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Abstract

The spatial and temporal regulation of actin polymerization is crucial for various cellular processes. Members of the Wiskott–
Aldrich syndrome protein (WASP) family activate the Arp2/3-complex leading to actin polymerization. The yeast
Saccharomyces cerevisiae contains only one WASP homolog, Las17, that requires additional factors for its regulation. Lsb1
and Lsb2/Pin3 are two yeast homologous proteins bearing an SH3 domain that were identified as Las17-binding proteins.
Lsb2/Pin3 that promotes prion induction was suggested to link this prion formation to the actin cytoskeleton. However, the
cellular role of Lsb1 and the molecular function of both Lsb1 and Lsb2 remain unknown. In this study, we show that Lsb1
and/or Lsb2 full-length proteins inhibit Las17-mediated actin polymerization in vitro, Lsb2 being a less potent inhibitor of
Las17 activity compared to Lsb1. Addition of Lsb1 or Lsb2 to the corresponding full-length Lsb1/2 further inhibits Las17
activity. Lsb1 and Lsb2 form homo- and hetero-oligomeric complexes suggesting that these two proteins could regulate
Las17 activity via dimerization or cooperative binding. In vivo, overexpressed Lsb1 and Lsb2 proteins cluster Las17-CFP in
few cytoplasmic punctate structures that are also positive for other Arp2/3-dependent actin polymerization effectors like
Sla1 or Abp1. But, only Lsb1 overexpression blocks the internalization step of receptor-mediated endocytosis. This shows a
specific function of Lsb1 in endocytosis.
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Introduction

Endocytosis allows the uptake of a wide variety of extracellular

molecules and the internalization of the plasma membrane

receptors/transporters. The molecular mechanisms of clathrin-

mediated endocytosis are conserved from yeast to mammals and

the spatio-temporal regulation of the events has been revealed by

live-cell imaging [1,2,3,4,5]. After internalization site selection, an

early coat (which includes clathrin and epsin adaptors) assembles

that subsequently triggers the invagination of the plasma

membrane by recruitment of actin nucleation factors (Sla1 and

Las17/WASP) and actin polymerization, its elongation and finally

its scission in an endocytic vesicle mediated by the amphiphysins

(Rvs161 and Rvs167) [2,6,7]. Cargo selection and the early steps

of internalization are tightly regulated by ubiquitination [8,9].

Genetic screens in yeast Saccharomyces cerevisiae identified a large

number of mutants required for endocytosis (termed end mutants)

among them several are linked to actin cytoskeleton polymerization

(END3, END4/SLA2, END5/VRP1, END6/RVS161, END7/ACT1,

END9/ARC35) [10,11,12]. The actin cytoskeleton is highly dynamic

and therefore requires tight regulation to maintain its integrity. A

key cellular factor involved in actin nucleation is the Arp2/3

complex, which needs to be activated by a nucleation-promoting

factor (NPF) [13]. Several NPFs, such as the type I myosins Myo3

and Myo5, Abp1, Pan1 and Las17/WASP (Wiskott-Aldrich

Syndrome Protein), are required for the internalization step of

endocytosis [14,15,16,17].

WASP family members activate the Arp2/3 complex via their

carboxy-terminal WCA domain. Additionally they contain an

amino-terminal WH1 domain, a GTPase binding domain and a

proline rich stretch. The activity of the WCA domain is auto-

inhibited by an internal interaction with the GTPase binding

domain [18]. This inhibition can be released by the interaction

with WASP ligands such as Cdc42, phosphatidylinositol 4,5-

bisphosphate (PIP2) or several SH3 (Src homology 3) domain-

containing proteins [19,20].
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The genome of the budding yeast S. cerevisiae encodes for only

one WASP homolog, Las17, which is required for normal cell

growth, actin cytoskeleton organization and endocytosis [16,21].

Las17 does not contain the GTPase binding domain and therefore

its activity is subjected to another type of specific regulation. On

the other hand, numerous SH3 domain-containing proteins have

been identified as interacting with Las17 and several have been

annotated with a function in endocytosis or actin polymerization

regulation (Sla1, Myo3/5, Ysc84, Rvs167, Bbc1, Bzz1)

[7,16,22,23,24]. Most of these interactors act as positive regulators

of Las17 activity, however Bbc1 and Sla1 have been identified as

negative regulators [25], and their effect is lifted by Bzz1 [26].

Another type of Las17-Arp2/3 complex actin polymerization

activity inhibitor is the Syp1 protein, which contains an F-BAR

domain and maps to sites of endocytosis [27].

In S. cerevisiae, the two highly homologous proteins, Lsb1 and

Lsb2 (Pin3) have an SH3 domain, which interacts with Las17 [16].

Lsb1 and Lsb2 are ubiquitinated by the E3 ubiquitin ligase Rsp5,

which is involved in many cellular processes such as endocytosis or

actin cytoskeleton organization and dynamics [8,28]. In addition,

when overexpressed Lsb2 has been reported to promote [PSI+]

induction, an ubiquitin regulated process [29,30]. Lsb2 was shown

to colocalize with actin and Cap2 indicating that Lsb2 might link

prion formation to the actin cytoskeleton [30]. However the

molecular function of Lsb1 and Lsb2 remains unknown and

although Lsb1 and Lsb2 are highly homologous, the prion

phenotypes were only observed for Lsb2.

Here we show that Lsb1 and Lsb2 are negative regulators of

Las17 activity on Arp2/3-complex induced actin polymerization,

however only Lsb1 overexpression blocks the internalization step

of receptor-mediated endocytosis, suggesting that Lsb1 is involved

in endocytosis.

