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Abstract

The specificities of transcription factors are most commonly represented with probabilistic

models. These models provide a probability for each base occurring at each position within

the binding site and the positions are assumed to contribute independently. The model is

simple and intuitive and is the basis for many motif discovery algorithms. However, the

model also has inherent limitations that prevent it from accurately representing true binding

probabilities, especially for the highest affinity sites under conditions of high protein concen-

tration. The limitations are not due to the assumption of independence between positions

but rather are caused by the non-linear relationship between binding affinity and binding

probability and the fact that independent normalization at each position skews the site prob-

abilities. Generally probabilistic models are reasonably good approximations, but new high-

throughput methods allow for biophysical models with increased accuracy that should be

used whenever possible.

Author summary

Transcription factors (TFs), a class of DNA-binding proteins, play a central role in the

regulation of gene expression. TFs control the rate of transcription by binding to the

genome in a sequence-specific manner. Thus, one important aspect in the study of gene

regulation mechanism is to model the binding specificities of TFs, namely the features

of the DNA sequences that a TF prefers to bind. Multiple models have been proposed to

characterize the binding specificities of TFs, among which the class of probabilistic

models is the most popular. In this study, we point out several major limitations of

the well-established probabilistic model by comparing it with the biophysical model.

Through simulations we demonstrate that the probabilistic model is only an approxi-

mation of the biophysical model. The latter has most of the advantages of the former,

and is a more accurate representation of binding specificities. We propose a shift from

the probabilistic model to the biophysical model in future studies of protein-DNA

interactions.
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Introduction

The study of protein-DNA interactions has a long history and includes binding to both single-

and double-stranded DNA and both non-specific and sequence-specific interactions [1]. Our

interests are primarily in the sequence-specific interactions of transcription factors (TFs) that

bind to DNA to regulate gene expression. Detailed modeling of the in vivo interactions of TFs

with genomic DNA that control gene expression requires accounting for many complicating

factors, including competition and cooperativity with other TFs, competition with nucleo-

somes for occupancy of specific DNA regions and how sequences flanking the TF binding

sites can affect occupancy [2–11]. Regardless of the modeling approach, one component is

always the specificity of the TF, how its binding affinity varies depending on the DNA

sequence of the binding site. Representations of specificity typically employ matrix-based

models where the positions within the binding site are assumed to contribute independently

to the TF’s binding affinity [12–14]. In various methods the elements of the matrix may repre-

sent probabilities (or log-probabilities) of each base occurring at each position, or energetic

contributions from each base at each position, or more generally just abstract scores that are

related to the functional contributions of each base at each position [13]. The data used to esti-

mate the matrix parameters may come from many types of either in vivo or in vitro experi-

ments, employing various types of algorithms [13, 15–38]. To determine the intrinsic

specificity of a TF, how its binding affinity varies between different sequences, in vitro methods

are preferred because the data are unconfounded by the complications that exist in vivo. In this

paper, we compare two methods of matrix representation of TF specificity, a probabilistic

model in which the matrix elements are probabilities of each base at each position, and a bio-

physical model in which the matrix elements are the binding energy contributions of each base

at each position. Either type of matrix could be obtained from the same types of data, and we

show that there are inherent limitations of the probabilistic model that do not apply to the bio-

physical model, suggesting that energy matrices should be preferred in general.

Probabilistic models (PMs) for DNA binding proteins were initially introduced by Harr

et al. for E. coli promoters that even treated variable length binding sites [39]. Soon after, Sta-

den converted to the use of log-probability to put the model into a weight matrix (additive)

model, also including parameters for variable spacing [40]. Schneider et al. drew connections

between the probabilistic models and information theory and introduced the log-odds model

that accounts for the background distribution of bases [41] and later introduced the popular

logo graphical representation of specificity [42]. The probabilistic model was also the basis of

the earliest motif discovery algorithms [33, 34, 43]. Since then there have been many different

algorithms for motif modeling and discovery using probabilistic models (reviewed in [12, 13,

15, 24, 44]).

