
Comparative Proteomic Phenotyping of Cell
Lines and Primary Cells to Assess Preservation
of Cell Type-specific Functions*□S

Cuiping Pan‡§, Chanchal Kumar‡§, Sebastian Bohl¶, Ursula Klingmueller¶,
and Matthias Mann‡�

Biological experiments are most often performed with
immortalized cell lines because they are readily available
and can be expanded without limitation. However, cell
lines may differ from the in vivo situation in important
aspects. Here we introduce a straightforward methodol-
ogy to compare cell lines to their cognate primary cells
and to derive a comparative functional phenotype. We
used SILAC (stable isotope labeling by amino acids in cell
culture) for quantitative, mass spectrometry-based com-
parison of the hepatoma cell line Hepa1–6 with primary
hepatocytes. The resulting quantitative proteome of 4,063
proteins had an asymmetric distribution, with many pro-
teins down-regulated in the cell line. Bioinformatic analy-
sis of the quantitative proteomics phenotypes revealed
that Hepa1–6 cells were deficient in mitochondria, reflect-
ing re-arrangement of metabolic pathways, drastically up-
regulate cell cycle-associated functions and largely shut
down drug metabolizing enzymes characteristic for the
liver. This quantitative knowledge of changes provides an
important basis to adapt cell lines to more closely resem-
ble physiological conditions. Molecular & Cellular Pro-
teomics 8:443–450, 2009.

The development of tissue culture techniques and estab-
lishment of cell lines has been indispensable for biological
research for several decades (1). However, disadvantages
of cell lines are that they are usually derived from tumors
and have adapted to growth in culture. Although cell culture
tries to create a close-to-physiology milieu by adding ap-
propriate amounts of salt, glucose, amino acids, vitamins,
and serum, the lack of tissue architecture and heterogene-
ous population of cell types often abolishes cell-cell inter-
action, secretion, and other functions based on tissue con-
text. Cells in culture are prone to genotypic and phenotypic
drifting. Thereby cell lines can lose tissue-specific functions

and acquire a molecular phenotype quite different from cells
in vivo. Acceptance of cell lines as model for biological
function varies between fields. Cell biological studies on
basic mechanisms, such as the cell cycle are routinely and
overwhelmingly carried out in long-established cell lines (2).
This is particularly the case for microscopy studies, includ-
ing large-scale siRNA screens with imaging read out. In
contrast, there is substantial controversy of how well cell
lines, which are often established from late stage cancer,
preserve aspects of the disease and whether or not they
should be used in cancer drug development (3–5). Thus
animal experiments or studies in primary cell lines are often
preferred despite their added complexity. Accurate molec-
ular phenotypes to determine whether the function to be
investigated is preserved in cell lines would enable a rational
choice of the most appropriate experimental system (6). In
biotechnology and the pharmaceutical industry this goal
obtains added urgency in the light of efforts to reduce
animal experimentation to a minimum.

In this work we ask how primary cells and cell lines differ in
their functions. This question has been addressed by com-
paring gene expression profiles at the transcriptome level in a
substantial body of literature (for recent examples, see Refs.
7, 8). However, transcriptome studies are not quantitative with
respect to changes at the proteome level. Ideally, the different
molecular phenotypes should be assessed by quantitatively
comparing the proteomes of the primary cells versus the cell
lines. Here we report such a study and develop an algorithm
to extract functional phenotypes from the resulting differential
protein distributions.

EXPERIMENTAL PROCEDURES

Materials and Reagents—Mouse hepatoma cell line Hepa1–6 was
obtained from American Type Culture Collection (ATCC). L-arginine,
L-lysine, L-13C6

15N4-arginine and L-13C6
15N2-lysine were purchased

from Sigma-Aldrich. Chemicals for the “in solution” and “in gel”
digests were purchased from Sigma-Aldrich; endoproteinase Lys-C
was obtained from Waco, and sequencing grade-modified trypsin
was from Promega.

Isolation of Mouse Primary Hepatocytes—Isolation and culture of
mouse hepatocytes was performed according to standard operating
procedures (9). For biological and analytical reproducibility, primary
hepatocytes were isolated from two mice and processed separately.
After cultivation for 14 h, the cells were placed on ice and the medium
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was removed. The cells were lysed in radioimmune precipitation
assay (RIPA) buffer.

