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Crossbreeding is a common strategy used in tropical and subtropical regions to
enhance beef production, and having accurate knowledge of breed composition is
essential for the success of a crossbreeding program. Although pedigree records
have been traditionally used to obtain the breed composition of crossbred cattle,
the accuracy of pedigree-based breed composition can be reduced by inaccurate
and/or incomplete records and Mendelian sampling. Breed composition estimation
from genomic data has multiple advantages including higher accuracy without being
affected by missing, incomplete, or inaccurate records and the ability to be used
as independent authentication of breed in breed-labeled beef products. The present
study was conducted with 676 Angus–Brahman crossbred cattle with genotype
and pedigree information to evaluate the feasibility and accuracy of using genomic
data to determine breed composition. We used genomic data in parametric and
non-parametric methods to detect population structure due to differences in breed
composition while accounting for the confounding effect of close familial relationships.
By applying principal component analysis (PCA) and the maximum likelihood method of
ADMIXTURE to genomic data, it was possible to successfully characterize population
structure resulting from heterogeneous breed ancestry, while accounting for close
familial relationships. PCA results offered additional insight into the different hierarchies
of genetic variation structuring. The first principal component was strongly correlated
with Angus–Brahman proportions, and the second represented variation within animals
that have a relatively more extended Brangus lineage—indicating the presence of a
distinct pattern of genetic variation in these cattle. Although there was strong agreement
between breed proportions estimated from pedigree and genetic information, there were
significant discrepancies between these two methods for certain animals. This was
most likely due to inaccuracies in the pedigree-based estimation of breed composition,
which supported the case for using genomic information to complement and/or
replace pedigree information when estimating breed composition. Comparison with a
supervised analysis where purebreds are used as the training set suggest that accurate
predictions can be achieved even in the absence of purebred population information.
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INTRODUCTION

Around 40% of all beef cattle in the United States are
located in the subtropical southern and southeastern parts of
the country (Cundiff et al., 2012). The combined effect of
high ambient temperature and humidity, increased abundance
of parasitic and parasite-transmitted diseases, and nutritional
lower quality pastures has a negative effect on growth rate
and reproductive performance on Taurine (Bos taurus) beef
cattle breeds of European origin (Burrow, 2015). Crossbreeding
between European Taurine and Zebu (Bos indicus) breeds is a
common strategy used to enhance beef production in tropical and
subtropical areas (Lamy et al., 2012). These crossbreds combine
the production performance of Taurine cattle with the tropical
adaptation of Zebu cattle, and usually outperform purebred
cattle from the parental breeds in subtropical conditions due to
heterosis (Burrow, 2015). Angus–Brahman crosses are typically
better suited for beef production than other Zebu–Taurine
combinations in subtropical parts of the United States (Chase
et al., 2004). Whether a particular Taurine–Zebu combination
is optimal depends on the specific production environment
under consideration. It has been suggested (Cundiff et al., 2012)
that, in subtropical regions of the United States such as the
Gulf Cost, cattle with a 1:1 Taurine to Zebu ratio would be
preferred whereas a 3:4 Taurine to Zebu ratio would be better
suited to the more northern but still subtropical parts of the
United States such as Southeastern Oklahoma and most of
Texas.

Having accurate knowledge of breed composition is essential
in evaluating the adaptability of crossbreds to a given production
environment (Kuehn et al., 2011). Pedigree information is
conventionally used to determine breed composition in crossbred
cattle (Frkonja et al., 2012; Vanraden and Cooper, 2015).
However, the reliability of pedigree-based estimation of breed
composition can be compromised by missing, inaccurate, or
incomplete records (Vanraden and Cooper, 2015). In addition,
Mendelian sampling during gametogenesis can lead to deviations
from the breed composition expected from the pedigree (Kuehn
et al., 2011).

