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ABSTRACT
The recent outbreak of pneumonia-causing COVID-19 in China is an urgent global public health issue with an increase in
mortality and morbidity. Here we report our modelled homo-trimer structure of COVID-19 spike glycoprotein in both
closed (ligand-free) and open (ligand-bound) conformation, which is involved in host cell adhesion. We also predict
the unique N- and O-linked glycosylation sites of spike glycoprotein that distinguish it from the SARS and underlines
shielding and camouflage of COVID-19 from the host the defence system. Furthermore, our study also highlights the
key finding that the S1 domain of COVID-19 spike glycoprotein potentially interacts with the human CD26, a key
immunoregulatory factor for hijacking and virulence. These findings accentuate the unique features of COVID-19 and
assist in the development of new therapeutics.
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An outbreak of potentially lethal coronavirus (named
COVID-19) in Wuhan, China, is spreading globally
and impacting millions of people geographically linked
with the Chinese population [1]. Current evidence
suggests that the virus originated from wild animals
and birds (https://www.cdc.gov/coronavirus/) [2]. To
date, more than 2,800 deaths and 87,000 confirmed
positive cases have been reported around the world,
making COVID-19 a major health concern. As a first
line of treatment, along with the antiviral drugs, clini-
cians are using SARS-CoV and MERS-CoV neutraliz-
ing antibodies targeting the S1 domain of the
COVID-19 spike glycoprotein [1]. Very recently (25
January 2020) the first and complete genome sequence
of COVID-19 was deposited in the NCBI (GenBank:
MN908947.3) providing the key to the likely structure
and glycosylation pattern of the viral proteins and con-
sequent mode of interaction with the host cell. Similar
to most other coronaviruses, the outer membrane spike
glycoprotein, known for its glycosylation [3], is the
prime host interacting protein with host cell targets
(such as ACE2, CD26, Ezrin, cyclophilins and other
cell adhesion factors) important for cell adhesion and
virulence [4,5]. However, the specific host cell factors
or proteins that facilitate the novel COVID-19 remain
elusive. The current study was thus undertaken to pre-
dict the COVID-19 spike glycoprotein structure and

glycan shield pattern that has great implications for
understanding the viral camouflage and mode of cell
entry, potentially assisting the development of new vac-
cines, antibodies, small-molecule drugs and screening
of the human host targets.

The Clustal-W sequence alignment of COVID-19
and SARS-CoV spike glycoproteins (Figure S1) shows
∼91% identity in the S2 domain region (aa570–
aa1278), however it lacks similarity in three regions
(aa677–690, wing), (aa877–884 and aa930–943, stalk).
A larger sequence difference (∼55% identity), was
found in the S1 domain (aa01–aa550), which is known
for its host cell target interaction underlying cell
adhesion and virulence [4,5]. Despite sequence dissimi-
larity in the S1 domains there are conserved residues
involved in ternary folding which were conserved.
This suggests that the COVID-19 might interact with
some of the previously known host targets (ACE2,
CD26, Ezrin, cyclophilins), albeit via slightly varied mol-
ecular interactions. Recent studies also support the
possibility of COVID-19 and ACE-2 interaction [6].

To better understand the structure of COVID-19,
including the position and orientation of unique resi-
dues involved in target binding, we modelled the
homo-trimer structure of COVID-19 S1 and S2
domains (spike glycoprotein) using SWISS-MODEL
(https://swissmodel.expasy.org/) using the structure of
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SARS-CoV (PDB: 6ACD) [4]. This model was vali-
dated using the C-Score (confidence score) and TM
score (structural similarity) (Figure S2) demonstrating
the most correct fold and confidence of the predicted
structure. Further validation and refinement was com-
pleted by ensuring that the residues occupied Rama-
chandran favoured positions using Coot (www.mrc-
imb.cam.uk/) (Figure S2). All amino acid residues
were positioned according to their lowest energy poss-
ible orientation in the final model. The final modelled

homotrimer structure of COVID-19 in C3 symmetry
(Figure 1(A)) superimposes with SARS-CoV with a
0.85Å Cα RMSD and with a number of unique residues
exposed on the surface COVID-19. A second modelled
structure of COVID-19 spike glycoprotein, in ligand-
bound conformation (Figure 1(B)) was also predicted
based on the SARS-CoV/ACE2 complex structure
(PDB:6ACG) [4]. This shows S1 domains in an open
conformation, enabling it to interact with target host
proteins. As is the case for other coronaviruses [7],

Figure 1. Overall homo-trimer model structure of the COVID-19 spike glycoprotein (A) ligand unbound conformation (B) ligand-
bound conformation. The three protomers are coloured pink, green and cyan. S1- and S2- domains labelled. Receptor-binding
induced hinge motion of S1 is distinguishable. (C) Predicted Glycan shield (spheres) of COVID-19 (green) and SARS-CoV (blue)
spike glycoproteins. predicted 3C-like proteinase cleavage site (yellow). Predicted N-linked glycosylation sites for COVID-19 (D)
and SARS-CoV (E). Unique glycosylation sites are coloured in Blue, and shared sites are shaded in Red.
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we also identified 3C-like proteinase cleavage site
(TGRLQ^SLQTY) (aa 997–1007) in COVID-19 spike
glycoprotein using a server (https://services.
healthtech.dtu.dk/). This 3C-like proteinase cleavage
site could represent a site for drug discovery as cur-
rently being proposed for SARS-CoV [7].