Even earlier von Hippel introduced an energy-based model of protein-DNA interactions

[14]. At the time, there were almost no data on actual binding sites so the paper used first prin-

ciples to describe the informational specificity required for functional regulatory sites. The

paper made simplifying assumptions such as the independence between positions and that

every mismatch from the preferred sequence had the same energy difference. The first assump-

tion, of independent contributions, has proven to be a reasonably good approximation for

most transcription factors, whereas differences in contributions of alternative bases at each

position are now well known and form the basis of most specificity modeling approaches. Berg

and von Hippel derived an energy model that was identical to the probabilistic one under

some simplifying assumptions and connections between the energy approach and the infor-

mation theory models of specificity became clear [45–47]. Hwa and colleagues put the energy

modeling approach into a more general biophysical model that accounts for the effects of
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protein concentration on binding probabilities [48, 49]. Djordjevic et al. pointed out the

importance of the biophysical approach in modeling specificity [50]. They further provided an

algorithm that is guaranteed, for any collection of known binding sites, to predict the mini-

mum number of additional sites in a genome, thereby minimizing the number of false positive

predictions, although the method is not guaranteed to provide a more accurate model of the

true specificity [50, 51]. Regression methods have been used to find optimal energy parameters

and Foat et al. provided the first regression algorithm for motif discovery of optimal energy

models [16, 52]. Since then several related methods have been developed to determine bio-

physical (energy) models of protein specificity from various types of high-throughput experi-

mental data [18–20, 25, 27, 28, 31, 37, 38, 53–55].

Despite the development of several high-throughput experimental methods for measuring

the specificity of protein-DNA interactions [22, 56] and the algorithms described above for

modeling them with the biophysical approach, probabilistic models remain the most popular.

The purpose of this report is to point out that when good energy models are available there is

no advantage to using the probabilistic models. In fact, due to inherent limitations the probabi-

listic models can be misleading and are highly sensitive to the samples used for inference of the

parameters. Energy models can be readily obtained and can easily accommodate non-indepen-

dent contributions between positions [13, 52, 57]. We conclude that energy modeling should

become the approach generally used for modeling specificity and predicting protein-DNA

interactions.

Results

We first introduce the fundamentals of the probabilistic model and the biophysical model and

then describe the simulations used to compare the two approaches.

Probabilistic model

This model is based on a probability matrix PM(b, j) for each base b 2 (A, C, G, T) at each posi-

tion j = 1, 2,� � �, m for an m-long binding site. Any particular DNA sequence Si can be encoded

as a similar matrix, Si(b, j), of 1s and 0s, where a 1 represents the base that occurs at position j
and all other elements are 0 [13]. From the model, the probability of the sequence Si being

among the bound sites is:

ePðSijBÞ ¼
Ym

j¼1

YT

b¼A
PMðb; jÞSiðb;jÞ ð1Þ

Often this is converted to a log-odds weight matrix WM(b, j) = log[PM(b, j)/P(b)], where P(b)

is the background, or prior, probability of base b [13, 41]. For simplicity, we assume the prior

probability is a constant, 0.25 for each base, and therefore the two approaches give equivalent

results. Importantly, this is the probability of observing the sequence Si given a binding site,

whereas what is desired is usually the probability that a sequence Si is bound, P(B|Si). Instead,

searching sequences with probabilistic models generally just provides a list of sites within

some probability range of the preferred site, including a predicted relative probability for each

sequence.

Biophysical model

This model is based on the thermodynamics of the interaction between two molecules, the

protein T and a binding site Si (additional details provided in S1 Supporting Information). The

association constant, which we refer to as the affinity, can be determined by measuring the
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concentrations of free reactants (protein and DNA) and of the complex:

KAðT; SiÞ ¼
½T � Si�

½T�½Si�
� Ki ð2Þ

It is common to assume that the positions contribute independently to the binding affinity,

just as the probabilistic model assumes the positions contribute independently to the site prob-

ability. This is represented as a matrix of affinity contributions K(b, j) such that

Ki ¼
Ym

j¼1

YT

b¼A
Kðb; jÞSiðb;jÞ ð3Þ

From that one can determine the probability of a sequence Si being bound based on the pro-

tein concentration (or really the chemical potential of the protein which is related to its free

concentration) and the association constant Ki:

PðBjSiÞ ¼
½T � Si�

½T � Si� þ ½Si�
¼

Ki½T�
Ki½T� þ 1

¼
1

1þ eEi� m
ð4Þ

where Ei = −ln Ki is the free energy of binding to sequence Si and μ = ln[TF] is the chemical

potential. The probability of sequence Si in the bound sequences is obtained by Bayes’ rule and

is dependent on the chemical potential, which differs from the probabilistic approximation

(noted above with eP):

PðSijBÞ ¼ PðBjSiÞ
PðSiÞ

PðBÞ
/

Ki½T�
Ki½T� þ 1

¼
1

1þ eEi � m
ð5Þ

if P(Si) is the same for all Si. More importantly the true probability of sequence Si in the bound

sequences has a non-linear relationship with its binding affinity. This becomes pronounced at

high protein concentrations where the energy can be additive across the positions of the bind-

ing site and yet the probabilities of the bases at each position are not independent.