Using genomic data to determine breed composition is
superior to using pedigree records as it was shown to be
more accurate whilst not being prone to missing, incomplete,
or inaccurate records (Kuehn et al., 2011; Dodds et al.,
2014; Funkhouser et al., 2017). Another use of genomic
information could be independent authentication of breed in
breed-labeled beef products (Wilkinson, 2012). Disadvantages
of using genomic data may include genotyping cost and the
need for more advanced technical expertise, but both are
decreasing in importance as genetic and genomic methods are
becoming widely adopted and increasingly accessible (Wiggans
et al., 2011). The increasing availability of core sequencing
facilities at academic and research institutes, combined with
the availability of affordable genotyping services from biotech
companies, are likely to improve the accessibility and feasibility
of using genomic information to determine breed composition
(Gould, 2015; Bauck, 2016). Genotyping cost can also be
further reduced by only genotyping breed-informative markers

(Wilkinson et al., 2011). Using a small number of carefully
selected breed-informative markers is also advantageous in that
it minimizes statistical noise coming from other markers whose
frequency has been affected by demographic events that are not
relevant to breed membership inference (Wilkinson et al., 2011).

The goal of the current study was to determine genomic
breed composition while accounting for familial relationships
in a group of 782 cattle with substantial presence of such
relationships, and in the process, demonstrate the effect of
familial relationships on population structure and genomic breed
composition inferences. The objectives of the study were to
(1) use genomic data to detect population structure due to
differences in breed composition by means of parametric and
non-parametric methods while accounting for the confounding
effect of close familial relationships, and (2) compare breed
composition inferred from genomic data with breed composition
derived from pedigree.

MATERIALS AND METHODS

Animals and Genotyping
The study included 782 cattle from the multibreed Angus–
Brahman herd at the University of Florida (Elzo and Wakeman,
1998). The research protocol was approved by the University
of Florida Institutional Animal Care and Use Committee
number 201003744. This herd was constructed using a diallel
crossbreeding scheme, where six groups of sires with different
proportions of Angus and Brahman, as determined from pedigree
records, were reciprocally mated with six dam groups which were
classified in the same manner as the sires (Komender, 1988; Elzo
and Wakeman, 1998). The six sire/dam breed groups were: group
1 (>4/5 Angus); group 2 (3/4 Angus and 1/4 Brahman); group
3 (5/8 Angus and 3/8 Brahman); group 4 (1/2 Angus and 1/2
Brahman); group 5 (1/4 Angus and 3/4 Brahman); and group
6 (>4/5 Brahman). The progeny from the diallel matings were
again classified into six groups using the same criteria as the
sire/dam groups. The animals included in the current study were
sampled to be representative of all six sire/dam/progeny groups
and consisted of 126, 120, 123, 159, 84, and 170 cattle from
groups 1–6, respectively. Sire group 3 represents Brangus cattle,
which is technically a separate breed. However, since Brangus is a
composite breed derived from Angus and Brahman, the Brangus
cattle and their progeny were considered as crossbreds between
the two parental breeds as recommended by Kuehn et al. (2011).

Genomic DNA was extracted from blood samples using the
QIAGEN R© DNeasy R© kit (Qiagen, Valencia, CA, United States),
and genotyping was carried out using the GeneSeek Genome
Profiler F-250 (GeneSeek, Inc., Lincoln, NE, United States).
Several quality control (QC) measures were applied to genotype
data at the animal and marker level (Anderson et al., 2010). At
the animal level, QC filters included genotype completion rate
(<90%) and duplicate removal (pairwise IBS > 0.99). Per-marker
filters were applied for minor allele frequency (MAF; <1%),
genotype call rate (<90%), and Hardy–Weinberg equilibrium
deviation (Chi-square P-value <1 × 10−8). The extent of linkage
disequilibrium (LD) was evaluated by observing LD decay as a
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function of genomic physical distance. Markers in high LD were
then pruned with window size of 5,000 kb, step size of 10 bp,
and LD threshold of 0.5 (Turner et al., 2011). All QC steps were
performed using the software PLINK1.9 (Chang et al., 2014). The
genotype data is available on the EVA website, accession number
PRJEB24746.

After removing duplicates (IBS > 0.99; n = 2) and samples
with low genotype completion rate (<0.9; n = 104), 676 samples
were available for subsequent analysis. From an initial set of
221,077 SNP, a subset of 89,728 SNP was kept after removing
64,496 SNP with low MAF (<1%); 13,386 SNP for failing to
meet minimum call rate (<0.9); 8,088 SNP for Hardy–Weinberg
equilibrium deviation and 45,379 SNP due to LD pruning.

