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Staphylococcus aureus is a member of the human commensal microflora that exists,
apparently benignly, at multiple sites on the host. However, as an opportunist pathogen it
can also cause a range of serious diseases. This requires an ability to circumvent the
innate immune system to establish an infection. Professional phagocytes, primarily
macrophages and neutrophils, are key innate immune cells which interact with S.
aureus, acting as gatekeepers to contain and resolve infection. Recent studies have
highlighted the important roles of macrophages during S. aureus infections, using a wide
array of killing mechanisms. In defense, S. aureus has evolved multiple strategies to
survive within, manipulate and escape from macrophages, allowing them to not only
subvert but also exploit this key element of our immune system. Macrophage-S.
aureus interactions are multifaceted and have direct roles in infection outcome. In depth
understanding of these host-pathogen interactions may be useful for future therapeutic
developments. This review examines macrophage interactions with S. aureus throughout
all stages of infection, with special emphasis on mechanisms that determine
infection outcome.
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INTRODUCTION

Staphylococcus aureus is a Gram-positive commensal bacterium frequently found in the upper
respiratory tract (1, 2), alongside various other locations on the human host (3). S. aureus is part of
the normal microbiota, colonizing 40% of new-born babies and 50% of adults intermittently or
permanently, normally without any ill-effects (1, 4). Despite this, S. aureus can become pathogenic,
with colonization an important reservoir for infection (5).

Human diseases caused by S. aureus range from minor skin infections to life threatening
bacteremia and meningitis. S. aureus is one of the most frequent causes of nosocomial and
community-acquired pneumonia, skin and soft-tissue infections or bloodstream infections (6).
Serious S. aureus infections cause approximately 20,000 deaths a year in the US, and 5,000 in the
EU, costing an estimated €380 million in EU health costs (7, 8). A contributing factor to the high
mortality rate of S. aureus infections is increasing antimicrobial resistance. Methicillin Resistant
Staphylococcus aureus (MRSA) bacteremia has a high mortality rate: 30% to 40% (9–12). S. aureus
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resistance to antibiotics is widespread in both community and
nosocomial-acquired infection. Some S. aureus strains have even
developed resistance to the last-resort antibiotic vancomycin (13)
and vaccine candidates have thus far been unsuccessful (14, 15).
S. aureus infections represent a significant risk to human health,
highlighting the pressing need for alternative prophylaxis
and treatments.

The immune response to S. aureus infection is complex.
Infection occurs when S. aureus breaches host external barriers,
for example through a tissue injury. In most cases, an efficient
immune response is mounted, involving innate immune cell
recruitment and eventual clearance of infection. Macrophages,
as antigen presenting cells, also activate the adaptive immune
response. As such, phagocytes play a vital role in locating,
restricting and destroying S. aureus.

Macrophage interactions with S. aureus are of particular
interest. Macrophages are responsible for phagocytic uptake of
the majority of invading bacteria and employ a multitude of
bacterial killing mechanisms to effectively kill S. aureus. Despite
this, some S. aureus are able to survive within macrophages - a
source for intracellular persistence which eventually enables
further bacterial dissemination (16–18). S. aureus can survive
within mature macrophage phagosomes (16, 19, 20), as
well as cause uncontrollable infection within monocyte-
derived macrophages (MDMs) (18). Furthermore, S. aureus
Frontiers in Immunology | www.frontiersin.org 2
can evade and manipulate macrophages, using many strategies
to impede macrophage recruitment, phagocytosis and degrative
abilities (21–25). Understanding these complex host-
pathogen interactions may provide promising new therapeutic
targets, which are urgently required due to rising S. aureus
antibiotic resistance.

This review examines macrophage interactions with S.
aureus, from the role of macrophages in S. aureus infection
dynamics to specific macrophage-S. aureus interactions, including
macrophage recruitment, phagocytosis, macrophage polarization,
bacterial killing mechanisms and nutrient restriction (Figure 1).
WHAT ARE MACROPHAGES?

Macrophages are professional phagocytes, able to engulf
microorganisms and trigger responses leading to microbial
death. Macrophages, like their close relatives neutrophils, both
of which are professional phagocytes and are derived from
myeloid precursor cells (22, 26), are an important part of the
innate immune response. However, each phagocyte has multiple
differences in cellular properties and functions. Both
macrophages and neutrophils sense and migrate toward sites
of infection and can phagocytose and kill invading pathogens.
However, macrophages, as antigen presenting cells, also play a
FIGURE 1 | Overview of macrophage interactions with S. aureus. Presence of S. aureus influences macrophage polarization and cytokine secretion toward either
pro-inflammatory or anti-inflammatory. S. aureus may be subject to extracellular or intracellular killing by macrophages. Macrophages may be killed by extracellular
S. aureus factors. S. aureus phagocytosis by macrophages may lead to intracellular killing, which may destroy the bacteria using antimicrobial mechanisms.
Alternatively, S. aureus may evade these mechanisms, proliferate within the macrophage and cause macrophage death.
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key role in activation of the adaptive immune response by
presenting antigens of phagocytosed pathogens (27).
Neutrophils are commonly the first immune cell to reach an
infected site, and may be more bactericidal, whereas monocytes
(which may differentiate into macrophages) are typically
attracted later on (28). In comparison to neutrophils,
macrophages are adapted to be much less reactive, which may
be to avoid attacking self-antigens or stimulating unwanted
immune responses due to being resident within tissues for a
longer lifespan (29). Neutrophils are derived from within the
bone marrow and have a very short lifespan which is thought to
limit stimulation of unnecessary inflammation (28). In contrast,
macrophages may live for weeks to months (30, 31) and are
found within tissues through the body, termed tissue
resident macrophages.

There are different cell lineage sources which give rise to
tissue-resident macrophages. Traditionally, it was thought that
macrophages develop only from circulating monocytes, the
precursor cells for some macrophages and dendritic cells.
Monocytes represent around 10% of leukocytes in humans,
while tissue-resident macrophages represent another 10% to
15% (although this may increase following inflammatory
stimulus) (26, 32). Monocytes develop from hematopoietic
stem cells in the bone marrow (26) and circulate in the blood
for 1 to 2 days, after which they die unless recruited to tissues for
differentiation (26, 33, 34). However, many tissue-resident
macrophages self-renew within the tissue (35). Self-renewing
macrophages are derived from embryonic-origin cells which are
seeded to sites of the body before birth (36–38), with examples
including liver Kupffer cells, Langerhans skin cells and brain
microglia (35, 39–41). Other macrophage populations develop
from the macrophage and dendritic cell precursor (MDP) cell, a
precursor to monocytes (42).

Once macrophages have differentiated according to their
tissue, they develop distinct transcriptional profiles and are
named according to tissue location (43). The properties of
varied tissue-resident cells have been extensively reviewed (44,
45). However, macrophage function remains similar regardless
of tissue location: (i) coordinating tissue development, (ii) tissue
homeostasis through clearing apoptotic/senescent cells, (iii)
acting as sentinels which survey and monitor changes in the
tissue, and (iv) responding to pathogens in infection (26).

Kupffer cells are the largest group of tissue-resident
macrophages in the body, making up 80% to 90% of the total
population (46, 47). They display a unique phenotype
characterized by downregulation of CR3, expression of liver-
specific lectin CLEC4F and tissue-specific complement receptor
CRIg (48, 49). Through a variety of receptors, Kupffer cells filter
blood and mediate clearance of waste products and non–self-
antigens (48, 50, 51). The close proximity of Kupffer cells to
sinusoids also facilitates best access to pathogens arriving in the
liver (46).

As mentioned above, Langerhans cells (LCs) are also self-
renewing, although if they are exhausted by, for example, UV
radiation, they are replaced by bone-marrow-derived precursor
cells (52). LCs develop dendritic cell (DC) characteristics in the
epidermis, and as such share attributes with both DCs and
Frontiers in Immunology | www.frontiersin.org 3
macrophages (53). Similar to tissue-resident macrophages, LCs
self-renew and have a long half-life (approximately 2 months),
however, like DCs, LCs can travel to lymph nodes (52, 53). Their
presence at the barrier of the skin suggests a role as immune
sentinels (54).

Macrophage diversity enables tissue-specific phenotypes
which help macrophages to perform their function. However,
macrophages are unified in their phagocytic and innate
immune functions, allowing bridging of the innate and
adaptive responses.
THE KEY ROLE OF MACROPHAGES
IN S. AUREUS INFECTION OUTCOME

Awide range of diseases are caused by S. aureus, fromminor skin
infections to life-threatening diseases, for example bacteremia
and endocarditis. Numerous S. aureus infections of humans are
associated with abscess formation (55) and in murine bacteremia
infection models, kidney abscess formation is a key outcome (56,
57). Macrophages have a central role in S. aureus infection
dynamics. Murine blood infection begins with hematogenous
transit of extracellular S. aureus, which are rapidly phagocytosed
in the liver by Kupffer cells. More than 90% of S. aureus are
sequestered by the liver (58) - the majority of bacteria are then
effectively killed. A small number of bacteria can survive
intracellularly, ultimately escaping to form microabcesses in
the liver. Extracellular S. aureus may also disseminate to seed
kidney abscesses (59, 60).

The importance of macrophages in S. aureus infection is
highlighted when macrophages are depleted in animal infection
models. Mice lacking macrophages have increased bacterial
burden and mortality following S. aureus sepsis (61). Similarly,
in murine airway infection, macrophages are required for
clearance of S. aureus, since loss of alveolar macrophages
inhibited killing of bacteria at 5 hpi (62), significantly
enhanced mortality (63), and increased bacterial load in the
lungs (64). In zebrafish, macrophages phagocytose the majority
of the initial bacterial inoculum and, similar to mice, loss of
macrophages leads to increased S. aureus susceptibility (65, 66).
Phagocytes are a known intracellular niche for S. aureus,
allowing bacterial survival and eventual escape, allowing
dissemination throughout the host (67–69). Human monocyte-
derived macrophages (MDMs) also permit intracellular S. aureus
survival and bacterial escape (16, 18). Despite this, macrophages
efficiently phagocytose and degrade most S. aureus, with
just a small proportion of bacteria surviving to potentially
lead to dissemination throughout the host (59). Thus, the
intraphagocyte niche represents a population bottleneck for S.
aureus (70), as demonstrated for other intracellular pathogens
including Salmonella enterica and Bacillus anthracis (71, 72).
Micro-abscesses in the liver are formed from surviving bacterial
cells which escape from macrophages. It has been demonstrated
that S. aureus abscesses are formed by single, or very small
numbers of bacteria (69, 70), leading to the emergence of clonal
populations within abscesses. Depletion of macrophages causes
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loss of clonality whereas depletion of neutrophils does not (59),
indicating that macrophages are the key phagocyte responsible
for the emergence of clonality. Kupffer cells are especially
instrumental as an intraphagocyte niche leading to the
emergence of clonality in S. aureus murine sepsis infection,
largely due to their key role in filtering blood (59, 61).

