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A commentary on

Face-sensitive processes one hundred mil-
liseconds after picture onset
by Dering, B., Martin, C. D., Moro, S., 
Pegna, A. J., and Thierry, G. (2011). 
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fnhum.2011.00093

In three experiments, Dering et al. (2011) 
measured the amplitude and latency of the 
mean P1 and N170 in response to faces, cars, 
and butterflies, cropped or morphed. The 
N170 was sensitive to cropping but did not 
differentiate frontal views of faces and cars. 
Throughout, P1 amplitude was larger for 
faces than objects. The authors concluded 
that P1, not N170, is a reliable face-sensitive 
event.

Although Dering et al. (2011) and 
Thierry et al. (2007) correctly identified 
problems with P1 and N170 ERP interpre-
tations, these same problems are evident in 
their own research, and, consequently, their 
results are equally inconclusive. We identify 
four shortcomings in Dering et al.’s approach 
that also apply to the literature they contest 
(e.g., Eimer, 1998; Allison et al., 1999; Carmel 
and Bentin, 2002; Itier and Taylor, 2004; 
Rousselet et al., 2004; Rossion and Jacques, 
2008): categorical design, uncontrolled task 
demands, group statistics, and peak meas-
urements. ERPs are worthwhile measure-
ments of visual processing, but only when the 
shortcomings reviewed below are addressed.

Beyond categorical designs
Categorical designs compare few categories 
of input stimuli against brain measure-
ments. When dealing with complex visual 
stimuli, categorical designs make it difficult 
to attribute a brain response to specific 
object categories (e.g., a face), features (e.g., 
the eye) or functions, because the specificity 
of the response (e.g., to the face) is deter-

mined by contrast with responses from 
other categories (e.g., cars) and informal 
hypotheses tested. Unfortunately, category 
members share a dense correlative structure 
of low-level visual properties (e.g., lumi-
nance energy, main directions of orienta-
tion, spatial frequency composition), which 
cannot all be controlled with a finite num-
ber of contrast categories. Consequently, the 
brain response’s specificity might be due to 
differences in input statistics, not to the cat-
egory itself (Schyns et al., 2003).

Whereas Dering et al. (2011) controlled 
total luminance, contrast, and size, other 
physical dimensions affecting P1 ampli-
tudes and categorical judgments were not 
controlled (e.g., spectral profiles of con-
trasted categories: VanRullen and Thorpe, 
2001; Sowden and Schyns, 2006 ; VanRullen, 
2006; Honey et al., 2008; Rousselet et al., 
2008a). Consequently, a significant ERP 
peak difference between two input cat-
egories does not ensure that the difference 
relates to the category per se, as opposed to 
the uncontrolled statistics of low-level image 
properties (Schyns et al., 2003; Pernet et al., 
2007). Categorical designs typically use few 
categories, but must still control for a much 
larger set of low-level image dimensions. By 
neglecting these experimental controls, it 
is almost inevitable that such designs will 
deliver the type of inconclusive results that 
animate unnecessary debates in the P1 and 
N170 face literature. Thierry et al.’s (2007) 
own results elegantly demonstrate this 
point. In their Experiment 3, they overlaid 
faces with cars and instructed observers to 
attend to either category. Here, when the two 
categories were better controlled for their 
low-level properties (though still not per-
fectly), the categorical modulations on the 
P1 component were abolished. Thus, vary-
ing levels of quality of stimulus control in 
Thierry et al.’s work fuels their own debate: 
if Dering et al. had correctly identified the 

P1 face-sensitiveness, Thierry et al.’s (2007) 
third experiment would demonstrate an 
increased P1 amplitude for faces overlaid 
with cars. It did not. This contradiction illus-
trates the pitfalls of poor stimulus control.

control of task demands
Dering et al.’s (2011) participants discrimi-
nated between faces and cars or butterflies. 
Assuming that the stimuli were properly 
controlled, observers in Dering et al.’s task 
could still discriminate a face from any 
car or butterfly using only the presence 
or absence of one of many face features 
(global appearance, texture, left or right 
eye, eyelashes, nose) or their combinations. 
This weakness highlights the broader (and 
often neglected) role of task demands in 
cognitive neuroimaging studies of recogni-
tion. A face can be categorized as “John,” a 
Western Caucasian, who is 40, is handsome, 
in good health and currently has a happy 
face. Suggestion that “the P1 (or the N170) 
is categorically sensitive to faces as opposed 
to cars or butterflies” leaves unresolved the 
issue of whether the N170 is sensitive to the 
face, as an object category, or to the categori-
zation task that is used to test the face with. 
If the P1 effects of Dering et al. arose from 
processing categorization-specific facial 
information, changing task demands (by 
changing the categorization performed on 
the same face) should differentially influ-
ence the brain response (Schyns, 1998; 
Pernet et al., 2007). The task demands of 
Dering et al. are not sufficiently controlled 
to inform the underlying information pro-
cessing function of the P1 or N170.

ProBlems with grouP statistics
One of the main results of Dering et al. 
(2011) is that the N170 peak amplitudes do 
not differ between different stimulus cat-
egories. This result is only valid if the data 
conform to the assumptions of  normality 
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Rousselet et al., 2008b; Vizioli et al., 2010a,b; 
Pernet et al., 2011a). Peaks can index the end 
of a process rather than the specific infor-
mation processing mechanism leading to 
this endpoint (Schyns et al., 2007).

In sum, Dering et al. (2011) applied 
a pervasive but now arguably out-dated 
approach to an otherwise useful brain 
measurement. The limitations of their 
approach apply as equally to their own 
results as to those they criticize. The issue 
of “face specificity” of the N170 should be 
addressed with more powerful methods 
such as using parametric manipulations 
of well-controlled stimuli, addressing task 
demands, and systematic single-subject sta-
tistics. Otherwise, numerous inconclusive 
data will continue to fuel unnecessary and 
opinionated controversies.
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