SILAC Labeling of Mouse Hepatoma Cell Line Hepa1–6—Hepa1–6
cells were grown in SILAC “light” (L-arginine and L-lysine) and “heavy”
(L-13C6

15N4-arginine and L-13C6
15N2-lysine) conditions for 8 passages

before the experiment. This period lasted around 3 weeks. Unless
stated, cell culture medium contained 4.5 g/liter glucose, following
the standard culture condition from ATCC. Other cell culture condi-
tions were essentially the same as described (10).

Fluorescence Microscopy—Primary hepatocytes were isolated and
seeded at a density of 2 � 105 cells per well in collagen I-coated
12-well plates. Hepa1–6 cells were grown to a density of 2 � 105 cells
per well in 12-well plates. Cells were stained for 15 min with 15 nM

Mitotracker Orange CMTMRos (Invitrogen) and 1:5000 Hoechst
333342 (Sigma-Alldrich) at 37 °C in the corresponding cultivation
medium. After three washing steps in cultivation medium cells were
viewed with a ZeissAxioVert 200 M fluorescence microscope using a
40� LD-Plan Neofluor objective (numerical aperture 1.5). Cells were
viewed under visible light, or excited with 345 nm (Hoechst 333342) or
550 nm (Mitotracker).

Protein Harvest, Digestion—Primary hepatocytes and Hepa1–6
cells were lysed in a buffer containing 1% Nonidet P-40, 0.1% sodium
deoxycholate, 150 mM NaCl, 1 mM EDTA, 50 mM Tris, pH 7.5, 1 mM

sodium orthavanadate, 5 mM NaF, 5 mM beta-glycerophosphate, and
protease inhibitors (Complete tablet, Roche Diagnostics). The lysates
were centrifuged in cold with 17,000 � g for 15 min to pellet cellular
debris. Supernatant was collected, and a Bradford method was used
to determine the protein concentrations. Equal amount of the proteins
from the primary hepatocyte sample and Hepa1–6 sample were
mixed, resulting in 100-�g proteins in total.

Protein mixtures were added with four volumes of methanol, one
volume of chloroform, and three volumes of distilled water in a se-
quential manner. The addition of each solvent was followed by a short
vortex. After centrifugation of 20,000 � g for 1 min, proteins were
focused between organic and inorganic phases. The aqueous phase
was discarded. Four starting volumes of methanol were added to the
protein pellet followed by a short vortex. After spinning at 20,000 � g
for 2 min, methanol was removed, and the protein pellet was air-dried.

Precipitated proteins were redissolved in a buffer containing 6 M

urea, 2 M thiourea, 10 mM Hepes, pH 7.5. Proteins were reduced with
1 mM dithiothreitol for 1 h, alkylated with 5.5 mM iodoacetamide for 45
min in dark, and digested for four hours with endoproteinase Lys-C
(1/50 w/w). After diluting four times with 20 mM ammonium bicarbon-
ate, samples were digested overnight with sequencing grade-modi-
fied trypsin (1/50 w/w). The digestion was quenched by adding trif-
luoroacetic acid to reach pH �3.

Peptide Preparation for Mass Spectrometry—Peptides were sepa-
rated based on their isoelectric points in the Agilent 3100 OFFGEL
fractionator (Agilent, G3100AA) in combination with commercially
available IPG DryStrips, 13 cm, pH 3–10 (GE Healthcare, 17-6002-44)
and IPG buffer, pH 3–10 (GE Healthcare, 17-6000-87) diluted 1:50 in
5% glycerol. Peptides were focused for 20 kVh at maximum current
of 50 �A and maximum power of 200 milliwatt. Each peptide fraction
was mixed with 10 �l of solvent containing 30% acetonitrile, 5%
acetic acid, and 10% trifluoroacetic acid. The resulting solution was
loaded into C18 reverse-phase StageTips (11).

