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Abstract 

Background:  This study aimed to develop a novel analytic approach based on a radiomics model derived from 68Ga-
prostate-specific membrane antigen (PSMA)-11 PET/CT for predicting intraprostatic lesions in patients with prostate 
cancer (PCa).

Methods:  This retrospective study included consecutive patients with or without PCa who underwent surgery or 
biopsy after 68Ga-PSMA-11 PET/CT. A total of 944 radiomics features were extracted from the images. A radiomics 
model was constructed using the least absolute shrinkage and selection operator (LASSO) algorithm with tenfold 
cross-validation in the training set. PET/CT images for the test set were reviewed by experienced nuclear medicine 
radiologists. The sensitivity, specificity, positive predictive value, negative predictive value, and area under the receiver 
operating characteristic curve (AUC) were calculated for the model and radiologists’ results. The AUCs were compared.

Results:  The total of 125 patients (86 PCa, 39 benign prostate disease [BPD]) included 87 (61 PCa, 26 BPD) in the 
training set and 38 (61 PCa, 26 BPD) in the test set. Nine features were selected to construct the radiomics model. The 
model score differed between PCa and BPD in the training and test sets (both P < 0.001). In the test set, the radiomics 
model performed better than the radiologists’ assessment (AUC, 0.85 [95% confidence interval 0.73, 0.97] vs. 0.63 [0.47, 
0.79]; P = 0.036) and showed higher sensitivity (model vs radiologists, 0.84 [0.63, 0.95] vs. 0.74 [0.53, 0.88]; P = 0.002).

Conclusion:  Radiomics analysis based on 68Ga-PSMA-11 PET may non-invasively predict intraprostatic lesions in 
patients with PCa.
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Background
Prostate cancer (PCa) is one of the most common can-
cers and the second leading cause of cancer-related 
deaths among men worldwide [1]. Transrectal ultra-
sound-guided biopsy is currently a standard method for 
making a definitive diagnosis in patients with suspected 
PCa based on an elevated prostate-specific antigen level 
and/or an abnormal digital rectal examination [2]. How-
ever, traditional 10-core or 12-core systematic biopsy 
could fail to detect some cases of PCa and may incor-
rectly grade the tumor because of down-staging [2, 3]. In 
addition, prostate biopsy may be associated with notable 
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side effects, including bleeding, pain, and infection. A 
non-invasive imaging approach for detecting PCa is thus 
an attractive prospect, to spare patients from unneces-
sary biopsies and overtreatment.

Prostate-specific membrane antigen (PSMA) is a highly 
specific prostatic epithelial cell transmembrane protein 
that is highly expressed in most primary PCa [4, 5]. 68Ga-
labeled PSMA inhibitors have been explored and trans-
lated successfully for the clinical diagnosis of PCa in the 
last decade [6, 7]. 68Ga-PSMA-11 has been proposed for 
use in positron emission tomography/computed tomog-
raphy (PET/CT) examinations among patients with pri-
mary PCa, and has demonstrated higher sensitivity and 
specificity than magnetic resonance imaging (MRI) for 
the detection of both intraprostatic tumor focal lesions 
and metastasis [8–10]. However, PSMA PET/CT imaging 
data are usually analyzed manually by nuclear medicine 
specialists, based on experience, which is challenging. 
Notably, significant numbers of intraprostatic lesions 
might be missed by visual PET-image interpretation due 
to their small size or configuration [11]. Quantitative 
measures of PSMA expression are therefore necessary to 
allow risk stratification of patients with primary PCa.

Radiomics is an attractive approach that converts med-
ical images into mineable high-dimensional data via the 
high-throughput extraction of abundant imaging fea-
tures [12, 13]. These features include a variety of gene 
expression types that provide a more comprehensive 
description of the tumor characteristics, thus enabling 
researchers to obtain an effective signature to inform 
objective clinical decisions [14–17]. However, the pre-
dictive value of 68Ga-PSMA-11 PET/CT radiomics in 
patients with PCa has not been widely investigated.

