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Abstract: Dengue fever is one of the most common vector-borne diseases in the world and is
mainly affected by the interaction of meteorological, human and land-use factors. This study
aims to identify the impact of meteorological, human and land-use factors on dengue fever cases,
involving the interplay between multiple factors. The analyses identified the statistically significant
determinants affecting the transmission of dengue fever, employing cross-correlation analysis and the
geo-detector model. This study was conducted in Guangzhou, China, using the data of confirmed
cases of dengue fever, daily meteorological records, population density distribution and land-use
distribution. The findings highlighted that the dengue fever hotspots were mainly distributed in the
old city center of Guangzhou and were significantly shaped by meteorological, land-use and human
factors. Meteorological factors including minimum temperature, maximum temperature, atmospheric
pressure and relative humidity were correlated with the transmission of dengue fever. Minimum
temperature, maximum temperature and relative humidity presented a statistically significant positive
correlation with dengue fever cases, while atmospheric pressure presented statistically significant
negative correlation. Minimum temperature, maximum temperature, atmospheric pressure and
humidity have lag effects on the transmission of dengue fever. The population, community age,
subway network density, road network density and ponds presented a statistically significant
positive correlation with the number of dengue fever cases, and the interaction among land-use
and human factors could enhance dengue fever transmission. The ponds were the most important
interaction factors, which might strengthen the influence of other factors on dengue fever transmission.
Our findings have implications for pre-emptive dengue fever control.

Keywords: dengue fever; spatial interactions; geo-detector; determinants

1. Introduction

Dengue fever (DF) is an acute mosquito-borne disease caused by dengue virus and transmitted
by Aedes mosquitoes [1]. This disease has a high incidence rate, rapid transmission speed and high
mortality rate in critically ill patients [2]. The clinical manifestations of DF patients are fever, severe
headache, muscle and joint pain and some patients have lymphadenopathy, rash and even bleeding
tendency [1,3,4]. The global spread of DF has caused serious economic losses to people living in
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tropical and subtropical countries [1,5]. Evidence has shown that more than 100 countries and regions
comprising 2.5 billion people are facing the threat of DF, which poses great challenges to global public
health [6–9].

In mainland China, DF cases have been reported every year since 1997, especially in Guangdong
Province. The DF incidence rate in 2014 was the highest in the Guangdong Province in the past
30 years, and Guangzhou city (the capital and most populous city of Guangdong Province) is the most
seriously affected area. In 2014, 37,386 confirmed DF cases were found in Guangzhou city, accounting
for 82.67% of the total number of DF cases in Guangdong Province. Aedes albopictus and Aedes aegypti
are the main DF vectors in Guangzhou [10]. Referring to mosquito breeding and DF transmission,
meteorological conditions [11,12] as well as human (demographic structure, population size) [13–15]
and land-use factors (traffic, standing water) [16,17] have been identified as important factors affecting
the transmission of DF disease. For example, mosquito breeding activities are affected by temperature:
Aedes albopictus are most active in breeding activities when the temperature is between 26 ◦C and 30 ◦C,
but the feeding activity of mosquitoes decreases and mortality increases when the temperature is
lower than 15 ◦C or higher than 35 ◦C [12]. Rainfall and humidity are positively associated with the
reproduction of Aedes at the initial life stage of Aedes mosquitoes [18]. Poor sanitation, wet areas and
densely populated areas are ideal places for Aedes mosquito breeding [1,19].

Patterns and determinants relating to DF transmission have been investigated in many
studies. However, existing studies neglect the interactions between impacting factors when
examining the statistical relationships between factors (e.g., meteorology, human factors, etc.) and
DF transmission [6,13]. Moreover, when constructing models to identify the spatial patterns of
transmission and its determinants, most studies only investigate the effect of each factor on DF
at the local level (e.g., using a geographically weighted regression model), without examining the
interactions between multiple factors from a spatial perspective as well as incorporating the interplay
of multiple factors in spatial models [20]. The spatiotemporal transmission of DF is the product of a
multifactorial combination. The spatial interaction among various factors may strengthen the process
of DF transmission [1]. Therefore, it is necessary to examine the spatial interactions between factors
before examining the effect of factors on DF cases.