Extracellular bacteria, which have escaped macrophages can
also seed infection at distant sites through the bloodstream. After
staphylococcal cells survive and multiply inside Kupffer cells, the
bacteria can escape into the peritoneal cavity where they are
phagocytosed by peritoneal macrophages, which provide another
intracellular niche, promoting dissemination to peritoneal
organs (60). Cycles of macrophage phagocytosis and bacterial
escape can allow S. aureus to survive intracellularly over time
(73). Although macrophages are crucial for initial infection
dynamics, neutrophils are thought to be significant for
dissemination. Extracellular bacteria in the bloodstream may
be phagocytosed by neutrophils, which can act as Trojan horses
enabling spread to other organs, including the kidneys (59, 68).
Together, these studies highlight the importance of macrophages
in controlling the initial bacterial sepsis inoculum specifically in
restricting early infection stages, and macrophage involvement in
S. aureus infection features, including formation of a population
bottleneck, clonal abscess formation and eventual dissemination.
PHAGOCYTOSIS OF S. AUREUS
BY MACROPHAGES

As described above, macrophages are an important host defense
against S. aureus infection, but in order to effectively eliminate S.
aureus, macrophages must first locate and phagocytose the
invading bacteria.

Recruitment of Macrophages to S. aureus
Infection Sites
Phagocyte recruitment to S. aureus is coordinated through
responding to host immune effectors released in response to S.
aureus, or signals derived from S. aureus itself. Initial host
responses to S. aureus are initiated by cells found at infected
sites, often epithelial cells at mucosal surfaces. Epithelial cells
sense invading S. aureus via pathogen recognition receptors
(PRRs) which can recognize many staphylococcal molecules,
including lipoproteins, lipoteichoic acid (LTA), phenol soluble
modulins, protein A, toxins, and peptidoglycan (PGN) (74).
Epithelial PRR signaling leads to phagocyte recruitment and
activation by inducing pro-inflammatory cytokine and
chemokine production; including granulocyte-macrophage
colony-stimulating factor (GM-CSF), granulocyte colony-
stimulating factor (G-CSF), monocyte chemotactic protein-1
(MCP-1), macrophage inflammatory protein 3a (MIP-3a),
IL-6, IL-1b, and IL-8 (75–78). Additionally, formylated
peptides produced by S. aureus directly act as chemoattractants
for macrophages (79) and S. aureus molecules activate the
complement cascade (80), leading to release of strong phagocyte
chemoattractant, C5a.
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Macrophage recruitment has been demonstrated in S. aureus
murine studies. MCP-1 is important for macrophage activation
and clearance of S. aureus infection (81). Following S. aureus
brain infection in mice, gene expression of multiple pro-
inflammatory cytokines and chemokines are upregulated,
leading to macrophage recruitment (82). In peritoneal
infection, particulate S. aureus cell envelope promotes
phagocyte recruitment by inducing chemotactic cytokine
production (83). Of note, some macrophages subtypes,
including Kupffer cells, are tissue-resident which may be
recruited to local infection sites (84), whereas monocyte-
derived macrophages are recruited to sites of infection from
circulation in the blood (85). S. aureus also has strategies to
prevent immune cell recruitment, such as expressing chemotaxis
inhibitory protein of Staphylococcus aureus (CHIPS), which
blocks phagocyte binding to activated complement proteins or
formylated peptides excreted by S. aureus (86, 87). After
recruitment to sites of infection, macrophages become
activated and produce cytokines to enhance the immune
response; discussed in the macrophage functional changes in
response to S. aureus infection section.

Phagocytosis
Macrophages utilize micropinocytosis, macropinocytosis,
receptor-mediated endocytosis and phagocytosis to ingest
particles, fluids and molecules. Micropinocytosis is used for
non-specific uptake of fluid and small molecules, while
macropinocytosis can non-specifically engulf larger volumes
of extracellular fluid and larger particles, including bacterial
cells (88–90). Receptor-mediated endocytosis is the selective
uptake of macromolecules bound to surface receptors.
Receptor-mediated endocytosis is clathrin-dependent,
micropinocytosis can involve clathrin pathways, but clathrin
is not essential (88), while phagocytosis and macropinocytosis
are actin-dependent (91). Phagocytosis is receptor-mediated
targeted uptake of particles larger than 0.5 µm, and represents
the primary pathway used by macrophages to internalize S.
aureus (88). The physical state of bacterial cells is important for
S. aureus phagocytosis, with particulate rather than soluble cell
wall required to stimulate an efficient phagocyte immune
response (83). S. aureus phagocytosis events occur following
engagement of multiple receptors on the macrophage surface,
including scavenger receptors (SRs), complement receptors and
Fc receptors (Figure 2). The actin cytoskeleton at the cell
membrane forms a phagocytic cup which extends to
surround the extracellular bacterial cells and contracts to
close the cup, forming a bacteria-containing phagosome
within the phagocytic cell (91).

Scavenger Receptors
The SRs are a diverse group of receptors which recognize a wide
range of pathogenic molecules, for example, proteins,
polysaccharides, lipids, CpG motifs and lipoteichoic acid
(LTA). SRs are grouped into classes based on what they bind,
with S. aureus known to interact with multiple SR classes (92,
93). Macrophage SRs can bind to LTAs found on surface of
Gram-positive bacteria, including S. aureus (94), leading to
January 2021 | Volume 11 | Article 620339
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increased macrophage phagocytosis in an opsonin-independent
manner (95). Scavenger receptor A (SR-A) contributes to
Kupffer cell phagocytosis of S. aureus through mannose-
binding lectin (a member of the C-type lectin family, which
also binds to bacterial cells and activates the complement
cascade), increasing SR-A expression on Kupffer cells (96). As
well as increasing SR expression, mannose-binding lectin is also
involved in opsonin-dependent S. aureus phagocytosis by
phagocytes (97). Surfactant protein A (SP-A), like mannose-
binding lectin, is a member of the C-type lectin family. Addition
of SP-A to alveolar macrophages (AMs) increases S. aureus
phagocytosis, potentially by upregulation of SR-A expression,
as demonstrated for S. pneumoniae (98). SP-A can also act as an
opsonin, binding to both S. aureus and SP-A receptors on
macrophages. Interestingly, macrophages lacking SP-A receptors
upregulate SR-A, promoting non-opsonic phagocytosis (99).
Macrophage receptor with collagenous structure (MARCO) is
another SR involved in macrophage phagocytosis of S. aureus,
and is especially important in AM and Kupffer cell phagocytosis of
S. aureus (100, 101). AMs from SR-A and MARCO knock-out
mice showed reduced phagocytosis of S. aureus (102).
Interestingly, the role of SRs in S. aureus infection appears to be
dependent on the type of infection. Mice deficient in three
different SRs (SR-A, CD36, and MARCO) were protected in
peritoneal infection, but adversely effected in pulmonary
infection (103). Furthermore, the importance of SRs appears to
be dependent on S. aureus strain, with some strains showing no
change in phagocytosis when SR binding is inhibited in human
MDMs (104). Therefore, it is difficult to define a single role of SRs
in S. aureus infection. However, it is clear that SRs are involved in
non-opsonized S. aureus phagocytosis, andmay play an important
role in controlling lung infection.

Complement Receptors
The complement cascade is part of the innate immune system
which targets pathogens, mediated by multiple complement
Frontiers in Immunology | www.frontiersin.org 5
proteins. The key complement component is C3 which, when
cleaved by C3 convertase, generates important complement
effector components to mediate three main activities:
pathogens can be directly targeted with the formation of a
membrane attack complex to cause cell lysis, complement
proteins can promote recruitment of phagocytes to the
infection site and complement proteins can act as opsonins to
promote phagocytosis of coated pathogens.

Multiple S. aureus cell surface molecules activate the
complement cascade in human sera (80), with changes in
complement component levels observed in patients with S.
aureus bacteremia (105). Furthermore, human serum studies
show that mannose-binding lectin promotes complement
activation in response to S. aureus (106), while depletion of
complement is detrimental in S. aureus murine bacteremia or
septic arthritis infections (107). A mouse model of S. aureus
septic arthritis showed that deficiency in C3 increases
susceptibility to infection, potentially through decreased
peritoneal macrophage phagocytosis (108). The complement
components used as opsonins are C3b and iC3b, these can
bind phagocyte complement receptors CR1, or CR3 and CR4,
respectively. Macrophage-expressed complement receptors, CR3
and CR4, promote binding and internalization of iC3b opsonized
S. aureus (109). A therapeutic use of antibody complexes which
interact with erythrocyte CR1 and S. aureus have been developed
leading to enhanced bacterial degradation by macrophages (110).

S. aureus expresses multiple virulence factors to target
complement components. To inhibit complement activation, S.
aureus secretes extracellular fibrinogen-binding protein (Efb),
which binds to C3, blocking complement cascade effects
including opsonization (111). To interfere with C3 convertases,
S. aureus expresses staphylococcal complement inhibitor (SCIN)
(112). Although SCIN is a human-specific virulence factor, a
modified version used in animal models indicated that targeting
complement is important for host adaptation (113). S. aureus
also blocks complement opsonization. A secreted protein,
FIGURE 2 | Key macrophage receptors used in phagocytosis of S. aureus. There are several receptors on the surface of a macrophages which can bind to S.
aureus leading to phagocytosis. Scavenger receptors bind directly to S. aureus. Fc receptors bind to the Fc region of antibodies which have bound to S. aureus.
Complement receptors bind to complement proteins which act as opsonins and are bound to S. aureus.
January 2021 | Volume 11 | Article 620339
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Staphylococcus aureus binder of IgG (Sbi), has multiple functions
including binding C3b, and acting to inhibit complement
activation and opsonin-mediated macrophage phagocytosis
(114). Similarly, the S. aureus protein, extracellular complement
binding protein (Ecb) is used to inhibit C3b interactions with CR1
(115). Another role of complement activation is immune cell
recruitment, where complement component C5a is a
chemoattractant. S. aureus reduces phagocyte recruitment, using
CHIPS, which binds to C5a (86, 87). Together, these bacterial
defenses act to reduce complement-aided phagocytosis of S.
aureus. The large number of virulence factors targeting
complement highlights the importance of complement-mediated
immunity against S. aureus.

Fc Receptors
Fc receptors on the surfaces of phagocytes bind to the Fc region
of antibodies. Invading pathogens opsonized with antibodies are
more readily engulfed by phagocytes. Macrophages express Fcg
receptors, which bind IgG antibodies, triggering phagocytosis
(116–118). Antibodies against S. aureus are detected in human
sera in both healthy individuals and patients with S. aureus
infection (119). There are specific IgG antibodies against
staphylococcal a-hemolysin in the human population which
are present from a young age and increase in prevalence
during infection (120). There are differences in IgG antibody
levels present dependent on S. aureus colonization of individuals,
with colonization associated with higher IgG antibody
titers (121).

S. aureus expresses virulence factors which inhibit antibody-
mediated phagocytosis. Protein A (SpA) and Sbi interact with the
Fc region of human IgG antibodies (122, 123). This inhibits the
normal ability of the Fc region of IgG to bind to Fc receptors on
phagocyte membranes, which has been thought to hide S. aureus
from antibody-mediated phagocytosis. Despite this, it has
been demonstrated that S. aureus strains with more protein A,
and therefore more bound IgG, were not phagocytosed less by
alveolar macrophages in mice (124). Furthermore, phagocytosis
by neutrophils was actually higher for clinical strains with
greater IgG binding than for commensal strains (125). These
unexpected results could be due to differences between strains, or
may be due to the lack of significant changes in the rate of
phagocytosis caused by opsonin (126), suggesting that antibody
opsonization is not essential for adequate S. aureus phagocytosis.
Another virulence factor S. aureus uses to target antibodies is
staphylokinase (SAK), which triggers degradation of IgG, as well
as C3b on the bacterial cell surface (127). Since S. aureus has
multiple strategies to target antibodies, it is likely beneficial for
the bacteria to inhibit antibody binding, although whether this is
to specifically protect against antibody mediated-phagocytosis
is unclear.