Results

Lsb1 and Lsb2 interact in vivo with Las17
Previous interaction screens identified the SH3 domain of Lsb1

and Lsb2 as interacting with Las17 [7,16,23]. We confirmed this

interaction by using the Lsb1 and Lsb2 SH3 domains purified

from E. coli as GST fusions incubated with a total yeast protein

extract containing Las17-GFP. The fluorescent halo around the

glutathione-Sepharose beads indicates the interaction between the

SH3 domain and Las17-GFP (Figure 1A). Next, we tested the

interaction between Las17 and full-length Lsb1 and Lsb2 proteins

in vitro. We purified the recombinant full-length proteins from E.

coli as GST fusions and performed a pull down with a total yeast

protein extract containing Las17-CFP. The full-length Lsb1 and

Lsb2 interacted with Las17 in vitro on beads (Figure 1B). This

interaction was also observed in vivo by co-immunoprecipitation

between Las17-HA and Lsb1/Lsb2-Myc tagged proteins [23]. We

confirmed this in vivo interaction, by using Lsb1-HA and Lsb2-HA

tagged proteins expressed in a strain producing Las17-CFP. Las17

was immunoprecipitated by c-bind Sepharose beads and rabbit

anti-GFP serum and the presence of Lsb1 and Lsb2 was assessed

by anti-HA immunodetection. The ubiquitously expressed phos-

phoglycerate kinase Pgk1 was used as a negative control and did

not interact with Las17, whereas Lsb1 and Lsb2 proteins

coimmunoprecipitated with Las17-CFP (Figure 1C). Lsb2 is

ubiquitinated in vivo [28,30] and the ubiquitinated protein also

interacts with Las17-CFP. These results confirm that Lsb1 and

Lsb2 interact via their SH3 domain with Las17 and are in vivo

binding partners of Las17.

Lsb1 and Lsb2 negatively regulate Las17 nucleation
promoting activity

Because several proteins, including Myo5, Bzz1 and Las17 have

been shown to induce actin polymerization on Sepharose beads ex

vivo [24,31,32], we tested whether Lsb1 and Lsb2 were also able to

induce actin polymerization on beads (Figure S1), as they interact

with the NPF Las17 (Figure 1). The GST-TH2-SH3Myo5 fragment

of Myo5 (GST-TH2) was shown to mediate actin polymerization

around beads [31]. We incubated GST-TH2-SH3Myo5, GST-

Lsb1, GST-SH3Lsb1, GST-Lsb2 and GST-SH3Lsb2 beads with

total cell protein extracts and rhodamine-labeled actin (Figure S1).

As shown previously [31], the GST-TH2-SH3Myo5 fragment

mediates actin polymerization as revealed by a fluorescence halo

around the beads (Figure S1, GST-TH2). Consistent with the

finding by Geli et al. [31], this polymerization was inhibited by

addition of the actin depolymerizing agent Latrunculin A (LatA),

demonstrating that the halo corresponds to polymerized actin

filaments and not to sequestered G-actin. Our results show that

this polymerization did not require the presence of Lsb1 or Lsb2 in

the cell extract (Figure S1, GST-TH2+lsb1D lsb2D cell extract). In

this in vitro actin polymerization assay, neither Lsb1, nor Lsb2, or

their SH3 domains induce actin polymerization (Figure S1).

Moreover, we did not observe G-actin binding for all constructs

tested since there was no fluorescent halo around the glutathione-

Sepharose beads coated with GST-Lsb1, GST-Lsb2 or their SH3

domains alone (Figure S1). Thus, Lsb1 and Lsb2 interact with

Las17 (Figure 1) but do not mediate actin polymerization in vitro

(Figure S1). However this assay only allows testing for activators of

actin polymerization and not inhibitors.

Indeed, contrary to the mammalian WASP proteins, Las17 is

not auto-inhibited but has to be negatively regulated. Two Las17

inhibitors, Bbc1 and Sla1, have already been described and both

contain an SH3 domain [25]. We used a similar pyrene actin

polymerization in vitro assay as described in Rodal et al. [25] to test

the putative inhibitory effect of Lsb1 and Lsb2 and their respective

SH3 domains on Las17-Arp2/3-complex induced actin polymer-

ization (Figure 2A and Figure S2). Lsb1, Lsb2 and their SH3

domains were purified by affinity chromatography as GST fusion

proteins from E. coli, the GST tag was cleaved off and the proteins

were further purified by size exclusion chromatography. Purified

Lsb1 and Lsb2 proteins had an inhibitory activity on Las17

dependent actin polymerization in a concentration dependent

manner (Figure 2A). Saturating concentration of Lsb1 and Lsb2,

i.e. 250 nM and 750 nM respectively, inhibited the Las17-Arp2/

3-complex induced actin polymerization by 80%, with half

maximal concentrations of 38 nM for Lsb1 and 112 nM for

Lsb2 (Figure 2). The SH3 domain of Lsb1 and Lsb2 interact with

Las17, however on its own the SH3 domain of Lsb1 did not inhibit

Las17 NPF activity, whereas the SH3 domain of Lsb2 shows a

minimal inhibitory effect on Las17 (Figure 2A and Figure S2).

These results were further confirmed by measuring the KD

constants of their interaction with Las17 (Figure 2B). Indeed, the

Lsb1 and Lsb2 proteins had a much higher affinity for Las17

compared to their SH3 domains since the KD constants measured

by a surface plasmon resonance based assay on Biacore3000 were

30 nM and 79 nM for Lsb1 and Lsb2, and 792 nM and 730 nM

for their SH3 domain, respectively (Figures 2B). It is noteworthy

that the respective KD constants of Lsb1 and Lsb2 are in the range

of their KI on Las17-Arp2/3-complex induced actin polymeriza-

tion.