Within this context, this study aims to identify the impact of meteorological, human and land-use
factors on DF cases, incorporating the spatial interactions between multiple factors. We employed
the cross-correlation model to examine the impact of meteorological factors on DF transmission and
the geo-detector model to examine the spatial interactions between human and land-use factors, and
then investigated the impact of these factors and their interactions on DF transmission. Moreover,
we conducted DF spatiotemporal transmission characteristics analysis in Guangzhou to clarify the
potential impact of various factors on DF in detail, which lays the foundation for further identifying
the impacting factors. The findings of this study could provide an important reference for prevention
and control in cities with a high risk of DF.

2. Materials and Methods

2.1. Study Area

Located in the south-central part of Guangdong Province in China, Guangzhou (112◦57′–114◦3′ E,
22◦26′–23◦56′ N) is composed of Yuexiu, Liwan, Haizhu, Tianhe, Baiyun, Luogang, Huangpu, Panyu,
Huadu, Nansha, Zengcheng and Conghua districts and had a resident population of 14.49 million and
an overall area of 7434.4 km2 in 2014 (Figure 1). The average annual temperature in Guangzhou in
2014 was between 18.7 and 26.7 ◦C; the hottest month was July, and the coldest month was January.
The rainy season was concentrated in April to June, and the annual average relative humidity was 81%.
However, due to the obsolete urban drainage system in the old city center (Yuexiu district), the annual
flood season from April to June was prone to produce urban waterlogging, which provided conditions
for mosquito breeding.
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Guangzhou was selected as the study area because it has always been the hardest hit area of DF
in Guangdong Province and China [10]. Since 2001, the DF epidemic in Guangzhou has gradually
intensified. Large-scale DF outbreaks happened in 2002, 2006 and 2014, and the outbreak in 2014 was
the most serious one. The cumulative reported cases in 2014 reached 37,386 cases, which was the most
serious DF epidemic in Guangzhou in the past 30 years. Guangzhou is the center of transportation,
finance, industry and trade in southern China and has frequent economic and cultural communication
with the nations of Southeast Asia and Africa, which also increased the importation risk of DF.
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Figure 1. Extent of the study area. (A) The location of Guangdong Province in China; (B) the
location of the study area in Guangdong Province; (C) the extent of the study area and population
density distribution.

2.2. Data Collection

2.2.1. Dengue Fever Data

DF cases were confirmed by epidemiological investigation and laboratory diagnosis. Patients
suspected of having DF included those who lived or traveled to DF endemic areas (over 14 days) and
subsequently exhibited clinical symptoms such as fever, with two or more of these manifestations:
nausea, vomiting and skin erythema. Medical professionals were responsible for the clinical
classification of the disease, along with laboratory confirmation through serology, NS1 (non-structural
protein 1) test or polymerase chain reaction (PCR) tests [21]. Acute phase sera were tested by enzyme
linked immunoassay (ELISA) for the detection of dengue NS1 antigen and dengue IgM antibodies.
Convalescent phase sera were also tested by dengue IgM ELISA to identify seroconversions. Acute
phase sera from suspected patients who were positive by NS1 ELISA or IgM ELISA in either the acute
or the convalescent phase sera were also tested by reverse transcriptase polymerase chain reaction
(RT-PCR) to identify the infecting serotype [22]. We defined a confirmed case of DF as a DF-suspected
patient with a positive NS1 ELISA, acute or convalescent phase IgM ELISA or RT-PCR. The Chinese
Ministry of health lists DF as a compulsory notification disease. According to the guidelines for DF
case surveillance, county-level disease prevention and control agencies should record all DF cases and
send them to the Information System for Notifiable Disease (ISND).

In this paper, the data of confirmed cases of DF were provided by Guangdong Provincial Center
for Disease Control and Prevention, including all the DF confirmed cases of Guangzhou reported in
ISND, totaling 37,386 cases from 1 January 2014 to 31 December 2014. Data structures of DF cases
included the onset date, residence address, longitude and latitude attributes. Data were processed
using ArcMap 10.2 (Environment System Research Institute, Inc., New York, NY, USA) to obtain the
DF spatial distribution (Figure 2).
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Figure 2. Spatial distribution of dengue fever (DF) cases.