Collectively, the presence of scavenger, complement and Fc
receptors gives phagocytes their unique phagocytic capabilities.
For example, if an Fc receptor is expressed on a non-phagocytic
cell, that cell gains the ability to phagocytose in a similar manner
to phagocytes (128). Many studies examine individual receptors
in isolation to simplify their characterization, however it is
Frontiers in Immunology | www.frontiersin.org 6
important to note that in reality, all these receptors work
simultaneously together to coordinate phagocytic engulfment
of targets, including S. aureus.
MACROPHAGE FUNCTIONAL CHANGES
IN RESPONSE TO S. AUREUS

Upon interaction with S. aureus, macrophages may become
activated and create a positive immune response to control
infection, for example, by promoting phagocytosis and
releasing pro-inflammatory cytokines. However, in some cases
macrophage responses may be manipulated by S. aureus, leading
to ineffective or even detrimental host responses (Figure 1).
Macrophages respond to stimuli such as cytokines in their local
environment which alter macrophage functions. Under
homeostatic conditions, tissue macrophages are efficient at
tissue repair and healing, often characterized as ‘M2’, with
increased arginase metabolism (129, 130). In response to
danger, for example infection, macrophages can become pro-
inflammatory and efficient at pathogen killing, often
characterized as ‘M1’ with enhanced nitric oxide (NO)
production (130).

The M1 (pro-inflammatory) and M2 (anti-inflammatory)
macrophage classifications are used widely in research and are
referred to in this text. However, it is important to note that the
M1 and M2 characterizations are based on in vitro studies which
hypothetically represent two points on a continuum upon which
macrophages lie. Furthermore, M1 and M2 definitions have been
inaccurately associated with classical and alternatively polarized
macrophages, respectively (131). These in vitro descriptions may
not always correlate to in vivo macrophage phenotypes, which
varies dependent on cell origin and microenvironment, and
multiple stimuli in the in vivo environment may change over
time, for example during infection progression (132).

Macrophage interactions with S. aureus are dependent on the
type of pro- or anti- inflammatory immune response elicited
(Figure 3). Macrophages actively phagocytose planktonic (single
bacterial cells) S. aureus, but are less able to phagocytose biofilm-
associated bacteria (133). This has been extended to keratinocytes,
where S. aureus biofilms elicit a lesser inflammatory response than
planktonic bacteria (134). Furthermore, adequate abscess
formation in response to S. aureus dermal mouse infection
requires M1 macrophages, whereas the presence of M2
macrophages was associated with uncontrolled bacterial spread
(135). Changes in macrophage polarization are due, in part, to
variations in macrophage stimulation in different S. aureus
infection scenarios. M1 or M2 polarization leads macrophages
to respond to S. aureus differently, promoting pro- or anti-
inflammatory responses, respectively (136).

Pro-inflammatory Macrophage
Polarization
In some S. aureus infections, a robust pro-inflammatory
macrophage response can lead to efficient phagocytosis of
January 2021 | Volume 11 | Article 620339

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Pidwill et al. Macrophages in Staphylococcus aureus Infection
S. aureus after sensing bacterial components. After initial
S. aureus infection, AMs undergo M1 polarization and secrete
pro-inflammatory cytokines (137). M1 macrophages
phagocytose and kill intracellular pathogens, generate reactive
oxygen species (ROS), nitric oxide (NO) and pro-inflammatory
cytokines and can express class II major histocompatibility
complex molecules (MHC-II) (138). Macrophages are also
capable of longer-term memory in response to recurrent S.
aureus infection. In localized skin infections, prior infection
reduced subsequent infection severity by priming macrophages
toward pro-inflammatory phenotypes (139).

Toll-like receptors (TLRs) recognize bacterial components,
signaling through MYD88 innate immune signal transduction
adaptor and nuclear factor kappa-light-chain-enhancer of
activated B cells (NF-kB) to upregulate inflammatory gene
expression, including pro-inflammatory cytokines such as TNF-
a, IL-6, and IL-1b. TLR2 is particularly important in S. aureus
infections. In peritoneal macrophages, TLR2 recognizes S. aureus
PGN, leading to both MYD88 and NF-kB signaling (140). In
addition, TLR2 to detects S. aureus lipoproteins, shown in
keratinocytes where it induces NF- kB activity, lipoprotein
activation of TLR2 which was similarly observed in J774
macrophages, leading to pro-inflammatory cytokine production
(141, 142). Loss of MYD88 from macrophages inhibited
production of TNF-a after exposure to S. aureus cell wall (143).
Similarly, loss of TLR2 led to reduced pro-inflammatory cytokine
expression in peritoneal macrophages infected with S. aureus
(144). Mice deficient in TLR2 or MYD88 have an increased
susceptibility to S. aureus infection, as well as a reduction or loss
Frontiers in Immunology | www.frontiersin.org 7
of macrophage expression of pro-inflammatory cytokines TNF-a
and IL-6 (140, 145). TLR2 can also be recruited to S. aureus-
containing phagosomes in macrophages, initiating cytokine
production following bacterial degradation (146). CD14 is a co-
receptor for TLR2 and, together, they act to promote a pro-
inflammatory response, including by M1 polarization of
macrophages (147–149). S. aureus PGN and LTA bind to CD14
and cause TLR2-mediated activation of NF-kB in HEK cells (150).
Studies on S. aureus and TLR2 signaling have mainly focused on
leukocytes, but S. aureus may promote alternate inflammatory
responses in other cell types. For example, LTA stimulation of
TLR2 on endothelial cells may promote an anti-inflammatory
response (151).

As with other aspects of the immune system, TLR2 and NF-
kB signaling may be undermined in S. aureus infection. Activity
of c-Jun N-terminal kinase (JNK) has been associated with TLR2
in S. aureus infection, with JNK mediating cell responses to
stress. TLR2 signaling through the JNK pathway may be required
for macrophage phagocytosis of S. aureus (152), however, TLR2-
activated JNK signaling in response to S. aureus reduces
macrophage superoxide generation and enables prolonged
survival within the phagosome (153). Similarly, loss of TLR2 in
infected peritoneal macrophages was associated with reduced S.
aureus catalase and superoxide dismutase activity (144). S.
aureus strains lacking lipoproteins can escape immune
recognition by TLR2 (154). Additionally, NF-kB activation is
required for macrophage phagocytosis of S. aureus, since
inhibition of NF-kB blocks bacterial uptake (155). NF-kB
activation is reduced in S. aureus-stimulated macrophages by
FIGURE 3 | Macrophage polarization responses to S. aureus. M1 polarization in response to planktonic (or initial) infections, occurs through TLR2, MyD88, and
NF- kB signaling resulting in a pro-inflammatory phenotype and cytokine production. In comparison, M2 polarization in response to established infections, such as
biofilms, occurs through inhibition of macrophage pro-inflammatory cytokine production.
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activation of a macrophage receptor involved in phagocytosis of
apoptotic cells (MerTK), which leads to a reduced inflammatory
response to staphylococcal LTA (156). Overall, these studies
indicate that pro-inflammatory mediators TLR2 and NF-kB are
important in the macrophage response to S. aureus and are a
target of subversion.

S. aureus has further strategies to manipulate macrophage
polarization to limit pro-inflammatory responses. Protein kinase
B (Akt1) signaling induced by S. aureus was shown to decrease
macrophage M1 polarization, with mice deficient in Akt1 having
improved bacterial clearance. Akt1-deficient macrophages have
increased pro-inflammatory cytokine expression and NF-kB
activity (157). S. aureus induction of macrophage polarization
is also modulated by microRNAs. MicroRNA-155 is involved in
Akt1-mediated macrophage polarization (157), while
microRNA-24, a regulator of macrophage polarization, has
reduced expression during S. aureus infection (158).

Anti-inflammatory Macrophage
Polarization
In certain S. aureus infections, for example in established biofilm
infections, an anti-inflammatory response occurs, promoting
continued bacterial survival within the host. M2 polarized
macrophages and reduced phagocytosis are found in chronic
rhinosinusitis, a condition associated with S. aureus colonization
(159). In mice, S. aureus biofilms prevent phagocytosis by
macrophages, as well as reduce inflammation through
attenuation of pro-inflammatory host responses, favoring an
M2 macrophage phenotype (133). In a rat S. aureus biofilm
periprosthetic joint infection model, an increase in the number of
M2 macrophages is observed (160). Additionally, AMs are more
likely to become an M2 phenotype in S. aureus infections at later
time-points in infection (137). Together these reports suggest
that established S. aureus infections promote M2 polarization.

Antibodies may facilitate S. aureus-mediated M2 polarization
in chronic rhinosinusitis, whereby bacterial virulence factors
cause an increased production of IgE, which in turn promotes
M2 polarization (159, 161). Furthermore, biofilm secretion of
cyclic di-AMP promotes anti-inflammatory cytokine release
from macrophages (162), and S. aureus virulence factor
secretion from biofilms reduces macrophage phagocytosis
(163). S. aureus expresses clumping factor A (ClfA) to reduce
phagocytosis and subsequent pro-inflammatory response, and
this is suggested to be due to immuno-modulation (164).

TLR2, MYD88 and NF-kB signaling are also involved in S.
aureus biofilm infections and are targeted by S. aureus to
manipulate the macrophage response. In early control of cranial
biofilm infection spread, TLR2 is associated with macrophage IL-
1b pro-inflammatory cytokine production, but this signaling was
insufficient to clear infection (165), perhaps due to established
infectionmanipulation of themacrophage response. Interestingly,
additionof IL1-b to led to increasedbacterial growthof biofilm, but
not planktonic, S. aureus, suggesting that biofilms react to host
cytokines to promote survival (166). Catheter-associated biofilm
infections in MYD88-deficient mice have increased bacterial
burden and dissemination, reduced expression of pro-
Frontiers in Immunology | www.frontiersin.org 8
inflammatory cytokines, and an increased number of M2
macrophages (167). This knowledge has led to production of
biofilm treatments which promote a M1, rather than M2
macrophage polarization. Addition of M1 macrophages to the
site of an in vivo biofilm, led to reduced bacterial burden (168).
Remarkably, a therapeutic approach which promotes pro-
inflammatory monocyte polarization lead to clearance of
established biofilms in mice (169).

Cytokines in Macrophage Polarization
Macrophages are able to sense cytokines released in the local
environment, including cytokines released by nearby activated
macrophages in response to S. aureus infection. Following binding
of cytokines to receptors, the action of the Janus kinase (JAK) and
signal transducers and activators of transcription (STAT) signaling
pathway mediate transcriptional changes (170). The JAK/STAT
pathway is important for activation of macrophages, induction of
inflammatory responses, and inhibition of apoptosis.