Lsb1 and Lsb2 form homo- and hetero-multimers in vivo
Since Lsb1 and Lsb2 inhibit Las17-Arp2/3 dependent actin

polymerization, we combined both proteins in the actin pyrene

Lsb1 and Lsb2 Negatively Regulate Las17
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polymerization assay and tested their potential additive effect. The

addition of either Lsb1 or Lsb2 to the full-length Lsb1/2 further

inhibits Las17 activity (Figure 3A), indicating that they are not

competing for binding to Las17 and showing that Lsb1 and Lsb2

have an additive inhibitory effect on Las17 dependent actin

polymerization. The co-incubation of the Lsb1 SH3 domain with

Lsb1 protein did not significantly enhance the inhibition (Figure

S2), whereas addition of the SH3 domain of Lsb2 in the presence

of the full-length Lsb2 mediated a stronger inhibition compared to

only the full-length Lsb2 protein (Figure S2). This shows that the

SH3 domain of Lsb2 has an inhibitory effect on Las17, whereas in

the same conditions the SH3 domain of Lsb1 did not. This

suggests that the Lsb1/2 full-length proteins could regulate Las17

activity via cooperative binding or dimerization between Lsb1 and

Lsb2 proteins. Thus we tested whether Lsb1 and Lsb2 could form

homo- and/or hetero-multimers. Lsb1-HA was expressed in a

strain expressing either Lsb1-GFP or Lsb2-GFP with the tag

integrated at the locus and immunoprecipitated using c-bind

Sepharose beads and anti-HA antibodies. The presence of Lsb1-

GFP or Lsb2-GFP was tested by Western blot analysis using anti-

Figure 1. Lsb1 and Lsb2 interact with the WASP Las17. A) GST, GST-SH3-Myo5, GST-SH3-Lsb1 and GST-SH3-Lsb2 coated glutathione-
Sepharose beads were incubated with a total protein extract containing Las17-GFP. Beads were analyzed using fluorescence microscopy. GST was
used as negative and SH3-Myo5 as a positive control. B) GST-Lsb1 and GST-Lsb2 were expressed in E. coli and purified using glutathione Sepharose
beads. Beads were incubated with 2 mg of a total protein extract from Las17-CFP expressing cells, washed and analyzed by Western blot. The Input
represents the loading of the total protein extract (200 mg). GST was used as negative control. C) A strain expressing Las17-CFP was transformed with
plasmids (pUG-HA) encoding for Lsb1-HA or Lsb2-HA. Immunoprecipitation (IP) was performed using rat monoclonal anti-HA antibodies and results
analyzed by Western blot using mouse monoclonal anti-GFP, anti-HA and anti-Pgk1 antibodies. The input (40 mg of total protein extract) represents
1/40 of the extract used in the IP experiment (done with 2 mg of total extract).
doi:10.1371/journal.pone.0061147.g001
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GFP antibodies. We show that Lsb1-GFP and Lsb2-GFP are co-

immunoprecipitated by Lsb1-HA demonstrating that Lsb1 inter-

acts with both itself and Lsb2 (Figure 3B). A similar experiment

was performed with Lsb2-HA expressed in a strain bearing Lsb1-

GFP or Lsb2-GFP fusions. Lsb1-GFP and Lsb2-GFP were co-

immunoprecipitated by Lsb2-HA demonstrating that Lsb2 inter-

acts with both itself and Lsb1 (Figure 3B). This shows that Lsb1

and Lsb2 proteins form homo- and/or hetero-multimers.

Lsb1 and Lsb2 colocalize with endocytic proteins
Overexpressed Lsb1 and Lsb2 partially colocalize with the actin

patch protein Cap2 [30]. Endogenously GFP-tagged Lsb1 and

Lsb2 show diffuse cytoplasmic localization [33]. We overexpressed

Figure 2. Lsb1 and Lsb2 inhibit Las17 NPF activity. A) A total of 2 mM of rabbit muscle actin (3% pyrene labeled) was polymerized in the
presence of the indicated concentrations of purified Arp2/3 complex, Las17, Lsb1, Lsb2, SH3-Lsb1 and/or SH3-Lsb2 recombinant proteins. Actin
polymers concentration expressed in arbitrary units (a. u.) was measured by the fluorescence of the pyrene-labeled actin (left panel). Concentration
dependence of Las17-Arp2/3-complex induced actin polymerization inhibition by Lsb1 and Lsb2 was calculated from the slope of assembly were the
curves are linear (right panel). B) The half maximal concentration for inhibition was calculated by fitting the concentration dependence with a*(1–
10‘(-b*x)). The KD values for the interaction between the Las17 protein and the Lsb1, Lsb2, or the SH3 domains of Lsb1 and Lsb2 were determined
using a SPR-based assay by Biacore.
doi:10.1371/journal.pone.0061147.g002
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Lsb1 and Lsb2 as N-terminal GFP fusions under the control of the

MET25 promoter and the cells were stained with rhodamine-

phalloidin to visualize the actin cytoskeleton (Figure 4A). This F-

actin staining confirmed the partial colocalization of GFP-Lsb2

with actin patches (39.5% overlap between GFP-Lsb2 and F-actin)

that was previously observed by Chernova and collaborators [30].