2.2.2. Factor Data

Table 1 shows the data used in this study, including the meteorological data, human data and
land-use data.

Table 1. The factor data used in the study.

Factor Type Variables Description Unit

Meteorological Data

Minimum Temperature Daily minimum temperature ◦C
Maximum Temperature Daily maximum temperature ◦C
Atmospheric Pressure Daily atmospheric pressure hPa
Relative Humidity Daily relative humidity %

Human Data
Population Number of people on the building -

Community age Time span from the completion of
the residential community to 2014 Years

Land-use Data
Road Road network density km/km2

Subway Subway lines network density km/km2

Ponds Ponds area m2

The meteorological data were provided by the Wushan meteorological monitoring station
in Guangzhou, including daily minimum temperature (Tmin), maximum temperature (Tmax),
atmospheric pressure (AP) and relative humidity (Hum) data, with a total of 365 records. Daily
meteorological data were used to calculate the weekly average value (Figure 3), and the data were
presented in Microsoft Excel 2013.
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The land-use data were extracted from a 2.5 m SPOT (Système Probatoire d’Observation de la
Terre) satellite remote sensing image and Baidu map (https://map.baidu.com) in 2014 by combining
an automatic extraction algorithm (i.e., the Modified Normalized Difference Water Index, MNDWI)
with manual vectorization, including roads, subways, ponds and residential areas, and the results of
extracted land-use data were superimposed with images for verification. Roads include highways,
national highways, provincial highways, urban expressways and county roads. Ponds refer to water
areas with different sizes (e.g., <1000 m2) and a relatively regular shape. Residential areas refer to
residential buildings.

The human data include population and community age data. The data of population size were
collected from the Guangzhou statistics bureau, and the points of interest (POI) of the residential
community were collected from the Baidu map (https://map.baidu.com), which is the most popular
map engine in China. The residential community POI included the location and the building time
attributes, and the community age refers to the length of time from the time the community was built
to 2014. The older the community, the worse the infrastructure and sanitation, which was more likely
to lead to DF transmission [1]. The population data were distributed to each building according to the
ratio of the total area of buildings (accumulated by the plane area of each floor) and the building area,
while avoiding the homogenization problem that was caused by traditional sampling methods and
improving the accuracy of the population data.

https://map.baidu.com
https://map.baidu.com
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2.3. Methodology

The paper aimed to analyze the impacts of meteorological factors, human factors and land-use
factors on DF transmission. The analysis was divided into two parts. Firstly, we adopted
cross-correlation analysis to analyze the impacts of meteorological factors (including minimum
temperature, maximum temperature, relative humidity and atmospheric pressure) on the DF
transmission given that meteorological factors have temporal characteristics. Secondly, the geographical
detector model (geo-detector) was employed to analyze the interaction between human factors and
land-use factors on DF transmission. In addition, we conducted DF spatiotemporal transmission
characteristics analysis in Guangzhou to clarify the DF hotspots and help identify the potential impact
of various factors in detail.

2.3.1. Cross-Correlation Analysis

DF transmission mainly depends on mosquito breeding activities. Meteorological factors, such
as temperature, relative humidity and atmospheric pressure, could affect the breeding activities
of mosquito vectors [1,12,18,23]. Increased temperature could stimulate the breeding activity of
mosquito vectors; increased rainfall and relative humidity could increase mosquito breeding sites,
and decreased atmospheric pressure could increase the contact probability of Aedes mosquitoes and
people. Therefore, we selected minimum temperature, maximum temperature, relative humidity and
atmospheric pressure to study the impact of meteorological factors on DF transmission.

Cross-correlation analysis can be used to analyze the correlation between meteorological factors
and DF with different time lags [24]. In order to study the impact of temperature, relative humidity
and atmospheric pressure on DF transmission, the cross-correlation analysis method was adopted
to study the impact of the minimum temperature, maximum temperature, relative humidity and
atmospheric pressure on DF transmission with different weekly lags (with the maximum delay time set
as 12 weeks [25]). The related operations were completed in SPSS 22 V22.0 (IBM, Armonk, NY, USA).