We therefore aimed to perform a comprehensive analy-
sis and develop a radiomics model based on 68Ga-PSMA 
PET/CT, and evaluate its diagnostic performance for the 
non-invasive prediction of PCa.

Methods
Patients and study design
Eligible consecutive patients who underwent 68Ga-
PSMA-11 PET/CT between February 2019 and May 
2021 were retrospectively enrolled in this study. The 
inclusion criteria were: (1) pathologically proven PCa or 
biopsy-proven benign prostate disease (BPD) with a fol-
low-up of at least 6  months, the biopsy was performed 
utilizing a 12-core extended scheme under the guidance 
of transrectal ultrasonography, without consideration of 
PET/CT; (2) 68Ga-PSMA-11 PET/CT examination per-
formed within 1  month before surgery or biopsy; and 
(3) no anti-tumor treatment received before PET/CT 
examination. Patients with positive regional lymph node 
were included in case they had surgery, while those with 

distant metastasis were excluded for their unavailable 
surgery specimen. Patients were divided randomly into 
a training set and test set at a ratio of 7:3. Pathologically 
proven PCa from radical prostatectomy was used as ref-
erence standard and dichotomized for radiomics model 
classification and radiologist assessment.

PET/CT acquisition and visual assessment
All patients underwent PET/CT using a dedicated 
PET/CT system (United Imaging, uMI780, China) at 
60 ± 5  min after intravenous injection of 2–2.3  MBq/kg 
68Ga-PSMA-11 synthesized as previously described [18]. 
A non-enhanced CT scan (120 kV, mA modulation, pitch 
0.988, slice thickness 3.0  mm, increment 1.5  mm) was 
obtained followed by a whole-body PET scan (3 min/bed, 
field of view 60 cm) in 3D mode (matrix 256 × 256) from 
the vertex to the proximal legs. Datasets were fully cor-
rected for random coincidences, scatter radiation, and 
attenuation. PET image reconstruction used the ordered-
subsets expectation maximization method. Attenuation 
corrections of the PET images were performed using data 
from CT scans. PET/CT fusion was performed using a 
workstation (uWS-MI, United Imaging).

The training and test sets were reviewed independently 
by two nuclear medicine radiologists (F.W and S.Y.A, 
with 10 and 8  years of experience in prostate PET/CT, 
respectively). The radiologists were completely blinded to 
the clinical information and were encouraged to decide 
if an intraprostatic PCa lesion was present or not using 
a four-point scale: 1, definite BPD; 2, probable BPD; 3, 
probable PCa; and 4, definite PCa. Inter-reader agree-
ment was evaluated using the Cohen’s kappa coefficient. 
Agreement between the radiologists was reached by 
consensus.

Image segmentation
The radiomics workflow is shown in Fig. 1. The volumes 
of interest (VOIs) of the whole prostate gland were delin-
eated manually and segmented slice by slice using 3D 
Slicer software (version: 4.1.1.0; www.​slicer.​org) by two 
nuclear medicine radiologists (Z.Y.Z. and S.M.Z., with 
4 and 3 years of experience in prostate PET/CT, respec-
tively), who were blinded to the clinical information, 
based on the PET images under consideration of the cor-
responding CT scan.

Radiomics feature extraction
Radiomics features were extracted using the feature pack-
age of pyradiomics (github.com/Radiomics/pyradiomics) 
in Python, according to the guidelines of the Image Bio-
marker Standardization Initiative [19]. All PET data were 
subjected to image normalization and resampled to the 
same resolution (2 × 2 × 2 mm) before feature extraction 
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(Additional file  1: Table  S1). Standardized uptake value 
was discretized to a fixed bin width of 0.25. A total of 944 
radiomics features were extracted, including 14 shape 
features, 18 first-order intensity statistics features, 75 
texture features [Gray Level Co-occurrence Matrix (24), 
Gray Level Size Zone Matrix (16), Gray Level Run Length 
Matrix (16), Neighboring Gray Tone Difference Matrix 
(5), Gray Level Dependence Matrix (14)], and 837 wave-
let and Laplacian of Gaussian features.

