and pancreatic tumors,
an event which contributed to its isolation, characterization,
and sequencing [3, 4]. The full biological activity of GHRH
is retained in the first 29 amino- acid sequence [4]. GHRH

receptor (GHRHR) and its splice variants (SVs) have been
identified in a variety of human cancers; including glio-
blastoma, pancreatic cancer, lymphoma, and small cell lung
carcinoma (SCLC). That demonstrates their implication in
cancers [1, 5].

GHRH antagonists (i.e. JV-1-36, JV-1-63, and MIA-
602) were developed to counteract the growth-factor
activities of GHRH in cancers [1, 6]. Those peptides exert
anti-proliferative effects in various malignancies, such as
ovarian [7], lung [8], breast, and prostate cancer [1, 9].
GHRH triggers the extracellular signal regulated kinase 1/2
(ERK1/2) [10] and Janus kinase 2/ signal transducer and
activator of transcription 3 (JAK2/STAT3) [11]; while,
GHRHAnt counteract those effects [12, 13]. Recent evi-
dence suggests a possible role of GHRHAnt in endothelial
barrier function [14, 15].

Endothelial cells (ECs) are polarized. Their apical side is
exposed to the lumen, while their basolateral surface covers
basement membrane [16]. Vascular endothelium is a single
layer of endothelial cells; which constitutes the inner lining of
arteries, veins, and capillaries. It functions as a semi-
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permeable barrier between the blood and the surrounding
tissues [17]. Inter-endothelial junctions are composed of tight
junctions (TJs), adherens junctions (AJs), and gap junctional
complexes [18]. Tight and adherens junctions promote the
adhesion of opposing endothelial cells to preserve endothelial
barrier integrity; whereas gap junctions form channels
between neighboring cells to communicate ions and signals
[19]. In the quiescent vasculature, endothelium maintains
blood fluidity and controls vessel permeability. That allows to
the exchange of solutes, small molecules, and nutrients; while
it restricts the extravasation of larger components [20]. In
disease states, the integrity of endothelial barrier is compro-
mised, causing leukocytes infiltration into the interstitium,
lung edema, and respiratory failure [21, 22].

The partial reduction of oxygen molecules during normal
cellular metabolism generates reactive oxygen species
(ROS); which include superoxide anion (O2−), hydroxyl
radical (OH−), and hydrogen peroxide (H2O2). Excessive
accumulation of ROS in ECs modulates calcium home-
ostasis [23], induces cell adhesion molecules [24], and
facilitates actin cytoskeleton remodeling. GHRHAnt reduce
oxidative stress in the aging brain [25], and suppress
cyclooxygenase 2 (COX-2) and cytochrome c oxidase IV
(COX-IV) [26]. Recent studies demonstrate anti-oxidative
effects of GHRHAnt in lung and brain endothelial cells
[27, 28]. Herein we will elucidate the effects of GHRHAnt
in H2O2-induced lung endothelial barrier disruption, as well
as the molecular mechanisms involved in those effects.

Materials and methods

Reagents

GHRH (103663–156), RIPA buffer (AAJ63306-AP), anti-
mouse IgG HRP-linked antibody (95017554), anti-rabbit
IgG HRP-linked antibody (95017-556), and nitrocellulose
membranes (10063-173) were purchased from VWR
(Radnor, PA, USA). P53 (9282 S), phospho-Cofilin
(3313 S), and cofilin (3318 S) antibodies were obtained
from Cell Signaling Technology (Danvers, MA, USA).
Hydrogen peroxide (H1009) and β-actin antibody (A5441)
were purchased from Sigma-Aldrich (St. Louis, MO, USA).
GHRH antagonist JV-1-36 (031-23) was obtained from
Phoenix Pharmaceuticals INC (Burlingame, CA, USA).

Cell culture

Bovine pulmonary artery endothelial cells (BPAEC)
(PB30205) were purchased from Genlantis (San Diego, CA,
USA). Those cells were cultured in DMEM (VWRL0101-
0500) supplemented with 10% fetal bovine serum (FBS)
and 1X penicillin/streptomycin. Cultures were maintained at

37 °C in a humidified atmosphere of 5% CO2-95% air. All
materials were purchased from VWR (Radnor, PA, USA).

Measurement of endothelial barrier function

The barrier function of endothelial cell monolayers was
estimated by electric cell-substrate impedance sensing
(ECIS), using ECIS model ZΘ (Applied Biophysics, Troy,
NY). All experiments were conducted on confluent cells
that had reached a steady-state resistance of at least 800 Ω.