2.3.2. Geo-Detector Analysis

Human and land-use factors were also key factors affecting mosquito breeding, including
population size, traffic network density, the distribution of aging infrastructure and standing water.
The increase of population size and traffic network density could increase the risk of healthy people being
exposed to dengue carriers and Aedes mosquitoes [16], and the distribution of old city infrastructure
and standing water affected the spatial distribution of the Aedes mosquitoes [1,23,24]. Therefore, this
study selected population size, road network density, subway network density, community age and
pond distribution to study the impact of human factors and land-use factors on DF.

The grid method and geo-detector analysis were conducted to explore the relationship between
DF and various potential factors from a microscopic perspective using the data of DF and the potential
driving factors. The study area was divided into 154 rows × 112 columns by using a 1 km × 1 km grid
(according to the flight distance of mosquitoes; it is generally believed that the range of the mosquito’s
activity is mainly within 100 m of its birthplace, and the maximum is no more than 1 km [23]), making
a total of 7745 grids. The DF cases and the 5 potential driving factors—population, community age,
subway, roads and ponds—were spatialized into each grid using ArcGIS 10.2 (Environment System
Research Institute, Inc., New York, NY, USA).

A factor-detector is a submodule of the geo-detector [26–28] which was used to identify the effects
of each factor on the transmission process of DF. The factor-detector model can be written as follows:

qD,H = 1−
1

nσ2
H

∑m

i=1
nD,iσ

2
HD,i

(1)
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where qD,H is the influence value of factor D on DF H; σ2
H is the variance of DF throughout the area;

n is the number of samples in the study area; m is the number of secondary areas; σ2
HD,i

is the variance

of the DF number in the secondary level, when σ2
HD,i

is not equal to 0, and the model is constructed.

qD,H ∈ [0, 1], when qD,H = 0, it indicates that the number of DF is not affected by factors. The larger the
qD,H, the greater the ability to explain the transmission process of DF. When qD,H = 1, the interpretation
effect is optimal. The interaction detector is also a submodule of the geo-detector which can explore
the interaction effect among factors. The model can be written as follows:

qD,H
(
Di ∩D j

)
> qD,H(Di) + qD,H

(
D j

)
: Nonlinear synergy (2)

qD,H
(
Di ∩D j

)
< qD,H(Di) + qD,H

(
D j

)
: Nonlinear antagonism (3)

qD,H
(
Di ∩D j

)
= qD,H(Di) + qD,H

(
D j

)
: Independence (4)

3. Analyses and Results

3.1. Spatiotemporal Transmission Characteristics Analysis

Figure 3 describes the time distribution characteristic of DF. From January to May (1–21 weeks),
DF cases appeared slowly, and only 8 cases occurred during this period. From June to October
(22–43 weeks), the DF cases number increased rapidly, with a total of 36,170 cases. DF showed
an outbreak trend in this stage. From November to December (44–52 weeks), the number of DF
cases decreased.

Figure 4 shows the monthly spatiotemporal hotspot distribution of DF. It highlights that the DF
initially tended to spread into the old city center (Yuexiu district), thus exhibiting obvious aggregation
characteristics, and then spread rapidly to surrounding areas—Liwan, Haizhu, Baiyun and Tianhe
districts—showing the characteristics of “high center and low periphery”, and finally covering the
entire city.

Figure 5 describes the monthly gravity center of DF, which indicates that monthly gravity centers
of DF were mainly concentrated in the southeastern part of Yuexiu District.Int. J. Environ. Res. Public Health 2019, 16, x  8 of 14 

 

 
Figure 4. Transmission characteristics of DF cases. 

 

Figure 5. Distribution of the monthly gravity center of DF. 

3.2. Relationship between Dengue Fever and Driving Factors 

3.2.1 Meteorological Factors 

Table 2 shows the cross-correlation results between DF cases and meteorological factors. It 
highlights that the weekly average minimum and maximum temperature had significant positive 
effects on the number of DF cases with a lag of 0–12 weeks. The minimum temperature with a 9-week 
lag had the strongest impact on DF transmission with a correlation coefficient of 0.945 and the 
maximum temperature with a 7-week lag had the strongest impact with a correlation coefficient of 
0.917. The weekly average atmospheric pressure had a significant inverse effect on the number of DF 
cases with a lag of 0 to 12 weeks, and the effect of atmospheric pressure on the DF transmission was 
strongest at the lag of 11 weeks with a correlation coefficient of −0.92. The weekly average relative 
humidity had a positive effect on the DF transmission with a lag of 8–12 weeks. 