Exposure of MDMs to S. aureus alters the expression of 624
genes, with JAK/STAT signaling changed in early infection
(171). JAK/STAT signaling is induced by PGN, leading to
phagosome maturation in macrophages containing S. aureus
(172). Interestingly, in murine influenza and MRSA co-infection,
STAT2 is important in macrophage polarization, where STAT2-
deficient mice had improved bacterial burden, potentially caused
by an increased number of M1 macrophages (173). Human
MDMs with an established S. aureus infection harbored viable
intracellular bacteria within vesicles, however, MDM apoptosis
or necrosis was not observed until S. aureus escaped to the
cytosol (18). Further to this, addition of isolated S. aureus PGN
can increase anti-apoptotic signals in infected macrophages,
likely through the JAK/STAT and NF-kB signaling pathways
(174). Macrophages which have phagocytosed S. aureus have
increased expression of anti-apoptotic genes, enabling continued
intracellular bacterial survival (175). To induce this, S. aureus
upregulates macrophage myeloid cell leukemia-1 (MCL-1)
expression, an anti-apoptotic gene which enhances anti-
inflammatory cytokine release (176). In contrast to these
macrophage studies, the presence of S. aureus increases
apoptosis in neutrophils (177). Therefore, macrophages may be
a prime target for subversion and intracellular persistence.

Interferon-beta (IFN-b) is a cytokine with roles in
antimicrobial defense of infected cells, as well as innate and
adaptive immunity (178). S. aureus can induce a strong IFN-b
response in airway infection models, where protein A stimulates
IFN-b production, likely via TLR9 or NOD2 signaling (179, 180).
However, dependent on the S. aureus strain used, there is
diversity in the IFN response induced (181). Following other
routes of infection, S. aureus induces variable IFN-b production
by macrophages, though IFN-b production or treatment has
been shown to be beneficial for the host during S. aureus
infection. S. aureus resistance to macrophage degradation
causes the reduced IFN-b production, which is lower than that
induced by comparable pathogens (182). This suggests a lack of
sufficient IFN-b induction is detrimental to the host. IFN-b
production by macrophages is inhibited by TLR2 signaling
January 2021 | Volume 11 | Article 620339

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Pidwill et al. Macrophages in Staphylococcus aureus Infection
during S. aureus infection. TLR8, an intracellular TLR, senses S.
aureus RNA in infected macrophages and monocytes, leading to
IFN-b production via MYD88 signaling (183). TLR2 is a key
sensor of S. aureus and therefore the antagonistic role of TLR2
and TLR8 signaling may ultimately reduce macrophage IFN-
b production.

IL-1b is another pro-inflammatory cytokine with important
roles in controlling S. aureus infection. In a brain abscess S. aureus
infection, mice deficient in IL-1b (or TNF-a) were subject to
significantly enhanced mortality and greater bacterial burden
when compared to wild-type mice (82). In a sub-cutaneous
model, mice deficient in MYD88 or IL-1R had significantly
bigger lesions and bacterial burden, with IL-1R activation
required for neutrophil recruitment to S. aureus-infected sites
(184). Similarly, mice deficient in IL-1b had larger lesion size,
greater colony forming units (CFUs) and reduced neutrophil
attraction following in vivo cutaneous challenge (185).
Supplementation of IL-1b KO mice with recombinant IL-1b
restored the mice’s ability to control infection and clear S.
aureus (185). In contrast, in murine airway S. aureus infection,
IL1-b is associated with immunopathology (186), and addition of
recombinant IL- b reduced bacterial clearance (187). Interestingly,
activated platelets which release IL-1b act to enhance macrophage
phagocytosis and killing of S. aureus, suggesting both platelets and
IL1-b have an important role in the phagocyte response (188).
Frontiers in Immunology | www.frontiersin.org 9
MECHANISMS USED BY MACROPHAGES
TO KILL S. AUREUS

Once macrophages are activated, have located and phagocytosed
S. aureus, the macrophage’s powerful degradative processes are
used to kill the bacteria. Macrophages have a range of
mechanisms to destroy phagocytosed pathogens (Figure 4),
including release of reactive oxygen species (ROS), reactive
nitrogen species (RNS), enzymes and antimicrobial peptides, as
well as acidification of the phagolysosome, nutrient restriction,
and autophagy. In addition, macrophages can target extracellular
bacteria with extracellular traps.

Macrophage Production of ROS and RNS
NADPH oxidase (NOX2) is an enzyme located on the
phagosome membrane, assembly of the oxidase is induced
which then allows it to catalyze superoxide production (O−

2 )
and subsequent ROS, termed the oxidative burst. Superoxide can
be converted into a variety of different ROS (see Figure 5), all of
which are toxic to some degree. ROS production is considered
the key killing mechanism for both macrophages and neutrophils
(189), and is important for clearance of S. aureus (61, 190).

NOX2 is activated by signals from phagocytic receptors, such
as FcgR and macrophage-1 antigen (Mac-1) (22, 191), resulting
in electron transfer from reduced NADPH in the cytosol to
FIGURE 4 | Potential outcomes of the interaction between macrophages and S. aureus. After phagocytosis, macrophages can successfully control and degrade
S. aureus (left hand side of figure) using a range of mechanisms, including ROS and RNS soon after phagocytosis, phagosome acidification, nutrient restriction,
release of degradative enzymes and AMPs as the phagosome matures. Alternatively, S. aureus can evade macrophage killing mechanisms (right hand side of figure)
by adapting to the phagosome environment, expressing a range of virulence factors, or escape from the phagosome and survival in the cytosol, leading eventually to
macrophage cell lysis and S. aureus dissemination.
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phagosomal oxygen. Ras-related C3 botulinum toxin substrate
(Rac), a small GTPase, is necessary for best operation of NOX2
(192, 193). Rho GDP-dissociation inhibitor (RhoGDI) inhibits
Rac, stabilizing the active, GDP-bound form until inhibition is
reversed upon NOX2 activation (194, 195). NOX2 has 5 main
components (see Figure 5), two of which are membrane-
spanning: gp91phox and p22phox, while three are cytosolic:
p40phox, p47phox, and p67phox (196). Gp91phox and p22phox are
located on Rab11-positive recycling endosomes, Rab5-positive
early endosomes and the plasma membrane (197). When NOX2
is activated, the three cytosolic components are recruited to bind
gp91phox and p22phox at the vesicle membrane via phagocytic
cups, Rac recruits GTP and binds to p67phox, and the NOX2
machinery fuses with the nascent phagosomal membrane,
producing superoxide. Superoxide production occurs almost
immediately, even before phagosomes are sealed, implying that
the NOX2 assembly is fast (198, 199).

Although superoxide (O−
2 ) itself is able to destroy bacteria, it

is extremely volatile and degrades into hydrogen peroxide
(H2O2), or interacts with nitric oxide (NO) to produce
peroxynitrite (ONOO−) (189, 200, 201) (Figure 5). When iron
or other catalytic metals are present in the phagolysosome,
possibly due to release from phagosomal proteins, H2O2 and
O−

2 can react to form a hydroxyl radical (OH−); a process known
as the Fenton reaction (202–204). Myeloperoxidase (MPO) is the
enzyme that catalyzes hypochlorous acid (HOCl) formation
from H2O2 and chloride. This is abundant in neutrophils,
although other phagocytes including macrophages express it
(201, 205). Hypochlorous acid is thought to contribute to
Frontiers in Immunology | www.frontiersin.org 10
microbicidal activity induced by H2O2, however, hypochlorous
acid is not critical for antimicrobial activity. This is demonstrated
by the fact that patients deficient in MPO have similar
susceptibilities to bacterial infections as healthy individuals (61,
206, 207). Chronic granulomatous disease (CGD) patients have
mutations in one of the subunits of NOX2, resulting in an
inability to make ROS. CGD patients are significantly more
susceptible to S. aureus infection (208). CGD is most
commonly due to defects in the genes for gp91phox or p47phox,
with only 5% of CGD cases due to mutations in genes coding for
p22phox, p40phox and p67phox (208–214). Macrophages are
implicated in CGD bacterial diseases, since a characteristic of
CGD is hepatic abscesses, suggesting the importance of Kupffer
cells in control of microbes (215).

In addition to ROS, phagocytes produce RNS. Production of
NO radicals is catalyzed by inducible nitric oxide synthase
(iNOS) (216). iNOS is only expressed in response to
inflammatory stimuli, with IFN-g being the key cytokine
required for iNOS induction in macrophages (216, 217). Upon
reaction of NO with superoxide, peroxynitrite is formed, which is
toxic to phagocytosed microbes’ proteins and DNA (218, 219).
However, mice deficient in iNOS do not suffer a significant
increase in intracellular S. aureus upon infection, while mice with
NOX2 deleted (cybb−/−) had significantly increased intracellular
burden and hence greater mortality (61, 220, 221). This
underlines the importance of NOX2 in defense against S. aureus.

There is limited data on the concentration of ROS within the
phagosome, much of it relating to neutrophils. Macrophage
oxidative burst peaks approximately 30 min post-phagocytosis,
FIGURE 5 | Assembly of NOX2 and subsequent ROS cascade. When inactive, NOX2 components gp91phox and p22phox are located on vesicles, while inactive Rac
and p67phox, p47phox and p40phox exist in the cytosol. Upon activation, the cytosolic subunits are localized to phagocytic cups on the endosome membrane, to bind
to gp91 and p22phox. Inhibition of Rac by RhoGDI is reversed, allowing GTP binding and recruitment of Rac to the NOX2 complex. The NOX2 vesicle merges with
the membrane of the phagosome and produces superoxide. Superoxide is converted to other ROS: H2O2 by superoxide dismutase (SOD) and OOON− by
interaction with nitric oxide (NO). H2O2 is converted into HOCl by myeloperoxidase (MPO), OH− by the Fenton reaction, and H2O + O2 by catalase, as shown.
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although it is maintained for over 60 min (222, 223). In the
neutrophil phagosome, the concentrations of O−

2 and H2O2 are
estimated to be 25 and 2 µM, respectively. However, in the
absence of MPO, these concentrations are higher: over 100 µM
and 30 µM, respectively (224). This is important, due to
macrophages possessing lower concentrations of MPO than
neutrophils (205). Macrophages have been estimated to
produce 50 µM of O−

2 and 1 to 4 µM H2O2 at neutral pH
(225). These concentrations were determined using computer
modeling to approximate the speed NOX2 can produce O−

2 , the
volume of the phagosome, the rate of spontaneous dismutation
into H2O2, and the frequency of H2O2 diffusion across the
phagosome membrane into the cytoplasm (224, 225). There
are margins for error at each stage of these calculations,
particularly as this assumes homogeneity within the
phagosome. In vitro measurement of macrophage ROS may be
more accurate. However, as these concentrations of ROS are very
small and the oxidative burst occurs rapidly, there are difficulties
in accurately measuring this.

ROS are also produced by the mitochondria. Mitochondrial
ROS (mROS) are, in most cases, the by-product of oxidative
phosphorylation. However, more recent studies have
demonstrated mROS act as a microbial defense mechanism
within macrophages (226, 227). When macrophages were
treated with histone deacetylase inhibitors (to test possible
downregulation of host immune responses) alongside infection
with either Salmonella or E. coli, intracellular bacterial clearance
was enhanced via upregulation of mitochondrial ROS, an effect
which was reversible upon inhibition of mitochondrial function
(226). Furthermore, signaling through Toll-like receptors,
specifically TLR1, TLR2, and TLR4, in macrophages leads to
recruitment of mitochondria to the phagosome and an alteration
in mROS (227, 228). Additionally, when mitochondria were
induced to express catalase, Salmonella clearance was decreased
(227). Likewise, infection of macrophages with S. aureus triggered
production of mROS, primarily H2O2, which was delivered to the
bacterial-containing phagosome bymitochondria-derived vesicles,
contributing to bacterial killing (228). This was determined to be
induced by endoplasmic reticulum stress, dependent on TLR
signaling and mitochondrial superoxide dismutase 2 (228).
Moreover, mitochondria associate to the membrane of S.
aureus-containing macrophage phagosomes to increase mROS
production and activate caspase-1, leading to acidification of the
phagosome. However, expression of alpha-hemolysin by S. aureus
was able to counteract these effects (229). Furthermore, S. aureus
counteracts recruitment of mitochondria to the macrophage
phagosome membrane in a caspase-11–dependent manner, with
caspase-11 deletion in mice enabling mitochondrial association
with S. aureus vacuoles, increased mROS and improved bacterial
clearance (230).