We could also observe a partial colocalization between GFP-Lsb1

and F-actin (31.9% overlap between GFP-Lsb1 and F-actin). Lsb1

and Lsb2 interact with and inhibit Las17, so we tested if they

colocalized with Las17 in an endogenously CFP-tagged Las17

strain. Overexpressed GFP-Lsb1 and GFP-Lsb2 not only coloca-

lized with Las17-CFP, but clustered Las17-CFP into few

intracellular punctate structures (Figure 4B). The punctuate

localization of overexpressed GFP-Lsb1 or -Lsb2 does not depend

on their interaction with Las17, because intracellular puncta of

GFP-Lsb1 and GFP-Lsb2 were also observed in the las17D mutant

cells (Figure 4C). We analyzed whether other actin patch proteins

also localized to these clusters and if an interaction with the SH3

domain was required. We tested two SH3-domain containing

proteins interacting with Las17, the actin binding protein Abp1

and the endocytic adaptor protein Sla1 [2,34]. These two proteins

act as Arp2/3 dependent actin polymerization regulators, Sla1

inhibits Las17 NPF activity [25], and Abp1 stimulates Arp2/3

dependent actin polymerization and decreases Las17 nucleation-

promoting activity [17,35]. We show that Abp1-GFP interacted

with the SH3 domain of Lsb1 and Lsb2 (Figure S3A) whereas the

Sla1-GFP protein did not (Figure S4A). Interestingly, both Abp1-

CFP and Sla1-mCherry colocalized only partially with GFP-Lsb1

and GFP-Lsb2 (Figure S3B and S4B). Indeed, contrary to Las17-

CFP, which was fully clustered by Lsb1- and Lsb2-GFP

(Figure 4A), these two proteins still displayed unclustered puncta

upon overexpression of Lsb1 or Lsb2. This shows that overex-

pressed Lsb1 and Lsb2 proteins not only cluster Las17 but also

other proteins involved in the Las17-Arp2/3 induced actin

polymerization in these aggregates and this independently of their

direct interaction with the SH3 domain of Lsb1 and Lsb2.

The molecular function of Lsb1 and Lsb2 as regulators of Las17

activity implies that in vivo these proteins should be localized at sites

of Las17-dependent actin polymerization. A recent study mentions

that Lsb1-GFP and Lsb2-GFP fusion proteins expressed from

chromosomal endogenous promoter are detected in the cytoplasm

and as single puncta in 10–20% of the cells [30]. We could

reproduce this result for Lsb2-GFP that was found as a single

puncta in 15% of the cells (n = 324), whereas in our analysis Lsb1-

GFP proteins were detected as puncta in 27% of the cells (n = 328)

(Figure S6A). However, since Lsb1-GFP and Lsb2-GFP proteins

were difficult to visualize due to the weak intensity of their

fluorescent signal (Figure S6A), we also tagged them with three

Figure 3. Lsb1 and Lsb2 interact in vivo. A) A total of 2 mM of actin (3% pyrene labeled) was polymerized in the presence of indicated
concentrations of recombinant purified Arp2/3 complex, Las17, Lsb1 and Lsb2 proteins. B) Wild-type, Lsb1-GFP and Lsb2-GFP strains were
transformed with plasmids (pUG-3xHA) expressing Lsb1-HA or Lsb2-HA. Immunoprecipitation (IP) was performed using anti-HA antibodies and
results were analyzed by Western blot using anti-HA and anti-GFP antibodies. The wild-type BY4742 strain transformed with the pUG-HA-Lsb1 or -
Lsb2 plasmids was used as control. The Input corresponds to the total protein extract after lysis of the Lsb1- or Lsb2-GFP cells.
doi:10.1371/journal.pone.0061147.g003
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copies of GFP (3xGFP) to increase the brightness of the signal

(Figure S6B). The yeast cells expressing Lsb1-3xGFP and Lsb2-

3xGFP under their own promoter were functional for endocytosis

as monitored by proper uptake of the fluorescent dye FM4-64

(Movies S1 and S2). Lsb1-3xGFP was localized as a single puncta

near the plasma membrane in 58% of the cells (n = 387), whereas

Lsb2-GFP displayed a strong cytoplasmic staining with only 12%

of the cells (n = 341) having a single puncta. Moreover, time-lapse

imaging of Lsb1-3xGFP revealed that the puncta were highly

mobile structures (Movie S1), whereas in the same conditions

Lsb2-3xGFP puncta had reduced mobility (Movie S2).

Clustering of Lsb1 blocks endocytic internalization of
Can1

To determine the cellular function of Lsb1 and Lsb2 protein

apart from the specific role of Lsb2 in prion induction [30], we first

Figure 4. Lsb1 and Lsb2 colocalize with Las17. A) Fluorescence microscopy of GFP-Lsb1 or GFP-Lsb2 expressed from pUG36 vectors in wild type
BY4742 cells. The actin cytoskeleton was stained with phalloidin-rhodamine. B) Fluorescence microscopy of GFP-Lsb1 or GFP-Lsb2 (pUG36 vectors)
expressed in a Las17-CFP strain. C) Fluorescence microscopy of GFP-Lsb1 or GFP Lsb2 (pUG36 vectors) expressed in a las17D strain.
doi:10.1371/journal.pone.0061147.g004