Peptides were eluted from the StageTips by applying 80% acetoni-
trile, 0.5% acetic acid. Samples were dried down to 3 �l and mixed with
equal volume of solvent containing 2% acetonitrile and 1% trifluoroace-
tic acid. 5-�l samples were applied for LC-MS/MS analysis.

Mass Spectrometry and Data Analysis—Samples were injected via
autosampler into a 15-cm fused silica emitter (75-�m inner diameter;
Proxeon Biosystems) packed in-house with reverse-phase ReproSil-
Pur C18-AQ 3-�m resin(12) and eluted with nanoflow in Agilent 1200

liquid chromatography system (Agilent Technologies, Waldbronn,
Germany). The gradient induced a linear increase of 4–40% aceto-
nitrile in 0.5% acetic acid over 90 min.

Eluted peptides were sprayed into a 7-T LTQ-FT or LTQ-Orbitrap
mass spectrometer (Thermo Electron, Bremen, Germany) via a nano-
electrospray ion source (Proxeon Biosystems, Odense, Denmark) and
analyzed as described previously (12). Raw MS1 spectra were pro-
cessed using in-house developed software MaxQuant (version
1.0.7.4) (13–15), which performed peak list generation, SILAC- and
extracted ion current-based quantitation, calculated posterior error
probability, and false discovery rate based on search engine results,
peptide to protein group assembly, and data filtration and presenta-
tion (14). The derived peak list was searched with the Mascot search
engine (version 2.1.04; Matrix Science, London, UK) against a con-
catenated database combining 52,326 proteins from International
Protein Index mouse protein database version 3.24, 27 commonly
observed contaminants (forward database), and the reversed se-
quences of all proteins (reverse database). Carbamidomethylation
was set as fixed modification. Variable modifications included oxida-
tion (M), N-acetylation (protein), pyro (N-term QC). Full tryptic speci-
ficity was required, i.e. enzyme specificity was set to trypsin, allowing
for cleavage N-terminal to proline and between aspartic acid and
proline (12). Up to three missed cleavages and three labeled amino
acids (arginine and lysine) were allowed. Initial mass deviation of
precursor ion and fragment ions were up to 10 ppm and 0.5 Da,
respectively. The minimum required peptide length was set to 6
amino acids. To pass statistical evaluation, posterior error probability
for peptide identification (MS/MS spectra) must be below or equal to
0.1; the maximum false discovery rate of proteins was set at 0.01.This
ensures that in the worst case each MS/MS spectrum has a maximal
false identification probability of 0.1, and the overall peptide identifi-
cation list contains maximal 1% false identification hits. Posterior
error probability for peptides was calculated by recording Mascot
score and peptide sequence length-dependent histograms of forward
and reverse hits separately and then, using Bayes theorem, deriving
the probability of a false identification for a given top scoring peptide.
False discovery rate was calculated by successively including best
scoring peptide hits until the list contained 1% reverse hits. For
protein identification, two peptides were required, among which at
least one peptide was required to be unique in the database. False
discovery rate of proteins was the product of the posterior error
probability of the contained peptides where only peptides with dis-
tinct sequences were taken into account. If a group of identified
peptide sequences belongs to multiple proteins and these proteins
cannot be distinguished, i.e. no unique peptide reported, these proteins
are then reported as a protein group in MaxQuant. Proteins were quan-
tified if at least one MaxQuant-quantifiable SILAC pair was present.

Quantitation is explained in detail in Ref. 15 and was based on
two-dimensional centroid of the isotope clusters within each SILAC
pair. Ratios of the corresponding isotope forms in the SILAC pair were
calculated, and linear line fitting to these intensities ratios gave the
slope as the desired peptide ratio. To represent the ratio of a peptide
being quantified several times, the median value was chosen. To
minimize the effect of outliers, protein ratios were calculated as the
median of all SILAC pair ratios that belonged to peptides contained in
this protein. The % variability of the quantitation (supplemental Tables
1–4) was defined as the standard deviation of the natural logarithm of

1 The abbreviations used are: MS, mass spectrometry; MS/MS,
tandem mass spectrometry; LC, liquid chromatography; FT, Fourier
transform; KEGG, Kyoto encyclopedia of genes and genomes; GO,
gene ontology; SILAC, stable isotope labeling by amino acids in cell
culture; DMEs, drug metabolizing enzyme families.
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all ratios used for obtaining the protein ratio multiplied by a constant
factor 100.