S. aureus Response to ROS
ROS can damage biomolecules including essential enzymes and
DNA (225). However, bacteria have evolved mechanisms to
withstand ROS and RNS. Staphylococcal peroxidase inhibitor
(SPIN) is secreted by S. aureus. SPIN attaches to and
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incapacitates human MPO (231). Structural analysis revealed
that SPIN acts as a “molecular plug”, occupying the active site of
MPO and thus refusing entry to the H2O2 substrate (231).
Expression of SPIN was maximal within a phagosome, which
is the location of MPO, and S. aureus mutants deficient in SPIN
have reduced survival following phagocytosis when compared to
wild-type S. aureus (231), this was demonstrated with
neutrophils but is likely to occur in macrophages.

S. aureus possesses two superoxide dismutases which
incapacitate superoxide radicals, superoxide dismutase A
(SodA) and superoxide dismutase M (SodM) (232). Some
studies have identified SodA and SodM as important for S.
aureus virulence (232, 233), while others show only marginal
effects (234, 235). Manganese ions act as a co-factor for SodA and
SodM, upregulating superoxide dismutase activity without
affecting transcription, and S. aureus is more susceptible to
manganese starvation in the absence of these proteins (232,
236). SodA is valuable in resisting superoxide stress in the
presence of manganese, while SodM is crucial when in
manganese-scarce environments (236). SodM is not present in
other staphylococci, and this role of inhibiting host ROS during
manganese restriction may explain why S. aureus has acquired a
second superoxide dismutase.

Resistance to oxidative stress in S. aureus is mediated, in part,
by transcriptional regulators. Peroxide regulator (PerR) is an
important regulator which controls a regulon of many
antioxidant genes. In particular, alkylhydroperoxide reductase
(AhpC) and catalase (KatA) are involved in resisting peroxides
and H2O2 respectively (237). The genes encoding these two
proteins are regulated in a compensatory manner: mutation in
ahpC enhanced (rather than reduced) H2O2 resistance, as katA is
upregulated by removal of PerR repression (237). AhpC was
similarly able to compensate for katAmutation. Deletion of both
katA and ahpC caused a significant growth defect, with S. aureus
unable to remove intra- or extracellular H2O2, meaning H2O2

accumulated to toxic levels in the media (237). S. aureusmutants
lacking two component regulator staphylococcal respiratory
response AB (SrrAB) were more susceptible to H2O2, with
katA and ahpC transcriptionally downregulated (238).
Susceptibility to H2O2 was reversed by iron sequestration or
perR repressor gene deletion (238). Another study showed that
the msaABCR operon of S. aureus regulates expression of genes
involved in oxidative stress (239). Staphyloxanthin, a carotenoid
pigment, is a strong antioxidant which is regulated by cold shock
protein (CspA), alongside the organic hydroperoxide resistance
gene which defends specifically against oxidative stress caused by
organic hydroperoxides. This implies involvement of ROS
resistance genes in persistence of S. aureus (239).

A transposon screen found there were five S. aureus regulons
which are crucial for NO resistance (240). Flavohemoglobin
(Hmp) is necessary for resistance to NO in some bacterial
species, because it acts as a denitrosylase, removing NO (241).
This is strictly controlled, as Hmp expression in the absence of
NO leads to enhanced oxidative stress (242). Nitrite-sensitive
repressor (NsrR), is the NO-sensing transcriptional regulator of
Hmp used by many bacteria to detect and react to NO (242–245).
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S. aureus does not possess NsrR, instead, the two-component
regulator SrrAB controls Hmp (243). Additionally, modifications
to S. aureus metabolism may increase bacterial NO resistance.
Infection of RAW 264.7 cells with a S. aureus TCA cycle mutant
had reduced NO production and iNOS activity when compared
to wild-type S. aureus (246).

S. aureus can take advantage of host signaling in order to
escape oxidative killing. In wild-type mice, S. aureus
phagocytosis by macrophages led to JNK activation in a TLR2-
dependent manner; JNK activation caused inhibition in
superoxide production, impairing the ROS cascade and
prolonging survival of the bacteria. When TLR2-deficient mice
were used, the macrophages were more able to readily kill S.
aureus (153). TLR2 expression is higher in S. aureus-infected
macrophages (144), and S. aureus were more able to escape
killing by peritoneal macrophages when anti-TLR2 antibodies
were used (247).

S. aureus produces lipoic acid, which also restricts ROS and
RNS production by macrophages, to enhance bacterial survival
(248). Lipoic acid is a metabolic cofactor which is synthesized by
the lipoic acid synthetase (LipA), which limits macrophage
activation by reducing TLR1 and TLR2 activation by bacterial
products (249). A S. aureus lipA deletion mutant caused
significantly more TLR2-dependent pro-inflammatory cytokine
production (249). Exogenous lipoic acid can reduce neutrophil
oxidative burst through radical binding as well as recycling
antioxidants, inhibiting NF-kB transport into the nucleus, and
reducing production of inflammatory cytokines (250–254).
Macrophages which were recruited to the site of infection with
the lipA mutant produced significantly greater amounts of ROS
and RNS than those attracted to sites infected with wild-type S.
aureus (248); in this case, ROS and RNS (but not mitochondrial
ROS) were important for controlling S. aureus lipA infection
(248). This suggests that lipoic acid production by S. aureus
promotes persistence of the bacteria.

Macrophage Phagosomal Acidification
Acidification of the phagosome is another key mechanism
involved in killing phagocytosed bacteria. A low phagosomal
pHmay directly affect S. aureus survival, since bacterial growth is
reduced at pH 4.5 (255). Additionally, acidification has an
important impact on phagosomal enzymes, for example
cathepsins, which have optimal efficacy at low pH. Phagosomal
enzymes are discussed in detail in the enzymes section below.

Macrophage phagosome acidification is generated by an
influx of protons (H+) into the phagosome by vacuolar-type
proton transporting ATPase (v-ATPase), which is present in
phagosome membranes (256). The action of v-ATPase reduces
the pH of endosomes and lysosomes to ~6 and ~4.5, respectively
(257). Fusion of endosomes and lysosomes, which are enriched
with v-ATPase, is an important part of phagosome maturation,
the continued delivery of v-ATPase causes increasing
acidification throughout sequential stages of phagosome
maturation (258). In addition to this, the permeability of the
phagosome to protons is important in maintenance of low pH,
therefore as phagosomes mature, proton permeability is
decreased to preserve acidification (259). However, phagosome
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acidification commences before lysosomal fusion events occur,
demonstrating that v-ATPase is also present at an earlier stage is
phagosome maturation (256). Indeed, v-ATPase is found on the
plasma membrane of phagocytes where it is used to maintain
cytosolic pH (260, 261). The v-ATPase present in plasma
membranes are likely internalized during phagocytosis and
responsible for acidification at very early timepoints of
phagocytosis, with additional v-ATPase delivered during
phagosomal maturation leading to increased acidification.

Phagosomal acidification is well documented in S. aureus
infection. In S. aureus-infected murine peritoneal macrophages,
the phagosomal pH is reduced to 5.7 to 6 within 6 to 8 min of
infection, and this is dependent on v-ATPase (256, 259). Indeed,
the average phagolysosomal pH of RAW 264.7 cells infected with
S. aureus was measured as 5.43 12 hours post-infection (262). S.
aureus phagocytosed by Kupffer cells is trafficked to an acidified
phagosome, as demonstrated in intravital imaging of murine
infections (263). Another study shows that S. aureus
peptidoglycan can induce macrophage phagosome maturation
through JAK-STAT signaling (172). Low pH is also important in
efficiently killing S. aureus in neutrophils (264). Non-
professional phagocytes, including epithelial cells and
endothelial cells, are also shown to traffic S. aureus to an acidic
phagosome (19, 20, 265, 266). Phagosome maturation proteins
are involved in S. aureus degradation. For example, copper
metabolism gene MURR1 domain (COMMD) proteins
regulate both intracellular trafficking and transcription factors.
Kupffer cells effectively kill S. aureus, where phagosomes mature
in a COMMD10-dependent manner, required for phagosome
acidification and optimal bacterial killing (267).

S. aureus can adapt to the acidic phagosome, with recent
studies suggesting that exposure to acidification may even
promote intracellular bacterial survival. S. aureus can survive
and replicate within mature acidic phagosomes, as demonstrated
using murine macrophages and human MDMs (16). S. aureus
can survive and replicate within murine AMs, and inhibiting
phagosome acidification caused a small drop in bacterial survival
(268). Similarly, THP-1 cells were also used to show that
inhibiting phagosome acidification reduced S. aureus survival,
where exposure to low pH was shown to induce virulence factor
expression (269). THP-1 cells which are deficient in phagosomal
acidification had improved bacterial killing of S. aureus strain
USA300, although not the Newman strain (270). Phagosomal
acidification has even been proposed to be requisite for S. aureus
intracellular survival, the bacterial GraXRS regulatory system is
used to sense low pH, where S. aureus promotes adaptive
responses enabling bacterial growth within the phagosome,
shown to be required for bacterial survival within murine
Kupffer cells in vivo (262).

Other studies show that macrophages with phagosomes
containing S. aureus do not acidify appropriately. Reduced
acidification of the phagosome was observed in THP-1 cells
when infected with S. aureus, in comparison to E. coli or S.
pneumoniae, and the authors suggest that reduced acidification
may precede bacterial escape (73). S. aureus has also been shown
to reside within non-acidified vesicles in epithelial cells (271).
Presence of other material in the phagosome with S. aureus
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reduced the acidification of Kupffer cell phagosomes, promoting
S. aureus survival (272). Whether phagosomes containing S.
aureus properly acidify, leading to beneficial or detrimental
effects on the host, likely depends on multiple factors; cell
types, bacterial strains, timepoints and phagosomal markers
studied, as well as the antagonistic roles of ROS production
and proton influx discussed below.