Selection of Unrelated Animals
In both model-based analysis and principal component analysis
(PCA), efforts to identify population structure due to differences
in breed composition can be biased by the presence of close
familial relationships and shared recent ancestry among the
sample set being analyzed (Patterson et al., 2006; Conomos
et al., 2016). These type of confounding relationships among
animals were expected in these data. To account for such
sources of confounding in both model-based analysis and PCA,
the population structure identified in a subset of unrelated
samples was used as a reference when inferring genomic breed
composition for the rest of the samples.

A subset of mutually unrelated animals that is representative
of overall population structure in the entire sample set was
identified using an algorithm described by Conomos et al. (2016)
and implemented in the “pcairPartition” function from the
R package Genesis. This algorithm utilizes a pairwise kinship
matrix estimated by the KING-robust method (Manichaikul
et al., 2010) to identify a subset of mutually unrelated
samples. Unlike kinship estimation methods which assume a
homogeneous population with no structure (e.g., IBD estimation
implemented in PLINK; Chang et al., 2014), the KING-robust
method is not confounded by the presence of population
structure. Moreover, when applied to a set of samples with
heterogeneous breed ancestry, the KING-robust method gives
a systematically biased negative estimate (termed divergence)
for a given pair of unrelated samples with different breeds of
origin. The “pcairPartition” algorithm uses this informative bias
to include samples with divergent ancestry in the unrelated set in
order to represent overall population structure (Conomos et al.,
2016). Samples in the unrelated set were selected to have pairwise
kinship coefficients of less than 0.022 among them, whilst having
the largest number of pairwise divergences of less than −0.022
with the rest of the samples (Conomos et al., 2016). Pairwise
kinship and divergence was calculated using the R function
“snpgdsIBDKing” in the package Genesis (Conomos et al., 2016).

Model-Based Analysis
Individual breed composition was estimated from genomic data
using a maximum likelihood model implemented in the software
ADMIXTURE v1.3 (Alexander et al., 2009; Shringarpure et al.,
2016). ADMIXTURE uses genotype data to cluster individuals
into subgroups, with the expected number of subgroups (K)

specified beforehand. Subgroup memberships were considered
as breed membership, and pedigree information was used to
identify the breed associated with a subgroup. Estimates of
genomic breed composition and marker allele frequency were
obtained from the Q and F matrices. The Q matrix contains
membership coefficients of samples to each subgroup/breed.
Since fractional subgroup membership is allowed, membership
coefficients can also be conveniently interpreted as the proportion
of an animal’s genome with a particular breed ancestry. The
F matrix contains allele frequency estimates for each marker in
each subgroup/breed.

The accuracy of the genomic breed-composition estimation
using the maximum likelihood model of ADMIXTURE depends
on the extent to which several underlying assumptions are met.
These include a relative level of linkage equilibrium between
markers, a sample set with adequate representation of all
parental/ancestral breeds and a sample set composed of only
unrelated animals (Alexander et al., 2009). The sampling scheme
employed in the current study ensures adequate representation
of both Angus and Brahman, whereas the LD pruning step
performed as part of QC is expected to minimize the effect of
widespread admixture LD in the sample set (Alexander et al.,
2009).

To account for the confounding effect of known and/or
cryptic familial relationships, population structure identified in
the unrelated subset was used as a reference when inferring
genomic breed composition in the related set (Shringarpure et al.,
2016). ADMIXTURE was first run in unsupervised mode on the
unrelated subset, and breed allele frequencies estimated from this
run were then used as inputs for a supervised run on the related
set in supervised mode.

To infer breed composition using the projection method,
ADMIXTURE was run in the unsupervised mode on the
unrelated subset, using genotype data and a K = 2 as inputs,
and individual breed membership coefficient (Q) and breed
allele frequency (F) estimates were obtained. Genotype data for
the remaining samples was then projected onto the population
structure inferred for the unrelated samples (Shringarpure
et al., 2016). This was accomplished by using the breed allele
frequencies (F) estimated for the unrelated set, along with
genotype data for the rest of the samples and a K = 2 as inputs
when estimating breed membership coefficients (Q) for the rest
of the samples. A K = 2 was used based on our knowledge of two
parental breeds used for all animals in the study (Patterson et al.,
2006; Zheng and Weir, 2016).

An additional projection was used where ADMIXTURE was
run in the unsupervised mode on a subset of 44 purebred
Angus and 44 purebred Brahman animals to obtain breed
allele frequency (F) estimates. Genotype data for the remaining,
non-purebred samples was then projected onto the population
structure inferred for the purebred samples.