Western blot analysis

Proteins were isolated using RIPA buffer. Equal amounts of
proteins were loaded in each well, so to be separated by
electrophoresis onto 10% sodium dodecyl sulfate (SDS-PAGE)
Tris-HCl gels. Wet transfer was used to transfer the proteins
onto nitrocellulose membranes, which were then incubated for
1 h at room temperature in 5% nonfat dry milk. The blots were
incubated overnight with appropriate primary antibodies
(1:1000) at 4 °C. The signals for immunoreactive proteins were
developed using appropriate secondary antibodies (1:2000);
and were visualized in ChemiDocTM Touch Imaging System
from Bio-Rad (Hercules, CA, USA).

Densitometry and statistical analysis

Image J software (National Institute of Health) was used to
perform densitometry of immunoblots. The data are expressed
as Means ± SEM (standard error of the mean). Student’s t-test
was used to determine statistically significant differences
among the groups. A value of P < 0.05 was considered sig-
nificant. GraphPad Prism (version 5.01) was used to analyze
the data, and n represents the number of experimental repeats.

Results

H2O2 and GHRH reduce endothelial P53

Bovine lung endothelial cells were treated with vehicle (0.1%
DMSO), or GHRHAnt (1 μM), or H2O2 (0.1mM), or GHRH
(1 μM) for 8 h. Our results demonstrate a significant induction
of P53 expression in GHRHAnt-treated cells. In contrast, those
cells treated with H2O2 or GHRH expressed less P53 (Fig. 1A).

GHRHAnt support barrier function via cofilin
phosphorylation

Dephosphorylation of cofilin activates it, so to sever the
actin filament in a pH-dependent manner [29]. To measure
the phosphorylation of cofilin, BPAEC were exposed to
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vehicle (0.1% DMSO), or GHRHAnt (1 μM), or H2O2

(0.1 mM), or GHRH (1 μM) for 8 h. GHRHAnt significantly
upregulated cofilin phosphorylation. In contrast, H2O2 and
GHRH opposed those effects (Fig. 1B).

GHRHAnt counteract H2O2-induced suppression of
P53 in BPAEC

BPAEC were treated with vehicle (0.1% DMSO), or
GHRHAnt (1 μM) for 8 h and were consequently exposed
to vehicle (PBS), or H2O2 (0.1 mM) (8 h). Our observations
reveal that H2O2 suppressed P53 expression, and the
expression levels of that protein were significantly increased
in those groups pretreated with GHRHAnt (Fig. 1C).

Cofilin activation by H2O2 is inhibited due to
GHRHAnt treatment

BPAEC were treated with vehicle (0.1% DMSO), or
GHRHAnt (1 μM) for 8 h, before vehicle (PBS), or H2O2

(0.1 mM) exposure (8 h). Our results indicate that H2O2

potentiates the activation of cofilin in BPAEC. The
GHRHAnt-pretreated cells showed significant protection
against H2O2-induced cofilin activation (Fig. 1D).

GHRHAnt protect against H2O2-induced endothelial
hyperpermeability in BPAEC

To investigate the effects GHRHAnt against H2O2-induced
lung endothelial barrier disruption, BPAEC were seeded on
gold-plated ECIS arrays and were left to reach steady
transendothelial resistance values. Then, those cells were
treated with vehicle (0.1% DMSO) or GHRHAnt (1 μM)
prior to treatment with vehicle (PBS), or H2O2 (0.1 mM).
Our observations suggest that treatment with H2O2

decreased TEER values (red line) (increased permeability),
and GHRHAnt increased TEER values (green line)
(decreased permeability). GHRHAnt pre-treatment pre-
vented H2O2-triggered endothelial hyperpermeability (blue
line) (Fig. 1E).
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Fig. 1 GHRHAnt protect against H2O2-induced lung endothelial bar-
rier dysfunction. Western blot analysis of P53 and β-actin (A), pCofilin
and cofilin (B) after treatment of BPAEC with vehicle (0.1% DMSO),
or GHRHAnt (1 μM), or H2O2 (0.1 mM), or GHRH (1 μM) (8 h).
Western blot analysis of P53 and β-actin (C), pCofilin and cofilin (D)
after treatment of BPAEC with vehicle (0.1% DMSO) or GHRHAnt
(1 μM) for 8 h and post-treatment with vehicle (PBS), or H2O2

(0.1 mM) (8 h). The blots shown are representative of three indepen-
dent experiments. The signal intensity of the bands was analyzed by
densitometry. Protein levels of P53 and pCofilin were normalized to

β-actin and cofilin, respectively. *P < 0.05 vs. vehicle (VEH) and
$P < 0.05 vs. H2O2. Means ± SEM. E Confluent monolayers of
BPAEC were treated with vehicle (0.1% DMSO) or GHRHAnt
(1 μM), and post-treated with vehicle (PBS) or H2O2 (0.1 mM). A
gradual decrease in endothelial permeability (increased TEER) was
observed in GHRHAnt-treated cells. H2O2 exposure decreased TEER
values (increased permeability). GHRHAnt prevented the H2O2-
induced endothelial barrier hyperpermeability. n= 3 per group.
Means ± S.E. The black arrow indicates the addition of H2O2 in the
confluent monolayers
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Discussion