Lsb1 and Lsb2 Negatively Regulate Las17
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analyzed whether the single and double deletion of lsb1D and

lsb2D genes affects the actin cytoskeleton polymerization (Figure

S5A), the intracellular localization of Las17 (Figure S5B) or the

uptake of the endocytic dye Lucifer yellow (Figure S5C). None of

these actin dependent functions were altered by the deletion of the

LSB1 and/or LSB2 genes. However these experiments are

qualitative and only detect strong defects in endocytosis or actin

cytoskeleton organization. The inhibitory function of Lsb1 and

Lsb2 on Las17 and their colocalization with actin, Las17, Sla1 and

Abp1, all effectors involved in the internalization step of

endocytosis, prompted us to test whether Lsb1 and Lsb2 affect

endocytosis when overproduced [36]. We analyzed the internal-

ization step of endocytosis upon overexpression of Lsb1 or Lsb2 by

following the receptor-mediated endocytosis of the arginine

permease Can1 [37] (Figure 5). We analyzed Can1-RFP

localization after growth in presence of arginine and observed

that its internalization was blocked in cells having large GFP-Lsb1

clusters, whereas it was unaffected in cells displaying a weaker

production of GFP-Lsb1 or in cells having a strong production of

GFP-Lsb2 (Figure 5). This shows a function for Lsb1 in

endocytosis, whereas in similar conditions overexpressed GFP-

Lsb2 did not affect Can1-RFP receptor-mediated endocytosis.

Discussion

The yeast S. cerevisiae Lsb1 and Lsb2 are two homologous

proteins first identified in a screen for proteins interacting with the

NPF Las17 [16]. Later, Lsb2/Pin3 was shown to be involved in

prion formation by promoting the conversion of Sup35 into its

prion form [PSI+] [29]. Moreover, this prion induction function of

Lsb2 is regulated by Rsp5-mediated ubiquitination and is

dependent on its SH3 domain, which is required for interaction

with the actin cytoskeleton [30]. There is little information about

the cellular role of Lsb1. The overexpressed Lsb1 protein localizes

as punctate structures in the cytoplasm and partially colocalizes

with Cap2-RFP [30]. Cap2 is an actin filament capping protein,

which binds to barbed ends of actin filaments and predominantly

localizes to actin patches [38]. These data suggest a link between

Lsb1 and the actin cytoskeleton. Here, we report that the

molecular function of Lsb1 and Lsb2 is the negative regulation

of Las17 induced actin polymerization. Indeed, Las17 is not auto-

inhibited like its mammalian homologs WASP/N-WASP but

requires different SH3 domain containing proteins, Bbc1, Sla1

and Bzz1, to inhibit its NPF activity [18,25,26]. Our data also

show that in our overexpression conditions, only Lsb1 and not

Lsb2 is involved in the regulation of the internalization step of

endocytosis.

The overexpressed GFP tagged Lsb1 and Lsb2 proteins are

localized in cytoplasmic punctate structures ([30], Figure 4, S3 and

S4) where they are colocalized with Las17 and other actin patch

proteins (Figure 4B, S3 and S4). Even though these two proteins

do cluster Las17 when overexpressed, their punctuate localization

does not depend on their interaction with Las17 (Figure 4C). The

Sla1 and Abp1 proteins show only partial colocalization with Lsb1

and Lsb2 (Figure S3 and S4), showing that not all proteins

involved in Las17-Arp2/3 dependent actin polymerization are

Figure 5. Overexpression of Lsb1 blocks the endocytosis of Can1-RFP. Wild-type BY4742 yeast cells co-transformed by pUG36 (GFP), pUG36-
Lsb1 (GFP-Lsb1) or pUG36-Lsb2 (GFP-Lsb2) plasmid and YCplac111-Can1-RFP (Can1-RFP) vector were grown over-night at 30uC in the presence of
arginine (5 mM) to induce the endocytic internalization of the arginine permease Can1-RFP, prior their observation by confocal laser scanning
microscopy.
doi:10.1371/journal.pone.0061147.g005
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fully clustered by Lsb1 and Lsb2. Neither Lsb1 nor Lsb2 have

been found to form prion structures and they displayed a punctate

localization in presence of overexpressed Hsp104, a chaperone

known to cure most yeast prions [30], suggesting that these clusters

do not result from misfolded Lsb1 or Lsb2 protein aggregation.

These large intracellular clusters of overexpressed GFP-Lsb1 and

GFP-Lsb2 are likely to be abnormal structures that result from

homo- and hetero-multimerization of Lsb1 and Lsb2 due to the

high expression level of these GFP fusion proteins. Indeed, when

Lsb1 and Lsb2 are expressed as GFP (or 3xGFP) fusion proteins

under their endogenous promoter, they are localized in the

cytoplasm and to cytoplasmic puncta in some cells. Quantification

of cells with a fluorescent puncta shows that approximately 50% of

the cells display punctate staining patterns of Lsb1-3xGFP

compared to only 15% of the cells for Lsb2-GFP. The spots of

Lsb1-3xGFP were highly mobile compared to Lsb2-3xGFP

suggesting that they could correspond to individual actin (and/

or membrane)-associated structures. Interestingly, the overexpres-

sion of Lsb1, but not Lsb2, results in a defect in the internalization

step of endocytosis. This shows that this endocytic defect displayed

upon Lsb1-GFP overexpression is not solely due to the sequester-

ing of Las17 into intracellular puncta. Thus, the protein

composition of the Lsb1 and Lsb2 clusters might be different,

and they could contain specific proteins required for endocytosis

and for prion induction respectively. However, Lsb1 and Lsb2

could also act as heterodimer to regulate the endocytic function of

Las17 and overexpressed Lsb2 could fail to block endocytosis by

being less effective in Las17 sequestration compared to Lsb1,

indeed Lsb2 is a less potent inhibitor of Las17 activity in vitro.