Principal Component Analysis
Major axes of variation that explain most of the genetic structure
in the study population were identified using PC-AiR, a PCA
method implemented in the “pcair” function from the R
package Genesis (Conomos et al., 2016). The method minimizes
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confounding effect of close familial relationships and shared
recent ancestry by using the population structure identified in
a subset of unrelated samples as a reference for population
structure for the rest of the samples. PCA was first performed
on the genotype data for the unrelated subset by applying
eigendecomposition on the covariance matrix of the standardized
genotype data (i.e., each SNP column mean centered and divided
by the standard deviation). Principal components (PC) for the
rest of the samples (i.e., related subset) were then obtained
by projecting their standardized genotype data onto the SNP
weight matrix calculated for unrelated set in the previous step
(Conomos et al., 2016). Overall structuring of genetic variation
was visualized in a scatterplot of the top few PCs.

To evaluate the agreement between different methods
of inferring breed composition, the top PC from PC-AiR
and the breed composition estimates from the unsupervised
ADMIXTURE was compared to the genomic breed composition
estimates from the supervised ADMIXTURE (trained on
purebred animals) and the pedigree-based breed composition.
The agreement between the different methods was evaluated by
computing pairwise Pearson’s correlation coefficients.

RESULTS

Selection of Unrelated Animals
The R function “pcairPartition” identified a subset of 74 samples
as unrelated and representative of the population structure in the
entire sample set. The selection was based on pairwise kinship
and divergence estimates by the KING-robust method. The
distribution of KING-robust estimated for all unique pairwise
comparisons among the 676 study animals (n = 228,150) is shown
in Figure 1.

Model-Based Analysis
ADMIXTURE was first run in unsupervised mode on the
genomic data for the unrelated subset of samples and Figure 2A
shows the proportion of the genome contributed by each
breed for 74 unrelated samples. ADMIXTURE was also run in
unsupervised mode on the genomic data for the purebred subset
of samples. In the supervised mode, breed allele frequencies
estimated for the unrelated or the purebred subset were used
as input to estimate breed membership coefficient for the 602
samples in the related set (Figure 2B) or the 588 samples
in the non-purebred set. As expected (Conomos et al., 2016),
the unrelated set of animals identified by pcairPartition was
representative of the overall population structure, and contained
all animals with membership coefficients of 0 or 1 for both breeds.

There was a very strong correlation (R = 0.965) between breed
composition estimates for either breeds from ADMIXTURE
and the estimates obtained using pedigree records. As indicated
by the less than perfect correlation, there were discrepancies
between the estimates from the two methods for certain samples
(Figure 3). The mean and standard deviation of the absolute
difference between breed composition estimates from the two
methods were 0.056 and 0.060, respectively. For 72% of the
animals, the difference was within one standard deviation, and

5% had a difference of more than two standard deviations. The
correlation between the breed composition estimates from the
pure-bred and unrelated trained ADMIXTURE analyses was very
strong (R = 0.994).

Principal Component Analysis
The first and second PCs (PC1 and PC2) explained 27 and
5.6% of the variation in the entire genetic data, respectively.
Both unrelated and related subsets show a similar pattern of
variation across these two PCs (Figure 4A). The PC1 had a
very strong correlation (R = 0.966) with the Angus proportion
derived from pedigree data. The relationship between PC1 and
pedigree breed composition is also illustrated in Figure 4B.
Animals with approximately 2/3 Angus ancestry (which would
qualify as Brangus) had more variation in PC2, indicating the
presence of a source of population structure other than Angus–
Brahman differentiation. This variation could be attributed to
the distance of Brangus animals from the initial crossbreeding
forming a Brangus animal, with first generation Brangus animals
being closest to the average, and the distance from the average
increasing with the number of generations from this initial
Brangus formation (Figure 4C). In contrast, F1 and first
generation Brangus cattle were located along the line connecting
the two clusters formed by the purebreds (Figure 4C) and showed
much less variation across PC2 as would be expected in the case
of a recent two-way admixture (Patterson et al., 2006; McVean,
2009).

The PC1 had also a very strong correlation (R = 0.999) with
the Angus proportion estimated from ADMIXTURE. However,
the relationship between the two values appeared to be different
for the related and unrelated subset of samples (Figure 5). For the
related set, there was a linear relationship between the two values,
whereas for the unrelated set, ADMIXTURE estimates had more
extreme values at both ends.