Feature selection and radiomics model construction
In this study, only radiomics features with good interob-
server reproducibility (intraclass correlation coefficient 
[ICC] > 0.75) were included in subsequent analyses. Radi-
omics features were scaled using a z-score and reduced 
to 10 features by classic minimum redundancy maximum 
relevance using R2 difference. This algorithm ensures the 
selection of features that are highly relevant to the actual 
classes while reducing redundancy among the selected 
features. The minimum redundancy maximum rel-
evance (mRMR) algorithm has been proven to be effec-
tive in both radiomics and genomics studies requiring 

the selection of a small subset of features from thousands 
of possible features [20, 21]. Finally, the least absolute 
shrinkage and selection operator (LASSO) algorithm was 
used to select significant distinguishable features with 
tenfold cross-validation (Fig. 2). To test the patient-based 
classification performance, a radiomics model score was 
then calculated for each patient in the training set and 
the test set using a formula constructed in the training 
set by a linear combination of selected features weighted 
by their respective coefficients.

Statistical analysis
Differences in patients’ characteristics between the train-
ing and test sets were assessed. The ICC was calculated 
to evaluate the interobserver agreement among radiolo-
gists and interobserver reproducibility of the radiomics 
features, with an ICC > 0.75 indicating good reproduc-
ibility [22]. The sensitivity, specificity, positive predictive 
value (PPV), and negative predictive value (NPV) of the 
radiomics model and readers’ visual assessment were cal-
culated. The diagnostic performances of the radiomics 
score and the readers’ evaluation for predicting PCa were 

Fig. 1  Radiomics modeling and analysis workflow
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evaluated using receiver operating characteristic (ROC) 
curve analysis. The optimal cutoff values of the radiomics 
score were determined by maximizing the Youden index 
in the training set. The fixed radiomics score cutoff val-
ues from the training set were then applied to the test set. 
The sensitivity, specificity, PPV, and NPV of the readers’ 
assessments were calculated by converting the four-point 
scale into a binary class. A score of 1 or 2 was regarded as 
BPD and a score of 3 or 4 was regarded as PCa. The AUC 
values were compared between the readers and radiom-
ics model using the DeLong method.

Statistical analysis was conducted using SPSS 22.0 
(IBM, Armonk, NY, USA) and R software (v. 4.1.3; http://​
www.​Rproj​ect.​org). The LASSO regression was carried 
out using the “glmnet” package and ROC curves were 
analyzed using the “pROC” package. All statistical tests 
were two-sided, and a P value < 0.05 was considered sta-
tistically significant.

Results
Clinical characteristics
Among 237 patients, we excluded 91 because of anti-
tumor treatment before PET/CT, 17 with distant 
metastasis and 4 because of history of malignancy. A 
total of 125 patients were finally included in the study 
and divided randomly into a training set (n = 87) and a 
test set (n = 38). All patients underwent biopsy or sur-
gery and their pathological examination results were 
assessed. The baseline characteristics of the patients 

in the training and test sets are summarized in Table 1. 
The 87 patients in the training set included 61 (70.11%) 
with PCa and 26 (29.89%) with BPD, and the 38 patients 
in the test set included 25 (65.79%) with PCa and 13 
(34.21%) with BPD. The distribution of ISUP grades was 
1 (n = 8), 2 (n = 15), 3 (n = 21), 4 (n = 12), and 5 (n = 5) 
in the training set and 1 (n = 4), 2 (n = 4), 3 (n = 7), 4 
(n = 6), and 5 (n = 4) in the test set. There were no sig-
nificant differences in patient characteristics between 
the training and test sets.