There is evidence that the actions of phagosomal NOX2 and
v-ATPase are antagonistic. In the early stages of phagosomal
maturation, ROS production by NOX2 may buffer acidification
through rapid consumption of protons. The oxidative burst is
therefore intrinsically linked to phagolysosome acidification (73,
273), and, as such, oxidation can delay phagosomal maturation
(223). In neutrophils, NOX2-dependent reduction of phagosome
acidification is caused by proton consumption, as well as
decreased v-ATPase recruitment to the phagosome and
increased membrane permeability to protons (274). Caspase-1
limits the antagonism of NOX2 and v-ATPase in macrophages
infected with S. aureus by regulating NOX2 activity (through
cleavage of NOX2 components) to promote phagosomal
acidification (275). Interestingly, phagosomes of pro-
inflammatory M1-like human macrophages acidify less in
comparison to anti-inflammatory M2-like macrophages, due to
sustained NOX2 retention on the phagosome and associated
proton consumption by the ROS produced (223). Since
proteolytic enzymes are less functional at higher pH, the
antagonistic effects of NOX2 activity on pH may reduce the
degradative capacity of the phagosome. It has been hypothesized
this ensures ROS-mediated destruction of microbes before
subsequent degradation of microbial products (22). Antigen
presenting cells present antigens to the adaptive immune
system. In macrophages and dendritic cells, increased NOX2
activity is associated with reduced proteolysis (273, 276–278),
meaning antigens are retained longer for improved presentation
to adaptive immune cells (279). There appear to be multiple
mechanisms causing NOX2 and v-ATPase antagonism, which
differ between cell types, likely due to their different roles. As
limited studies use macrophages, which have important roles in
antigen presentation, there remain many unanswered questions.

The Role of Macrophage Enzymes
in Controlling S. aureus Infection
Mature phagosomes may contain hydrolytic enzymes that kill
bacteria efficiently. These include proteases, lipases, phosphatases
and glycosidases. These enzymes have optimal efficacy in acidic
conditions (280, 281). The acidification of mature phagosomes is
discussed above.

The phagosome of macrophages can contain lysozyme, which
is an enzyme that cleaves bacterial peptidoglycan. S. aureus is
resistant to lysozyme due to acetylation of PGN by O-
acetyltransferase (OatA) (282). PGN acetylation may also
reduce activation of the NLRP3 inflammasome, avoiding
induction of IL-1b (283). IL-1b is produced by phagocytes in
response to inflammasome activation and is a key weapon in the
arsenal of the immune system against S. aureus (82). The NLRP3
inflammasome is activated by exposure to phagocytosed PGN
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(283). In order to trigger this response, PGN must be partially
digested by lysozyme. Thus, the ability of OatA to induce
resistance to lysozyme suppresses activation of the NLRP3
inflammasome and subsequent IL-1b induction, demonstrated
both in vitro and in vivo (282, 283). Underlining the importance
of the inflammasome, mice deficient in inflammasome
component apoptosis-associated speck-like protein containing
a caspase recruitment domain (ASC), failed to induce IL-1b
expression and suffered increased lesion size, increased CFUs
and decreased neutrophil attraction upon challenge with S.
aureus (185). Interestingly, the route of S. aureus infection
influences the role of the inflammasome. S. aureus is known to
commandeer the NLRP3 inflammasome during lung infection to
aggravate pathology (284), while inflammasome activation
during skin and soft tissue infection leads to clearance of the
bacteria (285). For further discussion of inflammasome
involvement in S. aureus infection, see (286).

Cathepsins are proteases found in the lysosomal compartment
which are highly expressed inmacrophages. CathepsinD-deficient
miceweremore susceptible to infectionwith intracellular pathogen
Listeria monocytogenes, which survived phagosomal killing
significantly more than in wild-type mice (287). Cathepsin D is
thought to act by degrading secreted bacterial virulence factors
(287). Cathepsin G secreted from neutrophils damages S. aureus
biofilms (288). Cathepsins have been shown to be involved in
macrophage S. aureus engulfment and killing, with cathepsin L
indicated as an inducer of non-oxidative killing, and cathepsin K
important in induction of IL-6 production (289). The method of
cathepsin-mediated S. aureus killing is thought to be direct
proteolytic damage (289). In addition to modulating IL-6
production from macrophages, cathepsins can also influence IL-
1b production (290, 291). This has been demonstrated in a bone
marrow-derived macrophage model of Mycobacterium
tuberculosis infection, whereby cathepsin release was critical for
inflammasome activation and IL-1b production (292), providing
evidence that this may be a common mechanism to control
intracellular bacteria.

A further example of macrophage antimicrobial enzymes is
phospholipases, which influence immunomodulatory compounds
and attack the membrane of microbes. For example, the group IIA
secreted phospholipase A2 (IIA-sPLA2) has strong antimicrobial
activity against bacteria, especially Gram-positives (293, 294). IIA-
sPLA2 mediates S. aureus cell membrane and cell wall damage,
leading to bacterial cell death (293). Specifically, IIA-sPLA2 targets
phosphatidylglycerol in the bacterial cell membrane, with the
strong positive charge of PLA2 binding efficiently to the
negative charge of bacteria (295). A S. aureus mutant deficient
in wall teichoic acid (WTA) was around 100-fold more resistant to
IIA-sPLA2 killing, likely caused by reduced access to the cell
surface for PLA2 binding (296). Interestingly, one study found that
S. aureus degradation was only successful when IIA-sPLA2 was
accompanied by neutrophil NOX2 activity, independent of MPO
(297). Since macrophages, unlike neutrophils, produce IIA-sPLA2,
these complementary oxygen-dependent and -independent killing
mechanisms may play a role in macrophage-mediated
S. aureus degradation.
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Antimicrobial Peptides in Macrophage
Defense Against S. aureus

Antimicrobial peptides (AMP) tend to be positively charged and
damage the membrane of pathogens. In order to defend itself
against AMPs, S. aureus modifies its cell membrane by reducing
the negative charge to repel cationic AMPs, thus minimizing
electrostatic interactions. Negatively-charged lipids in the
cytoplasmic membrane have positively-charged lysine added to
them, catalyzed by enzyme multiple peptide resistance factor
(MprF), with a similar effect carried out by addition of D-alanine
onto cell WTAs, produced by the dlt operon gene products (298–
300). S. aureus which have accumulated extra copies of the dlt
operon possess teichoic acids with more D-alanine, and hence a
greater positive surface charge and lesser susceptibility to binding
and damage by cationic AMPs (300). Mutants that are more
susceptible to AMPs display teichoic acids that lack D-alanine,
when compared to wild-type bacteria (300, 301), meaning they
were more attractive to cationic AMPs, including human
defensin HNP1-3 (300). Through this mechanism, MprF was
found to enable resistance to defensins and protegrins (299). S.
aureus with an MprF deficiency were significantly attenuated in
mice and killed with considerably more efficiency by human
neutrophils, as well as displaying an inability to grow within
macrophages (262, 299). S. aureus has also been shown to
counteract the activities of AMPs by integrating lysyl-
phosphatidylglycerol in S. aureus cell membranes, and
expressing the AMP transporter VraFG, which promotes
resistance to cationic AMPs (301).

AMP hepcidin is released by macrophages (and neutrophils)
in vitro and in vivo upon microbial detection via TLR-4 in order
to limit iron availability (302). Furthermore, cytokines including
TNF-a, IFN-g, IL-1, and IL-6 also induce iron modulation (303–
309). For example, upon detection of bacteria, IL-6 is stimulated
to directly induce expression of hepcidin, leading to hepcidin
binding ferroportin, an iron transporter, which causes
ferroportin degradation. Degradation of ferroportin reduces the
concentration of circulating iron, although it may increase
intracellular iron which may have a beneficial effect on
intracellular bacteria (310–312). However, other studies show
that hepcidin mRNA was induced in RAW 264.7 macrophage-
like cells when stimulated with IFN-g and mycobacteria, but not
when the stimulating cytokine was either IL-6 or IL-1b (313).

Calprotectin, an AMP present in monocytes, neutrophils and
early macrophages (314, 315), sequesters metal ions to reduce
their bioavailability. This has been particularly well-documented
for iron, manganese and zinc (316–318). In fact, calprotectin
is able to use this sequestration of metal ions to successfully
inhibit growth of S. aureus in a mouse abscess model (317, 319).
The S. aureus manganese transporters MntH and MntABC have
been shown to work synergistically to overcome manganese
scavenging by calprotectin (320). To overcome zinc scavenging,
S. aureus expresses two zinc transporters and the metallophore
staphylopine (321). Furthermore, bone marrow derived
macrophages (BMDM) which were primed with calprotectin
were induced to produce IL-6, CXCL1 and TNF-a, while
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BMDMs without calprotectin had a significantly reduced pro-
inflammatory response (322).

Cathelicidins have multiple functions, including inducing
antimicrobial action, guiding immune cell differentiation
toward proinflammatory effects and steering chemotaxis (323).
Cathelicidins opsonize bacteria to significantly enhance
phagocytosis of S. aureus by macrophages in vitro by up to 10-
fold (324). Cathelicidin fowlcidin-1 induces expression of pro-
inflammatory cytokines in order to activate macrophages
protecting mice from death in a normally lethal intraperitoneal
MRSA infection (325). Furthermore, cathelicidin LL-37
improves macrophage killing of S. aureus, with LL-37
endocytosis by macrophages correlated with enhanced ROS
production and lysosomal fusion (326).

Metal Accumulation and Restriction
in the Phagosome
Metal ions are essential for bacterial metabolic activity,
reproduction and oxidative stress defense (327). However,
metal ions are also involved in production of ROS and RNS
(328). Immune cells reduce availability of metal ions and alter the
metabolic use of metal ions, termed ‘nutritional immunity’ (204,
328). Nutritional immunity studies show limiting availability to
metal ions inhibits bacterial growth (329).

The role of metals in phagocytic microbial control has been
extensively reviewed (330). Briefly, metal ions iron and
manganese are restricted from the phagosome, while copper
and zinc are used to overwhelm microbes with toxicity (330).

Although metal ions are essential and contribute to the
functionality of many bacterial enzymes, high concentrations
can be toxic to bacteria by enabling ROS production, as well as
possessing high-affinity to metal-binding portions of proteins
which can lead to bacterial enzymes binding excess metal ions,
interfering with enzyme function (331). For example, copper has
been described to be toxic to microbes by replacing iron ions in
essential enzymes, as well as facilitating the production of
hydroxyl radicals (332).

Manganese sequestration was found to be crucial for maximal
inhibition of S. aureus growth in vitro (319). Manganese
acquisition is essential for S. aureus survival (333–335), and is
important for oxidative stress resistance due to acting as a
cofactor for superoxide dismutase enzymes (334, 336). S.
aureus with mutations in manganese transporters MntC or
MntE were unable to resist methyl viologen (which interacts
with electron donors to produce superoxide) likely due to an
inability of the superoxide dismutases to function properly in the
absence of manganese (334, 335). Similarly, mutations in
manganese transporters MntABC and MntH resulted in S.
aureus with increased sensitivity to methyl viologen, which was
reversed by manganese supplementation (337).

Iron is essential for the functioning of many vital bacterial
enzymes. However, when present in abundant quantities, iron
catalyzes the generation of hydroxyl radicals via the Fenton
reaction (204). Macrophages control iron homeostasis in part
via NO-facilitated nuclear factor erythroid 2–related factor 2
transcription factor activation which upregulates the iron
January 2021 | Volume 11 | Article 620339

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Pidwill et al. Macrophages in Staphylococcus aureus Infection
exporter ferroportin-1 (338). Macrophages with the gene for
iNOS deleted had significantly higher concentrations of iron due
to less expression of ferroportin-1, and this iron was able to be
harnessed by intracellular Salmonella (338). S. aureus overcomes
iron restriction by production of siderophores, which are able to
competitively bind to iron to prevent sequestration by iron-
binding host molecules such as lactoferrin and transferrin. In
fact, both staphyloferrin A and staphyloferrin B have been shown
to displace iron from transferrin (339, 340). Staphylococcal iron-
regulated transporter (SirABC) is a transporter of S. aureus
staphyloferrin B, and has been found to be expressed in
response to oxidative and nitrative stress, providing protection
from oxidative killing (341). These effects underline the
importance of iron in macrophage antimicrobial defense.