DISCUSSION

A commonly used approach in genomic breed composition
inference in livestock is to use regression-based methods which
depend on the availability of allele frequency estimates from
reference populations. However, there are multiple scenarios
where this may not be possible, for example when the full range
of ancestral breeds is not known. Even when this information
is known, allele frequency estimates from reference populations
may not be available for the breeds or genetic markers of interest.
One viable option in such cases is to use unsupervised model-
based clustering methods which simultaneously estimate breed
allele frequency and sample breed membership coefficients (i.e.,
genomic breed composition). In addition to not requiring allele
frequency estimates from external reference populations, such
methods allow inference on the correct number of ancestral
populations, an important feature when the full range of parental
breeds involved is not certain.

Unsupervised model-based clustering used to infer genomic
breed composition runs a higher risk of confounding by sources
of population structure other that heterogeneous breed ancestry.
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FIGURE 1 | Histogram showing the distribution of pairwise kinship and divergence estimates by KING-robust method among all samples. A total of 74 samples
designated as the unrelated set were selected to have pairwise kinship coefficient of less than 0.022 among them, whilst having the largest number of pairwise
divergence of less than –0.022 with the rest of the samples.

This is because, unlike the regression methods mentioned earlier,
breed allele frequencies are not explicitly specified, and familial
relationships among the sample can bias cluster (i.e., breed)
allele frequency estimates. Assuming the sample population
is large enough, one way to control for such confounding
is to base genomic breed composition inference on a subset
of mutually unrelated and ancestrally related samples. This
involves estimating cluster (i.e., breed) allele frequencies using
the unrelated subset in an unsupervised run, and using allele
frequency estimates from this run as an input in a supervised
run involving the rest of the samples. A useful feature of the
KING-robust estimator used in the present study is that it
gives out negative estimates (i.e., divergence) for unrelated pairs
with different breed ancestry, and this relationship is inversely
proportional such that the more divergent the ancestry between
the pairs, the more negative the divergence estimate. The extent
of both familial relationships and ancestral heterogeneity in
the sample is shown in Figure 1. Based on these estimates,
pcairPartition identified 74 samples as unrelated and ancestrally
representative of the entire sample set. This is expected to
minimize the confounding effect of close familial relationships on
breed membership inference for the related set of samples.

There was a very strong correlation (R = 0.965) between breed
composition estimates for either breeds from ADMIXTURE
and the estimates obtained using pedigree records, which is in

agreement with results from other studies. Frkonja et al. (2012)
compared different methods of estimating breed composition
using purebred Red Holstein Friesian, purebred Simmental, and
their crossbreds. This study reported a correlation coefficient of
0.972 between breed proportions obtained from pedigree and
breed membership coefficients estimated by STRUCTURE using
40,492 genome-wide SNPs. Another study (Dodds et al., 2014)
found a correlation coefficient of 0.89 between breed composition
estimates from pedigree and from STRUCTURE run on a set of
10,000 SNP for a set of four different breeds of sheep and their
crossbreds.

However, similar to the other studies, there were discrepancies
between breed composition estimates from genome-wide data
and pedigree for certain samples (Figure 3). For crossbred
animals, breed composition derived from genomic data should be
more accurate than pedigree-based estimates since pedigrees can
be incomplete or incorrect (Frkonja et al., 2010; Vanraden and
Cooper, 2015). Mendelian sampling during recombination could
also lead to deviation from the composition expected based on
pedigree (Kuehn et al., 2011). On the other hand, estimates based
on genomic data could also be biased or lose accuracy due to
sample selection, which could be described as a failure to include
sufficient samples to represent all parental breeds in the analysis
(Long, 1991; Shringarpure et al., 2016) or a weak differentiation
between parental breeds (Patterson et al., 2006; Kuehn et al.,
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FIGURE 2 | Bar plot of the Q matrix from an unsupervised (A) ADMIXTURE run showing the proportion of the genome contributed by each breed for 74 unrelated
samples. Panel (B) shows the Q matrix from a supervised run for 602 samples in the related set. Each vertical bar represents an individual with yellow showing the
proportion of the genome with Angus ancestry and orange corresponds to the proportion of the genome with Brahman ancestry.