Fig. 2  LASSO algorithm and tenfold cross-validation were used to extract the optimal subset of radiomics features. a Optimal tuning parameter 
(lambda) selection according to partial likelihood deviation of the model. b LASSO coefficient profiles of the 10 features. Using the tenfold 
cross-validation, a vertical line was drawn at the selected value and nine non-zero coefficients are shown

Table 1  Clinical characteristics in the training and test sets

Age and PSA presented as mean ± standard deviation

PCa, Prostate cancer; BPD, benign prostate disease; PSA, prostate-specific 
antigen; ISUP, International Society for Urological Pathology

Characteristic Training set (n = 87) Test set (n = 38) P value

Age (years) 71.00 ± 0.72 68.45 ± 1.24 0.076

PSA (ng/mL) 18.32 ± 2.25 18.72 ± 3.02 0.998

BPD 26 (29.89%) 13 (34.21%) 0.631

PCa 61 (70.11%) 25 (65.79%) 0.631

ISUP grade

1 8 (13.11%) 4 (16.00%) 0.994

2 15 (24.59%) 4 (16.00%) 0.558

3 21 (34.43%) 7 (28.00%) 0.564

4 12 (19.67%) 6 (24.00%) 0.654

5 5 (8.20%) 4 (16.00%) 0.493

http://www.Rproject.org
http://www.Rproject.org
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Feature extraction and selection
A total of 944 radiomics features were extracted in the 
present study. Of these, 226 features with interobserver 
ICCs < 0.75 were eliminated. Ten features with the least 
redundancy and the greatest correlation with the target 
label were retained using the mMRM method. Follow-
ing tenfold cross-validation of the LASSO algorithm on 
the training set, nine features with non-zero coefficients 
emerged as the best features to construct the radiomics 
signature (Additional file  1: Table  S2), and the equation 
for calculating the radiomics model score was as follows:

Radiomics model score = 1.6371213 − original_
shape_Sphericity × 0.1003826 – original_glszm_Smal-
lAreaLowGrayLevelEmphasis × 0.7303062 + log-sigma-
3–0-mm-3D_ngtdm_Coarseness × 0.3241121 − wave-
l e t - H H H _ g l s z m _ L o w G r a y L e v e l Z o n e E m p h a -
sis × 0.5685874 − wavelet-HHH_glszm_SizeZoneNonU-
niformityNormalized × 0.5211243 + wavelet-LLL_first-

order_Skewness × 0.4401625 − wavelet-LLH_firstorder_
Skewness × 0.5177129 − wavelet-LLL_glszm_GrayLevel-
NonUniformity × 0.6099202 + wavelet-LLL_glszm_Smal-
lAreaEmphasis × 0.4692401.

Radiomics model analysis
The performance of the radiomics features were evalu-
ated by comparing the radiomics model scores based on 
the PET features. These differed significantly between 
the PCa and BPD groups in both the training and the test 
sets (both P < 0.001). Moreover, PCa had higher radiom-
ics model score than BPD in both sets (Fig. 3).

The radiomics model had good predictive performance 
(Table 2), with sensitivity, specificity, PPV, and NPV val-
ues of 0.82 (95% confidence interval [CI]: 0.70, 0.90), 1.00 
(95% CI: 0.84, 1.00), 1.00 (95% CI: 0.91, 1.00), and 0.70 
(95% CI: 0.53, 0.84) in the training set, respectively. The 

Fig. 3  Diagnostic performance of the radiomics model. Model scores for patients in the a training and b test sets. c Receiver operating 
characteristic (ROC) curves of radiomics model in the training and test sets. PCa, prostate cancer; BPD, benign prostate disease

Table 2  Diagnostic performances of the radiomics model and visual assessment by nuclear medicine radiologists

AUC, Area under curve; PPV, positive predictive value; NPV, negative predictive value