Simulation results

From Eqs (1) and (5), it is clear that probabilistic models of protein binding specificity provide

approximations to true binding probabilities, ePðSijBÞ � PðSijBÞ. We used simulations (see the

details in the Methods section) to measure the accuracy of the approximation under various

values of the chemical potential and for different methods of estimating the PM from the

observed binding sites. Of particular interest is how well the rank order of binding site proba-

bilities is preserved.

At different protein concentrations, the PMs derived from binding probabilities are usually

different. As shown in Eq (4), the binding probability of a sequence Si depends on both its

binding affinity Ki (or energy Ei) and the protein concentration [T] (or chemical potential μ).

If Ki[T]� 1, there is a linear relationship between affinity and probability, but that occurs

only when P(B│Si)� 0.5, which is unlikely to be the case in vivo for true regulatory sites. At

high protein concentrations, where Ki[T]> 1 and the preferred binding site is highly occupied,

the non-linear relationship between binding probability and affinity has several consequences.

One is that the PM itself depends on the protein concentration, whereas the binding energy

does not. Fig 1a and 1b show one example from the simulation of an energy matrix and its

associated energy logo [13, 16]. Note that in the matrix the lowest energy base at each position

is assigned energy 0 (using the convention of Berg and von Hippel [45]), and in the logo the

average energy for each position is set to 0, with the lower energy (higher affinity) bases on

top. Since only the differences in energy matter for relative binding affinities, both

Limitations of probabilistic models for protein-DNA specificity
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representations lead to the same results. Fig 1c and 1d show the information logo [42] and the

PM for that protein obtained at very low protein concentration, μ = −3. At low μ the PM corre-

sponds very closely to the independent contributions of each base to the binding affinity (Eq

(5) converges to Eq (1)). But at high protein concentration, such as μ = 3, the logo and PM are

different (Fig 1e and 1f). The second logo shows that the information is “compressed” at μ = 3,

with the mean column information content (MCIC) decreasing from 0.9 bits to 0.7 bits. But

the change in probability is not evenly distributed. Comparing the two PMs (Fig 1d and 1f), at

high protein concentration the base probabilities tend to move toward the mean, 0.25; the high

probability bases decrease in probability and the low probability bases increase. But each posi-

tion is normalized independently so that the magnitude of the change varies from position to

position. For each position, the rank order of probability for the bases remains unchanged, but

because the positions are normalized independently, the probabilities of different binding sites

may change rank order. That is, even though the binding energy is completely additive across

the positions, the probabilities of bases do not factor accurately across the positions.

The rank correlation (the square of the Spearman’s rank correlation coefficient) between

the predicted and true all-sequence distributions depends on the protein concentration and

how the PM is computed. Table 1 shows the mean values and standard deviations of r2 for 100

Fig 1. The energy matrix, derived probabilistic models and corresponding logos of a typical

simulation. (a) The energy logo, with the average energy for each position set to 0. (b) The energy matrix

generated from simulation. (c) The information logo when μ = −3. (d) The probabilistic model derived from all

binding sites when μ = −3. (Matrix elements are frequency of each base at each position; probability × 100.)

(e) The information logo when μ = 3. (f) The probabilistic model derived from all binding sites when μ = 3.

https://doi.org/10.1371/journal.pcbi.1005638.g001

Table 1. The rank correlation between the predicted and true all sequence distributions.