Figure 4. Transmission characteristics of DF cases.



Int. J. Environ. Res. Public Health 2019, 16, 2486 8 of 14

Int. J. Environ. Res. Public Health 2019, 16, x  8 of 14 

 

 
Figure 4. Transmission characteristics of DF cases. 

 

Figure 5. Distribution of the monthly gravity center of DF.  

3.2. Relationship between Dengue Fever and Driving Factors 

3.2.1 Meteorological Factors 

Table 2 shows the cross-correlation results between DF cases and meteorological factors. It 
highlights that the weekly average minimum and maximum temperature had significant positive 
effects on the number of DF cases with a lag of 0–12 weeks. The minimum temperature with a 9-week 
lag had the strongest impact on DF transmission with a correlation coefficient of 0.945 and the 
maximum temperature with a 7-week lag had the strongest impact with a correlation coefficient of 
0.917. The weekly average atmospheric pressure had a significant inverse effect on the number of DF 
cases with a lag of 0 to 12 weeks, and the effect of atmospheric pressure on the DF transmission was 
strongest at the lag of 11 weeks with a correlation coefficient of −0.92. The weekly average relative 
humidity had a positive effect on the DF transmission with a lag of 8–12 weeks. 

Commented [M1]: Add sub caption of A and B, just like 

the format of figure 1, or you can delete A and B in the 
figure. 

Figure 5. Distribution of the monthly gravity center of DF.

3.2. Relationship between Dengue Fever and Driving Factors

3.2.1. Meteorological Factors

Table 2 shows the cross-correlation results between DF cases and meteorological factors.
It highlights that the weekly average minimum and maximum temperature had significant positive
effects on the number of DF cases with a lag of 0–12 weeks. The minimum temperature with a
9-week lag had the strongest impact on DF transmission with a correlation coefficient of 0.945 and the
maximum temperature with a 7-week lag had the strongest impact with a correlation coefficient of
0.917. The weekly average atmospheric pressure had a significant inverse effect on the number of DF
cases with a lag of 0 to 12 weeks, and the effect of atmospheric pressure on the DF transmission was
strongest at the lag of 11 weeks with a correlation coefficient of −0.92. The weekly average relative
humidity had a positive effect on the DF transmission with a lag of 8–12 weeks.
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Table 2. Cross-correlation coefficients between weekly DF cases and meteorological variables.

Lag Weeks 0 1 2 3 4 5 6 7 8 9 10 11 12

Tmin (◦C) 0.480 ** 0.551 ** 0.624 ** 0.703 ** 0.765 ** 0.801 ** 0.849 ** 0.894 ** 0.913 ** 0.927 ** 0.945 ** 0.935 ** 0.890 **
Tmax (◦C) 0.588 ** 0.642 ** 0.712 ** 0.783 ** 0.833 ** 0.850 ** 0.878 ** 0.917 ** 0.901 ** 0.882 ** 0.862 ** 0.840 ** 0.786 **
AP (hpa) −0.360 ** −0.414 ** −0.488 ** −0.593 ** −0.649 ** −0.705 ** −0.787 ** −0.836 ** −0.859 ** −0.895 ** −0.916 ** −0.920 ** −0.890 **
Hum (%) −0.203 −0.155 * −0.07 0.017 0.049 0.139 0.239 0.273 0.329 * 0.42 ** 0.495 ** 0.493 ** 0.523 **

Note: ** Correlation is significant at the 0.01 level (2-tailed); * Correlation is significant at the 0.05 level (2-tailed).
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3.2.2. Human and land-Use Factors

Table 3 shows the geo-detector results. We find that 5 factors, including population, community
age, subway, road and pond, have significant impacts on the DF distribution. The population (0.624),
community age (0.382) and subway (0.134) have an important impact on the DF distribution, followed
by roads (0.05) and ponds (0.001).