Lsb2, actin and several actin-regulating proteins are localized to

potential sites of prion formation [30]. The role of Lsb2 is these

structures might be to negatively regulate the Las17-dependent

actin polymerization, supporting the view of an active contribution

of the actin cytoskeleton in prion formation. Further studies will be

needed to completely understand this link and identify other

factors implicated in the regulation of the actin polymerization.

We propose a mechanism of inhibition where Lsb1 and/or Lsb2

bind via their SH3 domains to Las17 and inhibit Las17-dependent

actin polymerization by preventing the interaction of the WCA

domain with the Arp2/3 complex by steric hindrance. This

explains why we do not observe inhibition by the SH3 domains

alone. The addition of Lsb1 or Lsb2 to the corresponding full-

length Lsb1/2 further inhibits Las17 activity and Lsb1 and Lsb2

form homo- and hetero-oligomeric complexes suggesting that

these two proteins could regulate Las17 activity via dimerization

or cooperative binding. However, despite their similar molecular

function, Lsb1 is a more potent Las17 interactor and inhibitor

than Lsb2 (Figure 3), this probably correlates with its cellular role

in endocytosis, a key cellular process found in all cells and

requiring tight regulation. In accordance with this, we could only

detect a defect in endocytic internalization in cells highly

overexpressing Lsb1 but not Lsb2, suggesting that Lsb1 inhibitory

function is tightly regulated. Lsb1-GFP expressed under the

control of its own promoter is localized to mobile puncta that

could be involved in the control of the Las17 endocytic function.

Most of the different Las17 inhibitors identified in yeast are

detected very early at the sites of endocytosis. Indeed, Syp1 marks

the site of endocytosis, and Sla1 and Bbc1 are recruited early in

the process of endocytic internalization [2,27,39,40], whether

Lsb1 is also recruited early in the process remains to be

established.

In conclusion, the two homologues Lsb1 and Lsb2 share the

same molecular function as they are both involved in the negative

regulation of the Las17/WASP dependent actin polymerization,

however they might have a different cellular function as Lsb2 is

linked to prion induction, whereas Lsb1 regulates the internaliza-

tion step of endocytosis, a process that depends on actin

polymerization in yeast.

Materials and Methods

Strains, media and genetic manipulations
Standard methods were used for cell growth, DNA manipula-

tions and transformations. E. coli strain DH5a was used for

plasmid propagation and BL21 (Novagen) for protein production.

Bacteria were grown in LB media supplemented with the

appropriate antibiotic. Yeast cells were grown at 30uC in rich

medium (YPD): 1% yeast extract, 2% peptone, 2% glucose or on

synthetic medium (SC): 0,67% yeast nitrogen base without amino

acids, 2% glucose and the appropriate dropout mix. Strains used

in this study are listed in table S1. Las17-CFP originates from a

spore derived from a cross between DDY2738 [39] and BY4741

(Euroscarf). GFP strains were obtained by C-terminal insertion of

GFP amplified from pYM28 into the genome [41]. The 3xGFP

tagged strains were obtained by cloning LSB1 and LSB2 in the

PBS-3xGFP-HIS3 integrative plasmid [42] to obtain a fragment

encoding for LSB1 or LSB2 fused at its C-terminus in frame to a

five Ala linker and triple GFP; wild-type BY4741 cells were

transformed with this linearized vector and stable His+ transfor-

mants were selected and verified for proper insertion at the LSB1

or LSB2 locus by PCR. The lsb1D lsb2D strain was constructed by

transformation of the BY4742 lsb2D strain with a LSB1 gene

disruption cassette amplified from plasmid pFA6-HIS3 [43] and

selection on SC-His.

Plasmid construction
Plasmids used in this study are listed in table S1. LSB1 and LSB2

were amplified from genomic DNA and cloned between the EcoRI

and XhoI restriction sites of pGEX4T-1 (GE Healthcare) and the

EcoRI and SalI restriction sites of pUG36 (kindly provided by J.H.

Hegemann and U. Güldener). The sequence coding for SH3

domains of Lsb1 (57–109 aa) and of Lsb2 (59–110 aa) were

amplified from genomic DNA and cloned between the BamHI and

EcoRI sites of pGEX4T-1. The pRS416 LSB1-HA and pRS416

LSB2-HA vectors were constructed by inserting between the SalI

and EcoRI sites of pRS416-HA a fragment containing 500 bp

upstream and the open reading frame of LSB1 and LSB2,

respectively amplified from BY4742 genomic DNA. The coding

sequence of 3xHA was amplified and cloned between the EcoRI

and EagI sites of pRS416 [44] to obtain pRS416-HA. The pUG

LSB1-HA and pUG LSB2-HA plasmids were constructed by

replacing the GFP tag between the XbaI and XhoI site of pUG36

by the LSB1-HA and LSB2-HA fragments PCR amplified from

pRS416-LSB1-HA and pRS416-LSB2-HA respectively.

Protein expression and purification
BL21 cells transformed with the appropriate plasmid were

grown to OD600 nm = 0.4. Protein production was induced with

0.2 mM IPTG for 3 h at 30uC. Cells were harvested, washed and

resuspended in PBS. Cells were lysed with a Vibra Cell sonicator

(Bioblock Scientific). The extract was clarified at 13000 rpm and

incubated with glutathione Sepharose 4B beads (GE Healthcare).