Mean correlations and standard deviations

PM generation method μ = −3 μ = 0 μ = 3

All binding sites, weighted 1.000 (0.000) 1.000 (0.000) 0.998 (0.001)

Top 1% binding sites, weighted 0.994 (0.010) 0.993 (0.011) 0.988 (0.012)

Top 1% binding sites, unweighted 0.984 (0.014) 0.984 (0.014) 0.984 (0.014)

https://doi.org/10.1371/journal.pcbi.1005638.t001

Limitations of probabilistic models for protein-DNA specificity

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005638 July 7, 2017 5 / 15

https://doi.org/10.1371/journal.pcbi.1005638.g001
https://doi.org/10.1371/journal.pcbi.1005638.t001
https://doi.org/10.1371/journal.pcbi.1005638


simulations of 8-long binding sites with μ = −3, 0 and 3 (which correspond to the preferred

sequence being bound at 0.05, 0.5 and 0.95 probability, respectively). The rank correlation is

shown for the complete distribution of binding sites based on PMs generated from the full dis-

tribution of binding data and from just the top 1% of sites, either weighted or unweighted. At

μ = −3 there is a nearly perfect fit to the true ranking when the PM is derived from the entire

distribution. However, when it is based on the top 1% of sites, the ranking is slightly less accu-

rate (0.994) when the sites are weighted by their true probability. In both of those cases the PM
provides a very good approximation to the true ranking of binding sites. If the top 1% are used

unweighted to make the PM, the fit to the true ranking is 0.984 and that is true regardless of

the value of μ because the top 1% of sites is the same and their probabilities are ignored. When

μ = 0, the results are very similar. For μ = 3 the rank correlation drops to 0.988 when the

weighted top 1% of sites are used to obtain the PM. Fig 2 plots the logarithms of the predicted

and true relative binding probabilities for the case of the protein of Fig 1 and μ = 3. In each

case the overall fit is quite good but the width of the plots indicates some degree of mis-ranking

of the binding sites.

While the overall rankings are quite good, it is the highest affinity sites that are of primary

interest. In fact, all DNA-binding proteins exhibit a non-specific binding affinity [49] such

that there is a minimum binding affinity below which the sequence no longer matters. In addi-

tion, functional regulatory sites must have sufficient occupancy to fulfill their roles, so only

sites within some restricted range of the optimum are likely to be functional. Table 2 shows the

rank correlations for the same PMs used in Table 1, but now focusing on the 1% highest affin-

ity binding sites. Note that the values in Table 2 are all lower than for Table 1, indicating that

the accuracy is lower when the PM is used to predict the highest affinity sites. Fig 3 shows a

subset of the plots in Fig 2, including only the top 1% of sites. For μ = 3 the rank correlation

drops to 0.970 even when the entire distribution is used to generate the PM and the scatter of

the points shows that there are clear differences between the true and predicted rankings. In

fact, the true top 1% is not precisely equivalent to the predicted top 1% of sites. When the top

1% of sites are used to generate the PM, weighted by their probability, the rank correlations

drop substantially for all values of μ, but especially for μ = 3 where it is only 0.876. If the

unweighted top 1% are used for the PM, the rank correlation drops to 0.840 for all values of μ.

The plots in Fig 3 all show substantial mis-ranking of sites. The results in Tables 1 and 2 show

that the quality of PMs, their ability to correctly rank binding sites, vary widely depending on

both the protein concentration at which the binding data was obtained and the set of binding

sites used to derive the PM. The effect of the protein concentration is most evident at high val-

ues of μ where the non-linearity of Eq (4) is largest and non-independence of the position

probabilities is most pronounced. The effect of site sampling is due to the sensitivity of the PM
to the exact set of example sites used.

Another consequence of the non-linear relationship between binding affinity and probabil-

ity is that pairs (and higher order combinations) of positions have non-independent effects on

binding probability, even though the contributions to binding affinity are completely indepen-

dent. We show this with one example in Fig 4 based on the protein with energy matrix shown

in Fig 1 at μ = 3. When the preferred binding site, TGGTAACG with binding probability of

0.95, is mutated to TGGTAAAG, the binding probability decreases to 0.79, about a 17%

decrease in binding probability. If the same C to A mutation occurs in another sequence,

TGGCAACG to TGGCAAAG, the binding probability decreases from 0.62 to 0.23, a 63%

decrease. This apparent non-independence, where the effect of the mutation varies depending

its context, is an artifact of the PM because the change in binding affinity (1.69 kT, Fig 1b) is

completely independent of context.
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Fig 2. The correlation between the predicted and true all-sequence distributions. (a) The correlation

between the true distribution (in logarithm with highest affinity site set to 0) and that predicted by the PM

generated from the weighted all binding sites. (b) The correlation between the true distribution (in logarithm) and

that predicted by the PM generated from the weighted top 1% binding sites. (c) The correlation between the true

distribution (in logarithm) and that predicted by the PM generated from the unweighted top 1% binding sites.