As shown in Table 4, the interaction among land-use and human factors strengthens DF
transmission, while ponds, the subway and roads were the important interaction factors. Ponds ∩
roads = 0.058 (↑9.4%) (∩means the interaction-effect between factors; ↑means the increased ratio of
factor interaction-effects to the simple increase of factors); ponds ∩ subway = 0.146 (↑6.6%); and ponds
∩ community = 0.388 (↑0.78%).

Table 3. Result of factor-detector analysis.

Factor Population Community Age Subway Road Ponds

q 0.624 0.382 0.134 0.050 0.001
p 0.01 0.01 0.01 0.01 0.04

Table 4. Result of interaction detector.

Factor Population Community Age Subway Road Ponds

Population 0.624
Community Age 0.658 0.382

Subway 0.643 0.421 0.134
Road 0.640 0.413 0.183 0.050
Ponds 0.625 0.388 0.146 0.058 0.003

4. Discussion

The analysis of the spatiotemporal transmission characteristics of DF indicated that June to
October was the main period of DF transmission, and the DF hotspots were mainly concentrated
in the southeast of Yuexiu district. In 2014, April to June was the rainy season in Guangzhou and
the accumulated rain days reached 54 days during the period. Due to the aging infrastructure and
poor drainage system, a large amount of water accumulated in Guangzhou. In addition, the average
temperature of Guangzhou from April to June remained between 22 ◦C and 28 ◦C, which was conducive
to the breeding of mosquito vectors and provided good conditions for DF outbreak (June to October).
A further investigation of the DF hotspots of Guangzhou revealed the following characteristics. First,
the hotspots had a convenient transportation network, which was close to the subway lines and the
Guangzhou inner ring expressway in space, and there were several large hospitals around it, such as
the First Affiliated Hospital of Guangdong Pharmaceutical College (Figure 5), which made residents
living in the aggregation area more vulnerable to DF. Second, the buildings and infrastructure in the
hotspot had gradually aged due to their long service life, which provided a good environment for
mosquito breeding. In the aggregation area, most of the houses were old-fashioned buildings that
had been built more than 30 years ago. The aggregation area had a high-building density, and the
houses were occluded from each other and surrounded by a large number of trees and shrubs, thereby
increasing the number of dark and humid places. Third, there were a large number of frail elderly and
immigrant people from countries with high DF incidence, which increased the risk of DF transmission.

The findings of the cross-correlation analysis showed that minimum temperature, maximum
temperature, atmospheric pressure and relative humidity had a lagging effect on the DF transmission.
The minimum temperature and maximum temperature had a positive lag correlation with DF
transmission for 0–12 weeks, with the strongest correlation at 9 weeks and 7 weeks, respectively.
Atmospheric pressure had a negative correlation with the DF transmission, and the maximum
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correlation value was at 11 weeks. Relative humidity had a positive correlation with the DF
transmission for 8–12 weeks. This was because DF is an acute mosquito-borne disease transmitted in a
“human–mosquito–human” mode [5], and there was a time-lag effect from the increase of mosquito
population to the increase of DF cases. Therefore, the influence of temperature, atmospheric pressure
and relative humidity on the DF transmission showed a corresponding time-lag relationship. DF is an
acute mosquito-borne disease transmitted by Aedes mosquitoes, and the breeding of Aedes mosquitoes
required appropriate temperature, relative humidity and atmospheric pressure conditions. In general,
increased ambient temperature and relative humidity accelerated the reproduction of mosquito vectors
and promoted the spread of DF [1,23]. The numbers of Aedes larvae were higher in the rainy season
than in the winter seasons, which made it easy to develop DF in areas with high relative humidity.
The same findings were indicated by Wongkoon [29]. Morin [2] and Xiang [30] stated that a maximum
temperature ranging from 21.6 to 32.9 and a minimum temperature from 11.2 to 23.7 are optimal for DF
transmission, which was coincident with the annual temperature range in Guangzhou. Atmospheric
pressure had an adverse effect on the DF transmission because the lower atmospheric pressure
promoted the mosquito vectors flying at lower altitudes, which increased the possibility of human
exposure to mosquitoes and increased the transmission risk of DF, which was consistent with the
research results of Bulto [31].