P53 is a tumor suppressor protein which controls a plethora of
biological processes; such as cell cycle arrest, DNA repair,
senescence, and apoptosis to restrict abnormal cell growth
[12]. The protective role of P53 is not limited to cancers.
Indeed, this transcription factor also exerts anti-inflammatory
activities in the vasculature, which in turn results to enhanced
endothelial barrier function [30]. Nuclear factor-kappa B (NF-
κB) and P53 are reciprocally connected [31]. In the vascular
endothelium, NF-κB regulates the production of proin-
flammatory cytokines, chemotactic factors, and adhesion
molecules; hence it promotes monocyte recruitment and dis-
ease progression [32]. On the other hand, P53 suppresses
inflammation by inhibiting NF-κB [33] and has been reported
to be involved in the glucocorticoids-mediated function by
abrogating NF-κB [34].

Moreover, P53 protects the endothelium against inflam-
mation by suppressing apurinic/apyrimidinic endonuclease
1/redox effector factor 1 (APE1/Ref1) [35], RhoA [36], and
lipid peroxidation [37, 38]. Mice deficient in P53 were more
susceptible to LPS than the wild type counteracts; in a
model of lipopolysaccharide (LPS)-induced acute lung
injury (ALI) [39]. It was also established that GHRHAnt
induce the expression of P53 in endothelial cells to enhance
barrier function [14, 40]. The mechanisms of P53 regulation
by GHRHAnt have also been investigated; and unfolded
protein response (UPR) has been suggested to act as a
possible mediator [14, 41].

Accumulation of misfolded or unfolded proteins in the
endoplasmic reticulum (ER) beyond a critical threshold
levels activates UPR. This is a highly conserved molecular
mechanism, comprised of three stress sensors: inositol
requiring enzyme 1α (IRE1α), protein kinase RNA-like ER
kinase (PERK), and activating transcription factor 6
(ATF6). UPR is involved in the regulation of endothelial
integrity [42], since the UPR suppressor Kifunensine (KIF)
induces endothelial hyperpermeability [43]. Recent evi-
dence suggests that ATF6 protects against inflammation.
Induction of ATF6 results in the suppression of paracellular
and transcellular permeability due to LPS; whereas ATF6
downregulation potentiates LPS-induced endothelial
hyperpermeability [44]. GHRHAnt potentiate UPR activa-
tion in endothelial cells and counteract KIF-induced
decrease in transendothelial resistance [41], while GHRH
agonist MR-409 exerts the opposite effects [41]. UPR
positively regulates the expression of P53 in lung endo-
thelium [45]. Hence, GHRHAnt utilize UPR and P53 to
enhance the barrier functions of microvasculature [46–48].

Cofilin is an actin-binding protein. Upon activation, it
depolymerizes filamentous actin (F-actin), and generates
free filaments accessible to globular actin (G-actin). These
events result to dynamic alterations in actin cytoskeleton

necessary for activation of NF-κB and intercellular adhesion
molecule-1 (ICAM-1) expression [49]. Moreover, cofilin
reduces tight junction proteins and increases endothelial
permeability [50]. P53 impairs the actin severing activity of
cofilin by inducing the Rac1/pCofilin axis [51]. The present
study provides evidence that GHRHAnt significantly sup-
press the activation of cofilin due to H2O2 treatment
(Fig. 1D).

Adherens junctions are comprised of VE-cadherin com-
plexes with catenin, and are dominant in most vascular beds
[18]. AJs integrity is crucial for paracellular permeability.
Breakdown of VE-cadherin adhesions destabilizes AJs and
promotes different pathological processes (e.g. atherogen-
esis, inflammation, ALI) [52]. Phosphorylation of VE-
cadherin provides the mechanism for AJs remodeling [19].
VE-cadherin phosphorylation at tyrosine residues mod-
ulates endothelial junctions during inflammation [53]. The
receptor-type vascular endothelial protein tyrosine phos-
phatase (VE-PTP) interacts with VE-cadherin and decreases
its phosphorylation [54]. VE-PTP null mice exhibit defects
in angiogenesis which causes embryonic death, demon-
strating a crucial role of VE-PTP in the maintenance and
remodeling of vasculature [55].

In summary, our study substantiates previous observa-
tions on the anti-oxidative activity of GHRHAnt in human
cells and supports that those peptides are promising ther-
apeutic candidates for disorders related to increased oxida-
tive stress and inflammation.
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