2011). The very high correlation (R = 0.994) between breed
composition estimates obtained from ADMIXTURE when either
an unrelated subset or a set of purebred parental populations
was used, suggests that the model-based analyses provide highly
accurate estimates of breed composition. In addition, a very high
correlation of estimates from both of these methods and estimates
from a completely unsupervised ADMIXTURE analysis of the
entire dataset (R = 0.996 between unsupervised and trained on
purebred set, R = 0.995 between unsupervised and trained on
unrelated subset) suggest the model-based analysis is robust and
should be expected to generate highly accurate estimates even in
the absence of a training unrelated or purebred dataset.

The PC1 in our PCA explained 27% of the variation in
the genetic data, consistent with two major parental breeds
(Patterson et al., 2006; McVean, 2009). In a two-way admixture,
PC1 is closely related to the Fst (Wright’s Fixation Index,
ratio of between-population variation to overall variation)

estimated between the two parental populations. Consistent
with McVean’s (2009) observation, the genome-wide Fst average
(0.25) calculated based on the Weir and Cockerham method
implemented in PLINK (Weir and Cockerham, 1984) was close
to the proportion of variation explained by PC1 (0.27). The PC1
had a strong correlation (R = 0.966) with breed composition
derived from pedigree, with some discrepancies likely due to
inaccuracies in pedigree records and/or the effect of Mendelian
sampling (Patterson et al., 2006; Kuehn et al., 2011; Vanraden
and Cooper, 2015). An interesting finding related to the ancestry
of Brangus (62.5% Angus, 37.5% Brahman) animals is revealed
when examining the variation explained by PC2. The highest
amount of variation in PC2 is found in Brangus animals and it
describes the ancestry of the animals and their distance from first
generation Brangus animals, with animals of multiple generations
of Brangus–Brangus matings being more distant from first
generation Brangus (Figure 4C). First generation Brangus cattle
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FIGURE 3 | Relationship between genomic breed composition estimates from ADMIXTURE and pedigree data. A very strong positive correlation was found between
these estimates with few discrepancies. The color for each animal corresponds to the amount of standard deviation by which the two measures differ.

FIGURE 4 | Population distribution across the first (PC1) and second principal component (PC2). (A) PCA was performed on the unrelated set of animals (blue) and
PC1 and PC2 values for the rest of animals (orange) were predicted based on their genetic similarity to animals in the unrelated set. (B) Animals are labeled based on
their pedigree breed composition which can be described by the variation in PC1. (C) Brangus cattle from one or more generations of Brangus–Brangus matings
show more scatter across PC2. In contrast, first generation Brangus and F1 cattle showed minimal scatter across PC2 and were close to the line connecting the two
purebred clusters.

showed less variation across PC2, and were located along the line
connecting the two clusters formed by the purebreds (Figure 4C),
as would be expected in the case of a recent two-way admixture
(Patterson et al., 2006; McVean, 2009). The distinct pattern of
variation seen in the cattle born from Brangus–Brangus mating is
likely due to the extended number of generations since the initial
crossing of the parental breeds in these animals (Patterson et al.,
2006). Close familial relationships can be ruled out as a reason
because a similar pattern was also observed in the unrelated set

of samples (Figure 4A). This result is in agreement with McVean
(2009) that, in populations resulting from a two-way admixture,
the proportion of genetic variation explained by the PC1 drops
as the number of generations since the initial admixture event
increases. This could also explain why animals from at least
one generation of Brangus–Brangus mating have little variation
across PC1 as compared to PC2.

The PC1 had a very strong correlation (R = 0.999) with
Angus–Brahman proportion from ADMIXTURE, similar to
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FIGURE 5 | Relationship between the first principal component (PC1) and Angus percent estimated by ADMIXTURE for the related (blue) and unrelated (orange) set
of samples. Angus proportion from ADMIXTURE tended to be more extreme as compared to PC1 values for the unrelated set for animals with a higher percentage of
one particular breed (purebreds).

Patterson et al. (2006), reporting a correlation coefficient of 0.995
between PC1 and model estimates for European ancestry in
an admixed human population. Despite apparent differences in
their approach, both PCA and model-based methods are closely
related and can be viewed as different ways of factorizing the
genotype matrix (Engelhardt and Stephens, 2010). While the
PC1 from PCA is sufficient to measure the level of admixture
in a crossbred population with two parental breeds, model-based
methods need two coefficients of membership for both breeds to
provide the same information (Patterson et al., 2006; Engelhardt
and Stephens, 2010).