Gene Ontology and KEGG Enrichment Analysis-based Hierarchical
Clustering—In the primary against cell-line study the quantified pro-
teome was divided into five quantiles corresponding to percentage
cutoffs of 0, 15%, 25%, 75%, 85%, and 100%. The enrichment
analysis for gene ontology (GO) biological process and cellular com-
ponent were done separately for these quantiles with respect to the
whole quantified proteome by conditional hypergeometric test avail-
able in the GO stats package (16) in the R statistical environment (17).
For hierarchical clustering we first collated all the categories obtained
after enrichment along with their p values and then filtered for those
categories which were at least enriched in one of the quantiles with p
value � 0.05. Categories which did not have a p value after collation
in any quantile were provided a very conservative p value of 1. This
filtered p value matrix was transformed by the function x � �log10 (p
value). Finally these x values were transformed to z-score for each GO
category by using the transformation [x-mean(x)]/sd(x). These
z-scores were then clustered by one-way hierarchical clustering using
“Euclidean distance” as distance function and “Average Linkage
Clustering” method available in Genesis (18). KEGG pathway enrich-
ment analysis was done in the same way, except that the hypergeo-
metric test was employed, and the reference set was complete
mouse KEGG annotation.

RESULTS

Quantitative Analysis of Hepa1–6 Against Primary Hepato-
cytes—To characterize phenotypic differences between
mouse liver cell lines and primary cells, we SILAC-labeled (19,
20) a murine hepatoma cell line, Hepa1–6 (21), and compared
its proteome to that of primary hepatocytes prepared accord-
ing to standard operating procedures established by the Ger-
man systems biology competence network HepatoSys (9)
(Fig. 1). We used high resolution MS to identify 3,400 proteins
while quantifying more than 3,350 of them (see “Experimental
Procedures”, supplemental Fig. 1A, and supplemental Table
1). We repeated the experiment with hepatocytes from an-
other mouse and obtained excellent quantitative reproducibil-
ity (Pearson correlation coefficient 0.95; supplemental Fig.
1B). We then combined the two datasets and analyzed them
together using stringent and unified criteria. At a false positive
rate of less than one percent, a total of 4,063 proteins were
identified and quantified between the two cell populations.
The primary and cell line proteomes overlap qualitatively but
are very different quantitatively, with more than half of the
proteome changing at least 2-fold between the two conditions
(Fig. 2, A and B; supplemental Tables 1 and 2; see Data
deposition notes for access to raw data). Many proteins are
expressed at much lower levels in the immortalized cell line
than in the primary cells whereas comparatively few were
up-regulated in Hepa1–6. This is surprising because cancer
cells are thought to be de-differentiated and to express many
genes inappropriately.

It is usually recommended to cultivate Hepa1–6 cells in high
glucose medium (38 mM). Therefore we asked whether some
of the observed phenotypic changes were attributable to this
circumstance. To address this experimentally, we performed
another SILAC experiment comparing cells cultured in high

glucose against physiological glucose levels in mice (8 mM) for
3 weeks (Fig. 2C and supplemental Table 3). In this experi-
ment, there were hardly any overall changes in the proteome,
and 96% of the proteins were of constant abundance within a
factor of two. This was also confirmed in a replicate experi-
ment (supplemental Fig. 2 and supplemental Table 4). These
results rule out a dominant role of the superphysiological
glucose level in the proteome differences between primary
cells and cell lines. Furthermore, they demonstrate excellent
quantitative accuracy of our experiment on a proteome-wide
basis.