Cohort Training set Test set

Category Radiomics Radiomics Reader P value

AUC (95% CI) 0.95 (0.91, 0.99) 0.85 (0.73, 0.97) 0.63 (0.47, 0.79) 0.036

Sensitivity (95% CI) 0.82 (0.70, 0.90) 0.84 (0.63, 0.95) 0.74 (0.53, 0.88) 0.002

Specificity (95% CI) 1.00 (0.84, 1.00) 0.77 (0.46, 0.94) 0.55 (0.25, 0.82) 0.508

PPV (95% CI) 1.00 (0.91, 1.00) 0.88 (0.67, 0.97) 0.80 (0.59, 0.92) < 0.001

NPV (95% CI) 0.70 (0.53, 0.84) 0.71 (0.42, 0.90) 0.46 (0.20, 0.74) 0.754
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equivalent values in the test set were 0.84 (95% CI: 0.63, 
0.95), 0.77 (95% CI: 0.46, 0.94), 0.88 (95% CI: 0.67, 0.97), 
and 0.71 (95% CI: 0.42, 0.90), respectively. The AUC val-
ues for differentiating prostate histopathology were 0.95 
(95% CI: 0.91, 0.99) and 0.85 (95% CI: 0.73, 0.97) in the 
training and test sets, respectively. Figure  3 shows the 
ROC curves of the radiomics model in the training and 
test sets.

The discriminatory efficiency of visual assessment by 
radiologists were also evaluated. Detailed information 
is provided in Table  2. The agreement between read-
ers on was almost perfect (κ = 0.81 [95% CI: 0.59, 1.00]).
The sensitivity, specificity, PPV, and NPV for the readers’ 
assessments were 0.74 (95% CI: 0.53, 0.88), 0.55 (95% CI: 
0.25, 0.82), 0.80 (95% CI: 0.59, 0.92), and 0.46 (95% CI: 
0.20, 0.74), respectively. Visual assessment demonstrated 
an AUC value of 0.63 (95% CI: 0.47, 0.79), which was 
significantly lower than the AUC value of the radiomics 
model (0.63 vs. 0.85, respectively; P = 0.036) (Fig. 4). The 
radiomics model also achieved greater sensitivity, speci-
ficity, PPV, and NPV than those of the readers (0.84 vs. 
0.74 [P = 0.002], 0.77 vs. 0.55 [P = 0.508], 0.88 vs. 0.80 
[P < 0.001], and 0.71 vs. 0.46 [P = 0.754], respectively).

Discussion
In the present study, we developed a radiomics model 
based on 68Ga-PSMA-11 PET/CT for the non-invasive 
discrimination of patients with PCa from those with BPD. 
The model was successfully validated in independent test 
set (AUC, 0.85; sensitivity, 0.84; specificity, 77%; PPV, 

0.88, NPV, 0.71) and outperformed visual assessments by 
nuclear medicine radiologists (AUC, 0.63; P = 0.036).

The non-invasive identification of patients with PCa 
is an important issue. Multi-parametric MRI (mp-MRI) 
has been an important diagnostic tool for detecting pri-
mary PCa for several years. Furthermore, the use of 
radiomics tools has improved radiologists’ assessments. 
Ginsburg et  al. [23] evaluated features related to cancer 
detection in a transition zone and a peripheral zone in a 
cross-institutional setting and found that the radiomics 
features considered useful for cancer detection differed 
between the two zones. Cameron et  al. [24] proposed a 
model consisting of an initial tumor candidate identifi-
cation schema followed by the MAPS system (morphol-
ogy, asymmetry, physiology, size) to score the candidate 
regions. The goal of the proposed model was to incorpo-
rate high-level features using candidate tumor regions 
through mp-MRI and region morphology to construct a 
high-dimensional feature space that could be mined for 
different purposes, such as cancer detection or progno-
sis prediction. However, these studies based on MRI do 
not reflect tumor heterogeneity as well as PSMA PET/
CT, which targets a transmembrane glycoprotein sub-
stantially overexpressed in PCa cells [4, 5]. Zamboglou 
et al. [25] recently found that radiomics analysis of PSMA 
PET data was able to identify missing malignant lesions 
in the prostate gland. They enrolled patients with PCa 
and defined non-PCa tissue as the subtraction volume 
between the prostatic gland and PCa tumor, based on 
pathological tissue slices. However, further studies are 
needed to clarify the differences between radiomics fea-
tures from the prostate tissue in the non-tumor area of 
prostate cancer patients and the prostate tissue in non-
tumor patients. In the current study, we enrolled both 
PCa and non-PCa patients to comprehensively evaluate 
radiomics data from PSMA. Yi et  al. [26] constructed a 
random forest model developed by 68Ga-PSMA-11 PET-
based radiomics features proven to be useful for the 
accurate prediction of invisible intraprostatic lesions on 
68Ga-PSMA-11 PET in patients with primary PCa (AUC, 
0.903). Their study differed from the current study in that 
we evaluated both negative and non-negative PSMA-PET 
image cases. The present study showed a poorer model 
performance (AUC = 0.85), possibly due to differences in 
the inclusion criteria and region of interest between the 
two studies.