Notwithstanding the strong correlation between PC1 and
breed membership coefficients estimated by ADMIXTURE,
the relationship between the two appeared to be different
for the related and unrelated set of samples as illustrated in
Figure 5. For the related set, there was a linear relationship
between the two values, whereas for the unrelated set,
ADMIXTURE estimates had more extreme values at both
ends. A similar observation was made by Engelhardt and
Stephens (2010) who noticed that, when applied to an
admixed set of samples with divergent ancestral groups,
ADMIXTURE tends to give cluster membership estimates that

are more extreme as compared to components from PCA.
One factor contributing to this tendency is the difference in
the type of constraints imposed during optimization when
estimating the Q matrix and PCs in ADMIXTURE and PCA,
respectively.

Because ADMIXTURE needs to explain overall genetic
variation or population structure in terms of ancestry from
a predefined number of breeds (K), ADMIXTURE estimates
membership coefficients to all K breeds using a constrained
optimization process (via quadratic programming) which forces
the coefficients to be non-negative and to sum to 1 (Alexander
et al., 2009). This means that overall genetic variation is
represented only by K variables corresponding to membership
coefficients for the respective breeds, without attributing
variation to any other source. In contrast, PCA does not
impose the constraint that a predefined number of PCs have
to explain all the genetic variation (Engelhardt and Stephens,
2010). Instead, when applied to data with n individuals, PCA
estimates n PC, each explaining certain proportion of the overall
genetic variation. In a two-way admixture, as in this study, PC1
captures genetic variation due to heterogeneous breed ancestry
(Patterson et al., 2006). However, variation due to additional
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factors such as familial relationships are also captured by
subsequent PC (McVean, 2009; Engelhardt and Stephens, 2010).
Consequently, PC1 values tend to be less biased toward either
end of the admixture spectrum as compared to membership
coefficient estimates by ADMIXTURE for both ancestral groups
(Engelhardt and Stephens, 2010). Another factor contributing to
the relatively extreme nature of ADMIXTURE estimates could
be its assumption that the errors have a binomial distribution
whereas PCA assumes the errors have a Gaussian distribution
(Engelhardt and Stephens, 2010).

Compared to ADMIXTURE, PCA is more appealing because
it is computationally more efficient while providing a similar
level of information as model-based clustering (Patterson et al.,
2006). Furthermore, visual representations based on the top
few PC provide better insights into the diversity and extent of
demographic events underlying different levels of population
structure (McVean, 2009). One disadvantage of using PCA
is the difficulty in interpreting the results (Patterson et al.,
2006). For example, in the current study, cluster membership
coefficients estimated by ADMIXTURE were interpreted as
Angus and Brahman proportions, but such interpretation cannot
be made for PC1 values ranging from −0.18 to 0.18. Although
there have been suggestions (Patterson et al., 2006; McVean,
2009; Zheng and Weir, 2016) on how to interpret PCA
results in terms of admixture levels or genealogy, caution
should be taken when doing so because different demographic
events could result in similar PCA projections (McVean,
2009).

CONCLUSION

By applying PCA and the maximum-likelihood method of
ADMIXTURE to genomic data, it was possible to successfully
characterize population structure resulting from heterogeneous
breed ancestry, while accounting for close familial relationships.

PCA results offered better insight into the different hierarchies
of genetic variation structuring. While PC1 was strongly
correlated with Angus–Brahman proportions, PC2 represented
variation within animals that have a relatively more extended
Brangus lineage—indicating the presence of a distinct pattern
of genetic variation in these cattle. In contrast, ADMIXTURE
estimates of breed composition forced all genetic variation to
be explained only in terms of Angus and Brahman proportion,
without accounting for other sources of variation. This shows
how breed composition inferences made by ADMIXTURE-like
methods (e.g., STRUCTURE, fastSTRUCTURE, and Frappe) can
be confounded by other sources of population structure and
highlights the importance of accounting for such sources by
using an unrelated, breed-representative reference population.
Although there was strong agreement between breed proportions
estimated from pedigree and genetic information, there were
significant discrepancies between these two methods for
certain animals. This was likely due to inaccuracies in the
pedigree-based composition of these animals, which supports
the case for using genomic information to complement
and/or replace pedigree information when estimating breed
composition.
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