A Method for Proteomic Phenotyping—To functionally un-
derstand the differences between the two cell populations, we
divided the fold-change distribution between primary hepato-
cytes and the Hepa1–6 cell line into five quantiles according
to relative protein expression (Fig. 2, A and B). Each quantile
was assessed separately for over-represented pathways, bi-
ological processes, and cellular components with GO and
KEGG pathway analysis (22, 23) (see “Experimental Proce-
dures”). We retained each functional category that reached at
least 95% statistical significance in one of the quantiles and
then performed one-way unsupervised clustering of the p
values of the resulting categories (Fig. 3, supplemental Fig. 3,
and supplemental Table 5). This analysis differs from the more
familiar clustering of over-represented genes themselves,
which is frequently employed in microarray-based experi-
ments. It integrates the strength of statistical testing (taking p

FIG. 1. Strategy for comparing primary cells with immortalized
cell lines. Primary hepatocytes were isolated and grown for 14 h. The
Hepa1–6 cell line was completely SILAC-labeled with 13C6

15N4-argi-
nine and 13C6

15N2-lysine. Cell extracts were combined and by online
high-resolution MS on a linear ion trap Fourier transform instrument
(LTQ-FT) or LTQ-Orbitrap. The bottom part of the figure exemplifies
peptides from proteins mostly expressed in primary cells, equally
expressed in both or mostly expressed in Hepa1–6.
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values as input for clustering) with the intuitive simplicity of
hierarchical clustering. By automatically classifying related
processes and pathways based on their up or down-regulated

protein measurements, it provides an unbiased global portrait
of representative biological functions, enabling visual inter-
pretation of the phenotype in terms of aggregate functional
modules on a systems level. We verified the robustness of
these functional assignments by comparing the shared p
value matrix of the replicate experiments against each other
(supplemental Fig. 4). This correlation was 0.86 for KEGG,
0.85 for GO biological process, and 0.92 for GO cellular
compartment.

Proteomic Differences between Hepa1–6 and Primary
Hepatocytes—The most prominent cluster of proteins ex-
pressed at higher levels in Hepa1–6 relates to cell division and
encompasses categories such as cell cycle (p � 10�9) (sup-
plemental Fig. 5), DNA synthesis (p � 10�4), and RNA poly-
merase (p � 10�3). This cluster consists of 10 enriched path-
ways, of which at least five relate to increased cell
proliferation. Biologically, this is not surprising because hepa-
tocytes in the liver and in our primary culture are largely
arrested in the GO phase of the cell cycle, whereas Hepa1–6
cells double every 18 h. Nevertheless, the fact that this phe-

FIG. 2. Fold-change distributions of the proteome. A, quantita-
tive comparison of the primary against the Hepa1–6 cell line pro-
teome. The distribution was divided into five quantiles as follows.
High relative expression in primary cells (0–15%, at least 4-fold
down-regulation), mostly expressed in primary cells (15–25%, �4 to
�1.5-fold regulation), not highly regulated proteins (25–75%; �1.5 to
�2.8), mostly expressed in Hepa1–6 (75–85; 2.8 to 3.6-fold), highly
expressed in Hepa1–6 (85–100%, more than 3.6-fold change). Color
coding of these categories is indicated at the top of the panel. B,
biological replicate of the experiment showing excellent reproducibil-
ity (see also supplemental Fig. 2). C, quantitative comparison of the
Hepa1–6 proteome cultured in high glucose (28 nM) and physiological
glucose concentration (8 nM).

FIG. 3. Functional phenotyping of the proteome. The quantiles
resulting from quantitative proteome comparison in Fig. 2 were sep-
arately analyzed for enriched KEGG pathways and clustered for the
z-transformed p values. The color bar on top represents the quantiles.
Representative pathways enriched in the protein population of each
quantile are annotated. For complete listing of significant categories
see supplemental Fig. 3.
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notypic trait is so clearly grouped in the cluster analysis
makes it an excellent positive control.

One of the most enriched categories in the quantile most
expressed in primary cells is the P450 family of enzymes (p �

10�16). These enzymes are mainly involved in metabolizing
endogenous substances and xenobiotics (24), a prototypical
function of the liver. We identified 32 different P450 proteins,
and 25 of them were down-regulated at least 10-fold in the cell
line. Furthermore, the flavin monooxygenase (FMO), UDP-glu-
curonosyltransferase (UGT), sulfotransferase (SULT), and
glutathione S-transferase (GST), additional prominent drug me-
tabolizing enzyme families (DMEs), were also severely down-
regulated in Hepa1–6 (supplemental Table 6). Only three
P450s were up-regulated. Two of them (CYP1A1 and
CYP2S1) are known to be regulated by the aryl hydrogen
receptor (25, 26). This receptor was also more highly ex-
pressed in Hepa1–6, providing a ready explanation for the
up-regulation. The third up-regulated P450 protein (RIKEN
clone E130013F06) has only been characterized on the basis
of sequence homology and may have functions different from
traditional P450 enzymes.