For GST tag cleavage, beads were washed and resuspended in

20 mM HEPES (pH 7.5), 1 mM EDTA, 50 mM KCl, 2.5 mM

CaCl2 and thrombin (3000 U/ml, Promega) and incubated

overnight at 4uC. Beads were removed and the protein concen-

tration determined by Bradford assay (Carl Roth), then 10 mg

recombinant proteins were injected into a HiPrep Sephacryl S400
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HR size exclusion column connected to a ÄKTA FPLC (GE

Healthcare) calibrated with the LMW and HMW calibration kits

(GE Healthcare) and the recombinant proteins were eluted. Their

purity was controlled by SDS-PAGE gels stained with the Protein

Staining Solution (Euromedex) and their identity was confirmed

by mass-spectrometry (Plateforme Protéomique Strasbourg Espla-

nade). Las17, the Arp2/3 complex and pyrene actin were

produced as reported [25,45,46].

GST pull-down and immunoprecipitation
Purified GST-tagged proteins bound to Glutathione-Sepharose

beads (Sigma-Aldrich) were mixed with 4 mg of yeast protein

extract (prepared as described below) and incubated for 1 h at

4uC. Beads were washed three times using PBS+500 mM NaCl.

Proteins were separated by 10% SDS PAGE and analyzed by

Western-blot using standard procedures. Las17-CFP protein was

detected with anti-GFP IgG fraction from rabbit anti-GFP serum

that is suited for the detection of CFP, a variant of the GFP

(Rabbit IgG fraction, Invitrogen).

Las17-CFP cells transformed with Lsb1-HA or Lsb2-HA were

grown overnight to an OD600 nm of 0.8 and harvested by

centrifugation prior to washing with cold PBS. Cells were

resuspended in 1 ml lysis buffer (20 mM Tris pH 7.5, 100 mM

NaCl, 5 mM EDTA, 1% Triton-X, 1 mM PMSF, Protease

Inhibitor Cocktail (Complete Mini-EDTA free, Roche), broken by

vigorous shaking (FastPrep, MP Biomedicals) with glass beads and

the extract clarified twice for 5 min at 5000 rpm. Prewashed c-

Bind Sepharose beads (GE Healthcare) were incubated for 1 h at

4uC with anti-GFP IgG fraction from rabbit anti-GFP serum that

is suited for the detection of CFP, a variant of the GFP (Rabbit

IgG fraction, Invitrogen). 30 ml antibody-coated beads were

incubated with 2 mg total yeast extract overnight at 4uC. Beads

were washed four times with lysis buffer and once with PBS.

Proteins were separated by SDS-PAGE and analyzed by Western-

blot using standard procedures. The antibodies used are anti-GST

(mouse monoclonal, Sigma-Aldrich), anti-HA (mouse monoclonal,

Roche), anti-GFP (mouse monoclonal, Roche) and anti-Pgk1

(mouse monoclonal, Invitrogen).

Beads directed actin polymerization assay
The beads-directed actin polymerization assay was performed

as described in Soulard et. al. [24]. Briefly, the actin polymerization

reaction was initiated by adding 2 to 3 mg of GST fusion protein to

7 ml yeast extract (20 mg/ml), together with 1 ml of ATP-

regenerating mix and 1 ml of 10 mM rhodamine-labeled actin

from human platelet (Cytoskeleton). After 15 min incubation at

room temperature, samples were observed with a fluorescence

microscope (Axiovert200, TRITC and DIC filters, Zeiss). As a

control Latrunculin A (Sigma-Aldrich) was added to a final

concentration of 10 mM prior to addition of the beads.

Actin polymerization by fluorescence spectroscopy
Actin nucleation was performed essentially as described by

Higgs et. al. [19]. Briefly, 10 mM monomeric actin was mixed with

the relevant proteins at the indicated concentrations and changes

in pyrene fluorescence were followed using a MOS450 Bio-Logic

fluorimeter (Bio-Logic-Science Instruments). Polymerization was

done at room temperature. The rate of polymerization was

calculated from the slope of assembly curves at 50% polymeriza-

tion, where the curves are linear.

Surface plasmon resonance
Las17 was coupled via an amino group to a CM5 chip in a

Biacore3000 (GE Healthcare). The KD constants were determined

at 25uC in a HBS-EP buffer using ligand (Lsb1, Lsb2, the SH3

domain of Lsb1 or Lsb2) concentrations between 25 nM and

10 mM (Figure S7).

Endocytosis assay and microscopy
Yeast cells were grown in the appropriate media over night to

OD600 nm = 0.3. The Lucifer yellow staining was done as

previously described [12]. The endocytosis assay was done by

incubating yeast cells bearing the Can1-RFP plasmid

(pFL91 = YCplac111-Can1promoter-CAN1-mRFP, a kind gift

from M. Opekarova, [37]) and pUG36-Lsb1 or pUG36-Lsb2

plasmid in SD-leu-ura medium in presence of arginine at 5 mM

over night at 30uC, prior their observation at OD600 nm = 0.4 by

confocal microscopy (Zeiss LSM700 microscope, Plateforme

Microscopie et Imagerie, IBMP, Strasbourg). Actin was stained

with TRITC-phalloidin (Invitrogen) as previously described [24].

The Lsb1-3xGFP and Lsb2-3xGFP cells were stained by

incubation at 30uC for 10 min with the lipophilic marker of

endocytosis FM4-64 (16 mM), the cells were washed two times and

observed in SC-his medium 5 min (Lsb1-3xGFP) or 10 min (Lsb2-

3xGFP) after the endocytic uptake of the dye. The images were

recorded by dual TRITC (FM4-64) and GFP time-lapse

fluorescence microscopy and captured at 20-sec time intervals.