https://doi.org/10.1371/journal.pcbi.1005638.g002
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Effect of noise in experimental data

In the preceding simulations, we compared the probabilistic model to the true biophysical

model for the specificity of TFs. However, in real experimental data the observed probabilities

of binding to specific sites will include noise that will affect both the probabilistic and biophysi-

cal models. To measure the effects of noise on the accuracy of rank predictions, we included

errors in the observed probabilities from which both the probabilistic and biophysical matrices

were obtained (details in S1 Supporting Information). We added random noise, with mean of

0 and standard deviation of 0.5 kT, to the energy of each sequence prior to generating its prob-

ability. That amount of noise is larger than what can be obtained with methods such as Spec-

seq, where we typically get standard deviationsof about 0.2 kT, at least for the high affinity

sequences [54, 58]. The results for the probabilistic models are slightly worse than those with-

out noise, described above. For the biophysical models the fits are much better, decreasing to

0.97 when only the top 1% of sites are used to estimate the parameters (see S1 Supporting

Information). This is because the noise is added to each sequence independently, whereas the

models include the parameters for each base at each position, which are averaged over all of

the sequences containing those bases. One advantage of low-dimensional models, such as all

types of positional matrices, is that experimental noise is averaged out. In fact, even if the true

interaction is not precisely independent between the positions, by averaging over all of the

contexts one can obtain models that are good representations of the true specificity.

Discussion

Probabilistic models of protein-DNA interactions are commonly used because they are easy to

obtain and they provide an intuitive representation of specificity. However, they do not pro-

vide the information usually desired, the probability that a specific sequence is bound, P(B│Si),

but rather an approximation to the probability of observing a specific sequence given a binding

site, ePðSijBÞ. From that one can obtain a predicted rank order of all possible binding sites and,

if one assumes a specific probability, or occupancy, for the preferred sequence, the predicted

probabilities for all other sequences. To obtain binding probabilities from the biophysical

model one needs to know the chemical potential, but just as with the probabilistic model if one

assumes the probability, or occupancy, of the preferred sequence, then the probabilities of all

other sequences can be obtained from the model. Since both models really return the same

information, a predicted ranked list of binding sites and relative binding probabilities, they

should be judged on the accuracy of those predictions and the ease of obtaining the model

parameters.

The accuracy of PMs is limited by availability of binding site affinity data. When a PM is

based on the entire probability distribution of binding sites it is a good approximation overall,

even at high μ. However, it does have discrepancies that include mis-ordering of the ranks of

binding sites as well as the appearance of non-independence between positions that are in fact

independent. These effects are due to the intrinsic lack of proportionality between binding

probability and binding affinity that is most problematic at high protein concentrations. More

Table 2. The rank correlation between the predicted and true top 1% sequence distributions.

Mean correlations and standard deviations

PM generation method μ = −3 μ = 0 μ = 3

All binding sites, weighted 1.000 (0.000) 0.995 (0.002) 0.970 (0.010)

Top 1% binding sites, weighted 0.956 (0.032) 0.930 (0.092) 0.876 (0.063)

Top 1% binding sites, unweighted 0.840 (0.075) 0.840 (0.075) 0.840 (0.075)

https://doi.org/10.1371/journal.pcbi.1005638.t002
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Fig 3. The correlation between the predicted and true top 1% sequence distributions. (a) The

correlation between the true distribution (in logarithm with highest affinity site set to 0) and that predicted by

the PM generated from the weighted all binding sites. (b) The correlation between the true distribution (in

logarithm) and that predicted by the PM generated from the weighted top 1% binding sites. (c) The correlation

between the true distribution (in logarithm) and that predicted by the PM generated from the unweighted top

1% binding sites.

https://doi.org/10.1371/journal.pcbi.1005638.g003
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severe defects occur due to incomplete information about the binding probability distribution.

Obtaining the full distribution of binding probabilities requires in vitro experiments, such as

protein binding microarrays, HT-SELEX (or SELEX-seq) or other high-throughput methods

[20, 22, 27, 35, 53, 59–64], but many algorithms utilize only the highest affinity binding sites.

PMs can be derived from in vivo data of binding site locations, and have the advantage of

being easily derived from such data using many motif discovery algorithms [13, 24, 32–34, 43,

65]. But in those cases, the PM is derived from only a fraction of the binding sites. Functional

regulatory sites will be among the high affinity sequences and in ChIP-seq experiments the

peaks will also tend to contain the highest affinity sites. And if the sample size is small, those

sites are not even weighted by their binding probabilities. In addition, confounding factors

occurring in vivo, such as competition and cooperativity with other proteins, lead to incom-

plete information about the probability distribution and that causes further inaccuracies in the

PMs.