Reduction of DME activity is a notorious difficulty in toxi-
cological assays in cell lines. Toxicologists therefore attempt
to stimulate liver cell lines with the aim of boosting DME
activity (27). Quantitative knowledge of the changes in the
profile of DME could provide a rational basis to adapt cell
systems to more closely mimic hepatocytes in vivo.

Another prominent and cell-specific function of hepato-
cytes is production of plasma proteins. Fig. 3 reveals that
“complement and coagulation cascade” is specific for the
primary cells (p � 10�2). Inspection of the pathway involved
(supplemental Fig. 5) shows that major liver-produced factors,
such as C3, C4, MBP-C, F2, F5, A2M, Serpin A1/C1 and
apolipoproteins are down-regulated more than 5-fold in
Hepa1–6. Thus, loss of tissue context allows the cell line to
shut down this function, which is nonessential for propagation
in culture.

The cellular compartments most over-represented in the
primary cells are mitochondria (p � 10�62) (Fig. 4A) and
extracellular matrix (p � 10�18) (supplemental Fig. 3). Appar-
ently, the cell line under-expresses proteins related to com-
munication with stroma and with tissue maintenance. Our
proteome contained a total of 452 proteins annotated as
mitochondrial in GO. Of these, 67% were in the asymmetric
tail of the distribution, indicating they were expressed several-
fold lower in Hepa1–6 cells than in primary hepatocytes. We
independently confirmed this observation by 4�,6-dia-
midino-2-phenylindole (DAPI) and Mitotracker staining (Fig.
4B). Indeed, primary hepatocyte nuclei were smaller
whereas in these cells mitochondria were more abundant
with respect to Hepa1–6. Concurrent with this, fatty acid
metabolism was drastically down-regulated according to
enrichment analysis of KEGG pathways (Fig. 5A). Likewise,
“oxidative phosphorylation” (p � 10�29), “urea cycle” (p �

10�4), and “steroid biosynthesis” (p � 10�2) were statisti-
cally significantly enriched in the quantile most expressed in
primary hepatocytes. These down-regulated metabolic
functions at least partially take place in mitochondria. Con-
versely, parts of the glycolysis pathway were up-regulated
in Hepa1–6 (supplemental Fig. 5). Together, our results
portray a drastic metabolic rearrangement, away from oxi-

FIG. 4. Phenotypic proteome comparison at the cellular com-
ponent level. A, the quantiles resulting from quantitative proteome
comparison in Fig. 2 were separately analyzed for enriched gene
ontology cellular components and clustered for the z-transformed p
values. The color bar on top represents the quantiles. Representative
categories enriched in the protein population of each quantile are
annotated. For complete listing of significant categories and p values,
see supplemental Fig. 3. Prominent mitochondria-related categories
for the primary cells are highlighted in red and prominent nucleus
related categories in blue. B, nuclear (DAPI) and mitochondrial (Mito-
tracker) staining of primary hepatocytes and Hepa1–6 cells. Most
primary hepatocytes are binuclear (34). Magnification factor is �400.
DAPI, 4�,6-diamidino-2-phenylindole.
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dative metabolism in the mitochondria and toward less
efficient anerobic metabolism. These findings provide evi-
dence for the Warburg hypothesis, that cancer cells shift
toward glycolytic metabolic pathways (28, 29).