To understand the glycosylation pattern and glycan
shield of viral camouflage we used the (https://services.
healthtech.dtu.dk/) and (http://glycam.org/) servers to
predict N- and O-linked glycosylation sites on the sur-
face of the modelled homo-trimer structure of COVID-
19 spike glycoprotein and verified them according to
their Solvent Accessible Surface Area (SASA) (Table
S1). The spike glycoprotein trimer was then subjected
to a surface glycosylation builder (http://glycam.org/
glycoprotien_builder/) for the predicted sites and visu-
alized in PyMol. We also performed the same analysis
for the SARS-CoV spike protein, to identify significant
differences in glycosylation patterns (Figure 1(D,E)).
The built glycosylation shield structures of COVID-
19 and SARS-CoV spike glycoproteins were superim-
posed and are shown in Figure 1(C). As shown in
Figure 1(C) and Table S1, there are a number of con-
served glycosylation sites between these two viral
strains, however there are also several unique glycosy-
lation sites in COVID-19 compared to SARS-CoV
spike glycoprotein. This suggests a different shielding

or glycan camouflage pattern of the spike proteins,
which may underlie differences in host immunity.
This leads to the intriguing question of whether
COVID-19 could be responsive to a similar therapeutic
approach to SARS [8].

Coronavirus trafficking into and hijacking the host
cell is primarily driven by the N-terminal S1 domain
of spike glycoprotein that interacts with several host
cell proteins [4,5]. The host CD26 receptor cleaves
amino-terminal dipeptides from polypeptides with
either L-proline or L-alanine in the penultimate pos-
ition, leading to T-cell activation and thus acting as a
key immunoregulatory factor in viral infections [9].
Considering the current public health crisis, we con-
sidered the potential molecular interactions between
COVID-19 spike protein and human CD26, with an
interest to explore the structural differences or simi-
larities between SARS-CoV and COVID-19 spike
protein interactions. To this end, a computational
model based selective docking was performed using
the server Cluspro protein–protein docking (Www.clu-
spro.bu.edu) and Frodock (http://frodock.chaconlab.
org/) for further validation using our modelled 3D
homotrimer structure of COVID-19 Spike glycoprotein
(Figure 2) and the human CD26 (PDB: 4QZV) [10]. The
binding free energies were taken into consideration for
selecting the best possible model. The final rigid docked

Figure 2. (A and B) Ribbon and a surface diagram showing the docking interface of modelled COVID-19 (grey) and human CD26
(orange)(PDB: 4QZV) complex. Predicted key residues involved in the interaction are shown in sticks (CD26 residues are underlined)
(C) Overall docking results showing the surface model of CD26 with COVID-19 predicted homo-trimer structure (ligand-bound
conformation).
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complex structure was compared with the initial full-
length COVID-19 spike glycoprotein and CD26 and
their overall RMSD’s were found to be 1.34 and
0.28 Å for Cα atoms, respectively.

The docked complex model of COVID-19 spike
glycoprotein and CD26 (Figure 2) shows a large
interface between the proteins. This suggests a poss-
ible tight interaction between the S1 domain loops
in the modelled structure and the CD26 surface. Pre-
vious studies of CD26 binding have shown that resi-
dues K267, T288, A289, A291, L294, I295, R317,
Y322 and D542 interact with Bat-CoV (MERS)
spike protein [10]. Interestingly our docked model
supports this despite the variability between these
spike proteins’ S1 domains, with the same CD26 resi-
dues in close proximity to the active region of S1
domain in COVID-19. We also observed additional
residues (Q286, I287, N338, V341, R336) of CD26
predicted to interact with the S1 domain of the
spike protein via van der Waals or by hydrogen bond-
ing. However, regarding the COVID-19 spike glyco-
protein, we noticed many different and unique
residues (R408, Q409, T445, V417, L461, D467,
S469, L491, N492, D493, Y 494, T497, T150, Y504)
predicted to interact with CD26. Some of these
unique residues of S1 domain are also predicted
interact with the ACE2 protein [6]. This underlines
the novelty and uniqueness of COVID-19 and its
interaction with human target proteins. This obser-
vation guides us to suggest that COVID-19 may
share infection modes with that of SARS-CoV and
MERS-CoV and that interactions with other targets
also warrant investigation.
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