Good binding models are still important after the advent of high-throughput methods and

their parameters can be readily determined by using appropriate algorithms. Binding affinities

to small numbers of sequences can be obtained with arbitrarily high accuracy using a variety

of experimental techniques [66]. If the additivity (positional independence) assumption is

valid, the relative affinities, compared to the preferred sequence, of only the 3m single nucleo-

tide variants are needed for the full energy model. Of course, additivity is unlikely to be

completely accurate, but there are still only 3m + 9(m − 1) single variants plus double variants

at adjacent positions, where the non-additivity is likely to be most prevalent. But multiple

Fig 4. The non-linear relationship between binding affinity and probability. The C to A mutation that

occurs at the same position but in two different sequence contexts causes dramatically different changes in

the binding probability of the whole sequence.

https://doi.org/10.1371/journal.pcbi.1005638.g004
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high-throughput methods are now available that provide quantitative binding data from

which accurate energy models can be obtained by using appropriate algorithms [16, 18–20, 25,

27, 28, 31, 37, 38, 53, 54, 62]. From sufficiently abundant and accurate quantitative binding

data one can even skip the modeling and just use the list of relative binding energies to all pos-

sible sites (or at least the highest affinity sites that are likely to function as regulatory sites),

avoiding approximations entirely (to the degree allowed by the measurement accuracy). How-

ever, models are still useful because they provide a compact representation of specificity, use-

fully visualized with logos [13, 16, 42], and can provide insight into the mechanisms of binding

specificity, such as the contribution of DNA structure to binding specificity [67, 68]. It is also

important to have good specificity models obtained from in vitro binding experiments to com-

pare to data obtained in vivo. This allows one to identify cases where interacting TFs alter the

specificity of individual TFs, which one can only infer by having good models for each TF

alone [69–71].

We conclude by pointing out that when accurate energy models are available for DNA

binding specificity there is no advantage to using probabilistic models, and in fact they can be

misleading and provide inaccurate predictions. There are now good high-throughput methods

for measuring relative binding affinities to very large collections of sites and good algorithms

for determining accurate energy models. We propose that such models become the standard

approach for representing specificity and predicting binding sites in vivo.

Methods

Simulations

We developed a program, BEnDS (Binding Energy Distribution Simulations), to generate ran-

dom energy matrices of a user-specified length, m. One base is randomly chosen as the pre-

ferred base at each position and assigned an energy of 0. Energies for the other bases are

drawn randomly from a normal distribution with a user-specified mean and standard devia-

tion (with default values of N(μ = 2.5, σ = 1.0)). We assume perfect additivity of binding ener-

gies so that the energy for any sequence is the sum of the energies for its bases at each position

(equivalent to Eq (3)). This model, implemented in different programs, achieved the best over-

all performance in a test of various programs on modeling the specificity of DNA-binding

proteins based on protein binding microarray (PBM) data [25]. Given an energy matrix, prob-

abilities of binding to all possible sites are obtained using Eq (4) for various (user-specified)

values of μ. For every set of site probabilities, PMs were determined. This was done both for

the entire distribution and from a subset of high affinity sites, such as the top 1% (as might

be expected to be functional sites). When only the top 1% of sites are used, PMs from the

sites could be obtained either weighted by their probabilities, or just from the list of sites

unweighted, as one might expect from a collection of known regulatory sites or from ChIP-seq

type of experiment with a limited sample of observed binding sites.

Simulations that include noise in the energies, and therefore the probabilities, of each

sequence are described in S1 Supporting Information. In those cases the energy matrix is

obtained using non-linear regression on the site probabilities, similar to BEESEM [37] but

without the need to infer the binding site position.

Measure of rank correlations

The probabilistic model does not attempt to report the probability that a site is bound, P(B│Si),

it only reports the predicted relative probability, and therefore the rank order, of different sites

being bound. We compare the true rank order of the sites from their binding energies to the
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predicted rank order based on the PM at different protein concentrations. We report the

square of the Spearman’s rank correlation coefficient, r2.

Supporting information

S1 Supporting Information. Methods for binding probability simulations under measure-

ment noise.
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