The display rate is 2 frames per second. For these experiments,

yeast cells were observed in the appropriate medium using an

epifluorescence microscope (Axiovert200, Zeiss, 1006 objective,

DIC, TRITC and GFP filters) and images were acquired with the

Axiovision (Zeiss) software using the CoolSnapHQ2 camera

(Roper Scientific). Images were processed with the ImageJ

software (Rasband, W.S., ImageJ, U. S. National Institutes of

Health, Bethesda, Maryland, USA, http://imagej.nih.gov/ij/,

1997–2011). The degree of colocalization between GFP-Lsb1 or

GFP-Lsb2 proteins and F-actin stained by rhodamine-phalloidin

was quantified by calculating the Mander’s overlap coefficient

[47], using manually adjusted threshold values to remove the

cytoplasmic GFP staining of GFP-Lsb1 and GFP-Lsb2, by using

the JACoP v2.0 plugin for ImageJ [48].

Supporting Information

Figure S1 Lsb1 and Lsb2 do not induce actin polymer-
ization on beads. A) and B) Glutathione Sepharose beads

coated with either GST, GST-TH2,SH3-Myo5, GST-SH3-Lsb1,

GST-SH3-Lsb2, GST-Lsb1 or GST-Lsb2 were incubated with

total yeast protein extract in the presence of ATP, ATP-

regenerating system and rhodamine-labeled actin. Actin polymer-

ization or binding was observed by fluorescent microscopy as a

fluorescent halo around the beads. To discriminate between

binding and polymerization, 10 mM Latrunculin-A was added

before the incubation.

(TIF)

Figure S2 The SH3 domains of Lsb1 or Lsb2 proteins do
not inhibit Las17 activity. A total of 2 mM of actin (3% pyrene

labeled) was polymerized in the presence of indicated concentra-

tions of recombinant purified Arp2/3 complex, Las17, Lsb1, Lsb2,

SH3-Lsb1 and/or SH3-Lsb2 proteins. Actin polymers concentra-

tion expressed in arbitrary units (a.u.) was measured by the

fluorescence of the pyrene-labeled actin.

(TIF)
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Figure S3 Lsb1 and Lsb2 colocalize with Abp1. A) GST,

GST-SH3-Myo5, GST-SH3-Lsb1 and GST-SH3-Lsb2 proteins

coated on glutathione Sepharose beads were incubated with a total

protein extract from ABP1-GFP yeast cells. Beads were analyzed

by fluorescence microscopy. GST was used as a negative control.

B) The ABP1-CFP cells were transformed by pUG36-Lsb1 (GFP-

Lsb1) or pUG36-Lsb2 (GFP-Lsb2) plasmids and the cells were

observed by fluorescence microscopy.

(TIF)

Figure S4 Lsb1 and Lsb2 colocalize with Sla1. A) GST,

GST-SH3-Myo5, GST-SH3-Lsb1 and GST-SH3-Lsb2 proteins

coated on glutathione Sepharose beads were incubated with a total

protein extract from SLA1-GFP cells. Beads were analyzed using

fluorescence microscopy. GST was used as a negative control. B)

The SLA1-mCherry strain was transformed by pUG36-Lsb1 (GFP-

Lsb1) or pUG36-Lsb2 (GFP-Lsb2) plasmids and the cells were

observed by fluorescence microscopy.

(TIF)

Figure S5 Las17 localized normal in a lsb1D lsb2D
strain. A) The actin cytoskeleton was stained with phalloidin-

rhodamine in wild type, lsb1D, lsb2D and lsb1D lsb2D cells prior

observation by fluorescence microscopy. B) The exponentially

growing LAS17-CFP, lsb1D LAS17-CFP, lsb2D LAS17-CFP and

lsb1D lsb2D LAS17-CFP cells were observed by fluorescence

microscopy. C) Wild type BY4742 and lsb1D lsb2D cells were

analyzed by fluorescence microscopy after incubation for 60 min

with the fluorescent dye Lucifer yellow (LY). LY is internalized via

endocytosis and transported to the lumen of the vacuole.

(TIF)

Figure S6 Lsb1 and Lsb2 expressed under their endog-
enous promoter localize to punctate structures. A) The

BY4741 Lsb1-GFP and Lsb2-GFP cells were observed by

fluorescence microscopy. B) Wild-type cells carrying a chromoso-

mically integrated LSB1-3xGFP or LSB2-3xGFP fusion were

analyzed for GFP fluorescence.

(TIF)

Figure S7 Biacore data of Lsb1 and Lsb2 with Las17.
The raw data of measured KD constants obtained by SPR-based

Biacore3000 measurements with Las17 and at different concen-

trations of (A) Lsb1, (B) Lsb2, (C) SH3-Lsb1 and (D) SH3-Lsb2

purified recombinant proteins.

(PDF)

Movie S1 The Lsb1-3xGFP cells were stained with the
lipophilic marker for endocytosis FM4-64 and observed
for GFP (green) and FM4-64 (red) fluorescence 5 min-
utes after FM4-64 internalization in SC-his medium. The

images were recorded by dual TRITC (FM4-64) and GFP time-

lapse fluorescence microscopy and acquired at 20-second time

intervals. The display rate is 2 frames per second.

(AVI)

Movie S2 The Lsb2-3xGFP cells stained with the
endocytic lipophilic dye FM4-64 were observed in SC-
his medium by fluorescence microscopy 10 minutes
after FM4-64 internalization. The images were recorded by

dual TRITC (FM4-64) and GFP time-lapse fluorescence micros-

copy and acquired at 20-second time intervals. The display rate is

2 frames per second.

(AVI)

Table S1 Strains and plasmids used in this study.

(DOC)
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