Host cytokines are involved in regulating metal ion
homeostasis in phagocytes. A number of cytokines identified as
particularly important in defense against S. aureus, IL-1, IL-6, IL-
10, and TNF-a, can act to make iron less available in monocytes
and macrophages (82, 328). Unfortunately, this can have the
unintended side-effect of anemia in the host. Accumulation of
iron was correlated with reduced expression of pro-
inflammatory cytokines TNF-a, IL-12, and IFN-g, leading to
an inability to control intracellular bacteria. This effect was
reversed upon addition of an iron chelator (338). Host
expression of GM-CSF activates the sequestration of zinc,
leading to enhancement of H+ channels in the phagosome
membrane, and induces NOX2 to produce ROS (342). Pro-
inflammatory cytokine IFN-g has been shown to upregulate
expression of copper transporter Ctr1. This stimulates copper
influx, which was found to be necessary for efficient bactericidal
activity (343).

Nutrients in Control of S. aureus Infection
Nutrients, such as fatty acids and amino acids, are important for
S. aureus survival. Additionally, fatty acids can also be
antimicrobial. The host environment can be unfavorable for
bacterial growth, as nutrients are restricted. Therefore, bacterial
metabolism, essential compound scavenging, and defense against
antimicrobial fatty acids is associated with S. aureus survival
during infection.

Amino acid availability is critical for S. aureus growth, in fact
many staphylococcal strains isolated from human skin are
auxotrophic for multiple amino acids (344). In bovine mastitis
infections, at least seven amino acids were required for S. aureus
growth (345). Following exposure to H2O2, S. aureus amino acid
metabolism is altered, likely with increased amino acid
consumption promoting bacterial survival (346). Also, amino
acid catabolism enables S. aureus survival within abscesses,
where glucose supply is limited (347). In macrophages, S.
aureus may induce host cell autophagy to increase metabolite
availability to support intracellular proliferation (348). S. aureus
is able to incorporate exogenous fatty acids into bacterial
membranes (349). Host low-density lipoprotein (LDL) can be
used as a fatty acid supply by S. aureus, removing the need for
bacterial synthesis of fatty acids (350). Indeed, S. aureus uses host
derived fatty acids when available, which is associated with
higher levels of staphyloxanthin; thus saving energy in fatty
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acid synthesis and allowing virulence factor expression (351).
Alternatively, S. aureus may obtain nutrients from the
extracellular milieu via macrophage macropinocytosis,
inhibition of which reduced S. aureus intracellular replication
(352). Macrophage micropinocytosis occurs constitutively (353),
indicating a potential route of nutrition for intracellular
S. aureus.

In macrophages, the role of host lipids in infection with
intracellular pathogens has been comprehensively reviewed;
highlighting how fatty acids and their derivatives can have
positive and negative consequences for pathogens, and that
lipid metabolism changes with macrophage polarization (354).
Antimicrobial fatty acid production by HeLa cells is protective
against S. aureus infection (355). Leukocytes may also generate
bactericidal fatty acids against S. aureus biofilms (356). Multiple
unsaturated fatty acids are bactericidal against S. aureus,
including linolenic acid and arachidonic acid, and fatty acid
efficacy increases with greater unsaturation (357). Therefore,
poly-unsaturated fatty acids (PUFAs) have greater antibacterial
properties. Mice fed high levels of PUFAs had increased survival
and reduced bacterial burden, along with an improved
neutrophil response, following S. aureus sepsis infection (358).
PUFA bactericidal effects against S. aureus were suggested to
occur through a mechanism involving ROS (359). Arachidonic
acid is a PUFA released at the same time as the oxidative burst in
phagocytes, contributing to S. aureus killing. Arachidonic acid is
oxidized to create electrophiles which are toxic to S. aureus,
which is likely exasperated by ROS produced during the
oxidative burst (360). Fatty acid cis-6-hexadecenoic acid is
found on the skin and inhibits S. aureus survival, so, S. aureus
increases defense gene expression (361).

In response to unsaturated fatty acids, S. aureus expression of
genes involved in membrane stability and metabolism is
increased as part of the stress response, indicating that fatty
acids disrupt both bacterial lipid membranes and bacterial
metabolism (362). S. aureus can increase resistance to fatty
acids by reducing exogenous fatty acid incorporation into lipid
membranes (363). S. aureus also uses fatty acid modifying
enzyme (FAME) to inactivate fatty acids in abscesses (364).
When host fatty acids are incorporated into the membrane of
S. aureus, expression of the T7SS is increased, leading to
virulence factor export (365). Furthermore, S. aureus expresses
fatty acid resistance genes which confer resistance against
linolenic acid and arachidonic acid (366). Studies on the role
of macrophage unsaturated fatty acids and PUFAs on S. aureus
are lacking, perhaps due to focus on the major role of fatty acids
on the skin. However, further research may be beneficial due to
fatty acid presence in biofilms, as well as fatty acids being
associated with the phagocyte oxidative burst.

Macrophage Autophagy in S. aureus
Infection
Macroautophagy (autophagy) is the cellular lysosomal self-
degradation of damaged or unwanted components; however,
autophagy components can be used to target pathogens for
degradation. In recent publications, macrophage autophagy
machinery has been revealed as an important host target which
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S. aureus is able to manipulate (367, 368). Autophagy proteins
may be present at multiple stages of S. aureus infection, from
phagosomes and autophagosomes, to targeting cytosolic bacteria.
Autophagy machinery is more abundant in S. aureus infected
murine macrophages (369). S. aureus can manipulate autophagy
to promote survival and subsequent escape from within
phagocytic cells in an Agr-dependent manner, potentially
enabling persistence in sepsis infections (367). Similarly, high
expression of vancomycin resistance-associated sensor/regulator
also induces autophagy to a greater extent and is associated with
increased intracellular survival in macrophages (368). Therefore,
the extent autophagy may benefit S. aureus appears to be
dependent on the virulence of individual strains. In a murine
lung infection model, inhibiting autophagy with drug treatments
reduces bacterial burden in the lung (370), again indicating that
autophagy is beneficial for S. aureus. In agreement, in diabetic
settings associated with increased autophagy, a larger number of
autophagosomes containing S. aureus are observed, and blocking
lysosome fusion to autophagosomes promotes S. aureus survival
in macrophages (371). In bovine macrophages, S. aureus
infection increased the number of autophagosomes, leading to
increased bacterial survival, which also suggests later stages of the
autophagy pathway are blocked (372). Together these data
suggest that S. aureus resides within an autophagic vesicle
within macrophages, possibly by blocking autophagy pathway
advancement, thereby inhibiting macrophage-mediated killing.
The role of autophagy in S. aureus-infected neutrophils is less
clear, although it seems that the involvement of different
autophagic machinery involved at early and late autophagy
stages may lead to alternative bacterial outcomes (65, 373).
Autophagy also represents a potential therapeutic target in S.
aureus infection, whereby selenium may promote autophagy
within macrophages to an extent that overcomes the bacterial
block of the autophagy pathway (374). The involvement of
autophagy in macrophage-S. aureus interactions is clearly
demonstrated, but whether it directly affects infection outcome
has yet to be examined in detail and remains an interesting area
with possible therapeutic potential.

Macrophage Apoptosis-Associated Killing
Is Deficient in S. aureus Infections
Macrophage apoptosis-associated bacterial killing is important
for the clearance of a number of pathogens such as M.
tuberculosis (375) and, in particular, S. pneumoniae (376, 377).
It is suggested that macrophage phagocytic ability outpacing
bactericidal activity leads to permeabilization of the
phagolysosome, leading to cathepsin D release, which causes a
reduction in anti-apoptotic Mcl-1 expression and, eventually,
macrophage apoptosis (378). Interestingly, this mechanism is not
observed following phagocytosis of S. aureus. Indeed,
phagocytosis of S. aureus is associated with upregulation of
both B cell lymphoma 2 gene (BCL2) and Mcl-1 (175), leading
to decreased apoptosis. It has also been proposed that S. aureus
inhibition of phagolysosome acidification and maturation
circumvents apoptosis, enabling persistence in macrophages,
although the exact mechanism remains unclear (73). Since
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persisting intracellular S. aureus can be found in the
cytoplasm, further studies have suggested that S. aureus
escapes the phagolysosome, which was associated with
increased antiapoptotic host cell proteins (379). This is in stark
contrast to extracellular S. aureus, which actively promotes
macrophage apoptosis by releasing a-hemolysin or Panton-
Valentine leucocidin (PVL) toxins (380–382). Detailed
discussion of S. aureus virulence factors is outside the scope of
this review (22, 24, 383, 384).

Macrophage Extracellular Traps
and S. aureus
Extracellular traps (ET) are protrusions of chromatin, histone
proteins, DNA, proteases and AMPs, that ensnare bacteria and
form an important part of the immune response to infection
(385), first described in association with neutrophils (386).
Neutrophil extracellular traps (NET) vary in their formation
(fast or slow) (387, 388) and composition (chromatin or
mitochondrial DNA) (389). Original descriptions of NETs
demonstrated formation over 3 hours by the destruction of the
nuclear membrane leading to death of the neutrophil. More
recently, certain NETs were shown to form within 60 min by
extrusion of vesicles containing chromatin in a rapid and oxidant
independent mechanism (387). Moreover, NETs can be formed
of mitochondrial DNA rather than chromatin, in a mechanism
that is independent of cell death but was associated with
increased survival of neutrophils (389). This allows the
neutrophil to continue to contribute to the host immune
response. NET formation can be induced in response to a
number of different stimuli such as LPS, IL-8, complement
factor C5a, and bacteria including S. aureus (386, 387, 389).

There is a growing body of evidence that many different
innate immune cells are capable of producing ETs to control
bacteria, including eosinophils (390), mast cells (391) and
macrophages (392). Macrophage ETs (MET) play a role in
host defense. Bovine monocyte-derived macrophages form
METs in response to Mannheimiae haemolytica and to its
leukotoxin (LKT) (392). Interestingly LKT did not induce
MET formation by bovine alveolar macrophages, suggesting
that macrophage differentiation determines the ability to
trigger MET formation. Additionally, MET formation was
demonstrated by bovine macrophages in response to
Histophilus somni (393). E. coli also induced MET formation
in RAW 264.7 macrophages, which was NADPH oxidase-
dependent (392). Similarly, METs were induced in J774 cells in
response to E. coli and Candida albicans, with authors suggesting
that the role of METs is to slow dissemination of microbes (394).
However, phagocytosis and MET formation have been observed
to coincide for control and clearance of C. albicans (395).

MET formation can be stimulated by the use of statins. The pre-
treatment of human and murine macrophages with statins is
associated with increased S. aureus killing (396). In neutrophils
the proposed mechanism for this enhanced clearance was a
significant increase in NET formation, leading to increased S.
aureus entrapment. A similar result was observed in PMA-
stimulated RAW 264.7 macrophages. Initially, NETosis was
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considered to culminate in cell death, but emerging evidence has
shown in neutrophilsNETs can be independent of cell death (389).
However, the formation of METs appears to trigger a form of cell
death as the macrophage exhibits loss of membrane integrity (396,
397), and this may be associated with caspase-1 activity (398),
although data on this are sparse. This is further evidence thatMET
formationmay act to slow the dissemination of infection and allow
neighboring macrophages to phagocytose bacteria (394).