This study also compared the diagnostic perfor-
mances of the radiomics model and qualitative evalu-
ation by radiologists. Visual assessment of primary 
PCa based on experience remains challenging [27, 
28]. Although PSMA is a transmembrane glycopro-
tein highly expressed on the cell surface of PCa cells, 
it is also expressed in benign pathologies such as BPD 

Fig. 4  Receiver operating characteristic (ROC) curves of the 
radiomics model and visual assessment by nuclear medicine 
radiologists for discriminating PCa and BPD in the test set
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and prostatic intraepithelial neoplasia [29]. Benign 
intraprostatic processes can be associated with rela-
tively high PSMA expression levels, with significant 
overlap between low-volume malignancies and benign 
disease. Moreover, visual PET interpretation might 
miss a significant number of intraprostatic lesions 
because of their small size or configuration [11], lead-
ing to potential false positives or false negatives [30, 
31]. In this study, the radiomics model detected PCa 
based solely on a numeric feature set from high-
dimensional medical imaging data, regardless of the 
clinical situation, which could explain its higher sen-
sitivity compared with the readers’ assessments. On 
the other hand however, there was no significant dif-
ference in specificity, which might reflect the fact that 
the radiologists’ reports tended to maximize the speci-
ficity for an organ-preserving strategy, unlike the radi-
omics model determined by the Youden index. Further 
studies are thus needed to consider the specificity.

Whole-prostate gland segmentation strategy were 
employed in this study for two reasons. First, the 
characteristic large and low-resolution voxels for PET 
images limit the radiomics analysis in small prostate 
lesions, and VOIs with few voxels cannot provide 
much complementary information [32]. Second, it 
will be challenging to determine the value for nega-
tive or diffuse-pattern PET images. Recent studies 
[25, 26] showed that radiomics features derived from 
68Ga-PSMA-11 PET images based on half-glandular 
segmentation were helpful for predicting invisible PCa 
lesions. Solari et  al. [33] developed radiomics mod-
els based on delineating the whole prostate gland and 
showed good performances for predicting the post-
operative Gleason score in PCa patients. In the pre-
sent study, further comparison between the radiomics 
model and readers revealed that high-dimensional fea-
tures offered better disease characterization for PCa.

This study had some limitations. First, its single-
center design and relatively small sample size may 
compromise the model’s generalization ability and 
affect its sensitivity and specificity. It is therefore nec-
essary to formulate a unified standard for multicenter 
studies and establish and test multicenter data using 
radiomics methods to improve the robustness of the 
model. Second, further studies using different PET/CT 
scanners are needed to validate the generalizability and 
robustness of the radiomics model. Third, we only ana-
lyzed PET-imaging data, and future research should 
aim to include multi-modal imaging data. Fourth, 
characterization of multifocality was not included in 
this study and is desirable in future research.

Conclusions
In conclusion, we successfully developed and validated 
a radiomics model based on features extracted from 
68Ga-PSMA-11 PET. This model provides a non-inva-
sive and quantitative method for predicting intrapros-
tatic lesions in patient with PCa.
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