In the category containing the 50% of proteins with the
least change, many household functions and organelles in-
cluding ribosome (p � 10�2), proteasome (p � 10�3), splicing
(p � 10�4), and Golgi apparatus (p � 10�3) are significantly

FIG. 5. Phenotypic proteome comparison at the pathway level. A, mapping of protein ratios on the fatty acid metabolism pathway reveals
that almost the entire module is down-regulated several-fold in Hepa1–6. Proteins are color-coded according to their relative expression in the
two cell types according to the scheme in Fig. 2. B, KEGG pathway mapping of ErbB and PI3K signaling pathway shows that they are equally
present in primary cells and the cell line. PI3K, phosphatidylinositol 3-kinase.
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enriched. Interestingly, several signaling pathways are also
preferentially located in this quantile. These include the ErbB
and phosphatidylinositol 3-kinase signaling pathways (Fig.
5B). This finding is in agreement with the requirement of
growth factor containing serum for the maintenance of most
cell lines. Conversely, TGF�-mediated signaling is higher rep-
resented in the Hepa1–6 cell line and the canonical members
TGF� R1, Smad2/3, Smad4, p107, and p15 are all up-regu-
lated significantly (supplemental Fig. 5). This was unexpected
because TGF� is usually associated with growth inhibition
whereas Hepa1–6 has increased proliferation rate compared
with primary hepatocytes. However, the biological actions of
TGF� are complex and it is thought to shift from a growth
inhibitory to a growth-promoting role during cancer develop-
ment (30). Thus up-regulation of this pathway suggests that in
the Hepa1–6 tumor cells, TGF� may have growth promoting
effects. Taken together, our data indicate that biological func-
tions related to many important signaling pathways are well
preserved in Hepa1–6.

Some categories shared by both cell types represent non-
liver functions (such as “long term potentiation”) or even non-
animal functions (such as “CO2 fixation”). However, the en-
zymes found in these categories function both in liver tissue
as well as in neurons or plants. Therefore, over-representation
of these categories reflects the still evolving state of annota-
tion of pathway databases rather than a limitation of our
technology.

DISCUSSION

Taking advantage of the ability of SILAC to compare the
levels of thousands of proteins in different cellular states (13,
14) and a novel bioinformatic approach, we have, for the first
time, compared the proteomes of primary cells to cell lines.
The overall picture that emerges is that Hepa1–6 has lost
many of the specific functions typical of hepatocytes in vivo.
Examples are the DMEs, complement production, and syn-
thesis of extracellular matrix. Conversely, the cell line shifts
more of its resources into functions associated with prolifer-
ation, but maintains important cell signaling pathways. This
phenotype is “functionally beneficial” for rapidly dividing and
not nutrient limited cells and may partly reflect Darwinian
selection of cell clones. Note that we have only analyzed a
specific time point of primary cells and a specific cell type.
Although we believe many of the findings will be general for
different methods to prepare primary cells and for different
cell types, this will need to be established in the future.

Our technology is accurate, relatively rapid and should now
allow selection of the appropriate cell system based on a
global and unbiased profile according to desired biological
function. Furthermore, it can be used to manipulate the cell
line system to better reflect the in vivo situation at the pro-
teome level. Although we have based our analysis on protein
expression levels, it could just as well be applied to assess
fidelity of signaling pathways in cell lines using SILAC-based

quantitative and global phosphoproteomics (31). This work
complements other approaches dedicated to infer pathway
information from quantitative proteomics data (32).

Our analysis differs in important points from the more fa-
miliar measurement of mRNA levels by microarray and its
associated bioinformatics (33). Even though reproducibility of
microarray chips has become much better during recent
years, the data is not quantitative with respect to the final,
desired parameter, the global change in protein levels. Fur-
thermore, results of any specific transcript on the chip gen-
erally have to be validated by RT-PCR and then by quantita-
tive immunoblotting. This is impractical for large numbers of
proteins. In contrast, quantitative proteomics inherently con-
tains the fold-change for each protein and increasingly also
that of specific isoforms. The quantitative nature of our results
also made it possible to directly group over-represented func-
tions and processes instead of the genes themselves.

Here we have analyzed interesting but relatively general
phenotypic traits of two cell populations. Although many of
the resulting observations can be immediately rationalized in
terms of biological function, they have never been quantified
in a global and unbiased way. Our data furthermore contains
a wealth of functional leads that could not be explored in
depth here. The combination of very high quantitative accu-
racy at the proteome level with increasingly accurate pathway
databases should allow even richer assessment of the phe-
notypic state of any cell population in the future.
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