The findings of the geo-detector analysis revealed that population, community age and the
subway were the important driving factors affecting the DF transmission, followed by roads and
ponds. In 2014, the DF hotspots in Guangzhou were mainly distributed in the places with dense
population, old infrastructure and developed transportation networks. The interaction among people,
DF carriers and mosquito vectors in these areas was greatly enhanced and increased the DF transmission
probability. In addition, with regard to older communities, the poor sanitation conditions, a high
proportion of susceptible populations (e.g., the elderly) and residents who neglected the issues of
DF prevention and control strengthened the risk of DF transmission. This result was in accordance
with the findings indicated by Morin and Bakhsh [2,32]. The proportion of the elderly population
living in the old community was relatively larger, which increases the susceptible population and
strengthens the risk of DF transmission [29]. The subway and its catchment areas were crowded
places, which increased the chances of human contact with DF carriers, greatly enhancing the risk of
human infection with DF (similar findings were found by Sanna and Hsieh [16]). Li [8] referred to the
spread of the epidemic being mainly along the high-density road network area, and a high-density
road network is an important factor contributing to the direction and scale of DF epidemics. Houses
located along roads produced conducive conditions for Aedes albopictus breeding sites, resting sites,
blood feeding sites, oviposition sites and areas to disperse. Additionally, compared with rivers and
other flowing water, ponds had the characteristics of low-fluidity or non-fluidity and were prone to
water accumulation. In the absence of natural enemies of mosquito larvae such as fish, ponds were
suitable for mosquito breeding.

It is worth noting that the impact of these factors was exerted on DF risk through multiple
mechanisms, and the spatial interaction of human (e.g., population, community age) and land-use
factors (e.g., subway, road and ponds) could enhance the spatiotemporal transmission of DF.
Furthermore, ponds were an important interaction factor because they could strengthen the influence
of other factors on DF transmission. Located in the subtropical coast, the rainy season in Guangzhou
is hot, humid and rainy [10,17]. Due to the aging of the drainage system and other infrastructure,
Guangzhou often encounters urban waterlogging after heavy rains, and a large amount of accumulated
standing water often appear in and around ponds, which provides the necessary water environment for
the breeding of Aedes mosquitos. When the areas with high population density and high susceptibility
interact spatially with water-prone areas, it could increase the exposure of humans to Aedes mosquitoes
and increase the risk of DF transmission. This might be the reason that the spatial superposition
of driving factors will enhance the “human–mosquito–human” [5] transmission mode of DF and
accelerate the transmission speed.
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Of course, this study was not without limitations. First, we used the reported confirmed cases of
DF to analyze the relationship between the spatiotemporal transmission patterns of DF and driving
factors, which have implications for pre-emptive DF control. However, it should be noted that some
DF cases (such as undetected DF cases) might not be included in ISND, particularly in areas with
underdeveloped medical conditions [1,33]. Second, DF transmission may be affected by the age
structure of urban residents [22]. However, due to the poor availability of data, we only replaced the
population age structure factor with that of the community age. Considering these limitations were
mainly caused by data availability, further work can focus on data collection and enrich the driving
factors in this study. Moreover, landscape characteristics (e.g., compositional and configurational
features) can affect the transmission of mosquito-borne diseases by affecting human density and
movement, mosquito abundance and distribution and human-mosquito encounters, and landscape
characterization via landscape metrics has been applied in the studies of mosquito-borne diseases, such
as malaria in the Amazon [34]. This method might be used in dengue research for a deep understanding
of the impact of urban landscape feature on dengue’s spatiotemporal transmission. Such information
might be useful for improving the actual prevention strategies of dengue transmission.

5. Conclusions

This study has two major strengths. Firstly, we quantified the effects of meteorological, human and
land-use factors on DF transmission and built a hierarchical factor system of DF. Meteorological factors
including minimum temperature, maximum temperature and humidity have a positive effect on DF
transmission, while atmospheric pressure has a negative effect. Furthermore, minimum temperature,
maximum temperature, atmospheric pressure and humidity have a lag effect on DF transmission.
The population, community age and subway were the most important driving factors affecting DF
transmission, followed by roads and ponds. Secondly, we identified that the interaction among land-use
and human factors could enhance DF transmission, and the pond factor was the most important
interaction factor, which could strengthen the influence of other factors on DF transmission.
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