Pathogens have evolved mechanisms to overcome ETs. For
instance, Streptococcus pneumoniae evades NETs by producing
endonuclease EndA, which degrades the DNA in the NET (399).
Similarly, S. aureus secretes nuclease and adenosine synthase,
leading to the conversion of NETs to deoxyadenosine and in turn
triggering caspase-3–mediated cell death to cause non-
inflammatory macrophage apoptosis (400–402). This effectively
leads to the removal of phagocytic cells from the site of infection
allowing abscess formation.

Extracellular Vesicles From S. aureus
and Macrophages
Extracellular vesicles (EV) are known to be secreted by a number
of different Gram-positive bacteria, including S. aureus (403).
These bacterial EVs have been shown to contain a variety of
virulence factors and provoke significant immune responses.
Indeed, one of the first descriptions of S. aureus EV
demonstrated they could contain b-lactamases, which enabled
surrounding bacteria to withstand ampicillin (404). EVs also
trigger apoptosis. S. aureus EVs deliver virulence factors such as
a-hemolysin to macrophages, leading to NLRP3 inflammasome-
induced pyroptosis (host cell death) (405), which can be
inhibited by fosfomycin (406). In a murine model, EVs were
shown to cause atopic dermatitis-like inflammation in the skin
(407). EVs secreted by S. aureus can also cause mastitis (408).
Furthermore, it has been postulated that EVs could be a target for
vaccine development (409). The use of statins in a murine
survival model decreased macrophage responses to S. aureus
EVs, suggesting a possible novel therapeutic approach (410).

In addition to extracellular vesicles (EV) secreted by S. aureus to
subvert the host, there are numerous examples of immune cells
releasing EVs. These can vary in size and content and have been
isolated from several different cell types, including macrophages.
EVs are primarily thought to act as communicating mechanisms
allowing an orchestration of immune responses and are an
important part of the junction between the adaptive and innate
immune responses (411). Indeed, EV from macrophage infected
with M. bovis modulated T lymphocytes responses (412). When
macrophages were infected withM. tuberculosis, the content of the
EVchanged to confer decreased inflammatory cytokine release and
decrease lung mycobacterial load (413). Furthermore, during
infection with hepatitis C virus, macrophages secreted EVs that
inhibited viral replication (414). AM-derived EVs are suggested to
play a role in thepathogenesis of acute lung injury by encapsulating
TNF-a (415). The majority of studies have been termed EVs
“microvesicles” due to their size, but more recently, larger
“macrolets” containing IL-6 have been described which are
capable of engulfing and killing E. coli following macrophage
Frontiers in Immunology | www.frontiersin.org 17
LPS stimulation (416). The full role of S. aureus-infected
macrophage EVs on host-pathogen interactions and their
interplay with the adaptive immune response merits further
studies as possible targets for therapeutic approaches.
THERAPEUTIC APPROACHES
TO S. AUREUS INFECTION

Antimicrobials
S. aureus has acquired resistance to a wide range of antibiotics,
which is an expanding problem for the treatment of human
infections. In fact, the specter of antimicrobial resistant (AMR) S.
aureus has been described as a pandemic (417), with global
incidence rising (418–421). Resistance most commonly arises
due to horizontal gene transfer from resistant bacteria, however,
mutation of the S. aureus chromosome and mobile genetic
elements may also lead to resistance (417, 422). Antibiotic
resistance is a particular threat to modern medicine, with
multiple procedures dependent on antibiotic use (6). Last
resort antibiotics used to treat MRSA are often expensive, less
efficacious, and more likely to cause severe side effects (422).

The intracellular nature of S. aureus impedes antibiotic
activity, as many antibiotics cannot access the intraphagocyte
niche (423, 424). Methods to combat this have included
development of intracellular antimicrobials (425), nanoparticles
which can distribute antimicrobials to infected macrophages
(426, 427) and active targeting of macrophages to induce
receptor-mediated endocytosis, releasing singlet oxygen to kill
intracellular S. aureus (428). Furthermore, therapeutic
nanoparticles which favored pro-inflammatory macrophage
polarization enabled clearance of S. aureus biofilms in vivo
(169). The antimicrobial protein plectasin, can kill S. aureus
inside THP-1 macrophages in vitro, or inside peritoneal
macrophages in vivo, however, plectasin is significantly more
effective against extracellular bacteria (425). A nanogel which
preferentially targets macrophages uses bacterial enzymes to
initiate release of antibiotic (vancomycin), inhibiting MRSA
growth at sites of infection in vivo (426). After treatment with
the nanogel, zebrafish embryos infected with MRSA survived to
significantly higher levels with no visible (GFP-expressing)
bacteria 9 h post-infection. Similarly, macrophages treated with
nanogel had significantly reduced CFUs recovered from S. aureus
infected RAW 264.7 macrophages (426). Also, conjugation of
penicillin G to squalene enabled antibiotic endocytosis into J774
macrophages, whereby S. aureus was significantly less able to
survive intracellularly (427).

Vaccines
Decades of work have been devoted to production of a S. aureus
vaccine, however, none has yet been approved (14, 15). A key
difficulty in producing a S. aureus vaccine is that it must provide
broad immunity, since the bacteria can cause a wide range of
infections in a variety of tissues. S. aureuswas traditionally believed
to be extracellular; however, it is now recognized as a facultative
intracellular pathogen. This may partially explain the lack of an
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effective S. aureus vaccine, especially with S. aureus able to exist
within immune cells. Indeed, since S. aureus exploitsmacrophages
during infection, vaccine design inducing successful macrophage
defenses against S. aureus could be valuable.

Attempts have been made to produce whole cell or live/killed
vaccines against S. aureus, but these have failed to produce
effective immunity (14, 15). Vaccines have been targeted
against S. aureus polysaccharide, with initial positive results in
animal studies and partial protection in early human trials (429,
430). Other targets include surface polysaccharide poly-N-
acetylglucosamine (431, 432), surface proteins such as iron
surface determinant (Isd) A or IsdB (433, 434), clumping
factor (Clf) A or ClfB (435–437) and fibronectin binding
protein (FnBP) (438). These vaccines led to partial immune
protection, but overall they were not successful (439). A limiting
factor may be that the proteins used are not essential
components of S. aureus (440). To combat this, research
groups have tried combining multiple antigens into a single
vaccine. Newer approaches include targeting S. aureusmolecules
which stimulate varied immune responses, to mimic the different
immune responses observed with natural S. aureus infection. It is
now thought that approaches which induce Th1/Th17 responses
may be more effective, although this is thought to ideally be best
when combined with induction of opsonophagocytic antibody
generation (439, 441). Many of the aforementioned vaccine
studies investigated whether the treatment was able to induce
opsonophagocytic killing by phagocytes (432, 433, 437, 438).
However, it has also been suggested that vaccines which
neutralize S. aureus toxins, rather than aiming to induce
opsonophagocytic killing, may be more effective (15).

Differences in animal and human responses to vaccines hinders
their production. Some studies have found that, despite promising
results in animal models, human trials showed no protective
immunity (433, 439). This suggests that positive animal trials do
not correlate with positive human immune responses, which may
be in part to the differences between the human andmurine/rabbit
immune system. One of the limitations of S. aureusmousemodels
is that a much higher dose of the bacteria is required to initiate
infection when compared to the estimated human infective dose.
Co-injection of mice with commensal bacteria alongside a dose of
S. aureus more comparable to natural human infection led to
increased CFUs, and decreased survival of the mice (272). This
phenomenon was labeled “augmentation.” As S. aureus exists in a
polymicrobial environment, this model is likely closer to that of
natural infection. It is possible that using this augmentationmodel
in murine models to better represent human infection would
improve the assessment of therapeutic efficacy against S. aureus.
FUTURE PERSPECTIVES

S. aureus is a highly successful pathogen due to a wide variety of
virulence factors and immune evasion strategies (22).
Macrophages play a crucial role in the control of S. aureus
infection as macrophage depletion in mice led to increased
susceptibility to S. aureus (61, 272). However, macrophages do
Frontiers in Immunology | www.frontiersin.org 18
not always eliminate staphylococci, which can use the
macrophages as a reservoir for persistence, causing continued
infection. Therefore, it is important to further characterize the
mechanismsusedbyS. aureus toovercomemacrophagekilling and
manipulate the host cell as these may present novel therapeutic
adjuncts preventing dissemination and persistence of infection.

It remains unclearwhich antimicrobial strategy above all others
is responsible for killing the majority of S. aureus. As detailed
above, macrophage killing mechanisms, including ROS, RNS,
phagosome acidification, antimicrobial enzymes and AMPs,
nutritional immunity and autophagy contribute to S. aureus
clearance and it is therefore likely through a combination of
these mechanisms. NOX2-dependent ROS is seemingly critical,
as CGD patients are particularly susceptible to S. aureus infection
(208). S. aureus appears to require exposure to an acidic
environment for intracellular survival, again suggesting NOX2-
dependent ROS rather than downstream phagosomal maturation
is most critical for bacterial killing. Further studies are required to
confirm which ROS, within the macrophage phagosome, are
necessary to overcome S. aureus infection to fully understand the
ROS killing capacity. Since NOX2-dependent ROS appears to be
vital for bacterial killing, enhancement of macrophage NOX2
activity may be useful as a therapeutic target.

In addition to further characterizing the killing mechanism, a
greater understanding of the strategies used by S. aureus to evade
the host is required to prevent dissemination of infection. To
date, much effort has gone into evaluating the role of neutrophils
in S. aureus infection, while macrophages, despite being a source
of bacterial persistence, have been far less studied. The role of
macrophages in controlling infection highlights these cells as an
important target for investigation and exploitation. Indeed,
studies targeting macrophages during S. aureus infection show
beneficial outcomes (426–428).

Finally, in light of the rising antimicrobial resistance,
determining the optimal antibiotic strategies to control S.
aureus infections, and use of novel agents or combinations to
provide synergistic activity merit further studies. The use of
immunomodulation and preventative approaches to the peri-
operative patient, if fruitful, would lead to significant decreases in
the public health burden posed by S. aureus.
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241. Nobre LS, Gonçalves VL, Saraiva LM. Flavohemoglobin of Staphylococcus
aureus. Methods Enzymol (2008) 436:203–16. doi: 10.1016/S0076-6879(08)
36011-X

242. Bang I-S, Liu L, Vazquez-Torres A, Crouch M-L, Stamler JS, Fang FC.
Maintenance of nitric oxide and redox homeostasis by the Salmonella
flavohemoglobin hmp. J Biol Chem (2006) 281:28039–47. doi: 10.1074/
jbc.M605174200

243. Kinkel TL, Roux CM, Dunman PM, Fang FC. The Staphylococcus aureus
SrrAB two-component system promotes resistance to nitrosative stress and
hypoxia. MBio (2013) 4:e00696–13. doi: 10.1128/mBio.00696-13

244. Rodionov DA, Dubchak IL, Arkin AP, Alm EJ, Gelfand MS. Dissimilatory
metabolism of nitrogen oxides in bacteria: comparative reconstruction of
transcriptional networks. PLoS Comput Biol (2005) 1:e55. doi: 10.1371/
journal.pcbi.0010055

245. Gill SR, Fouts DE, Archer GL, Mongodin EF, Deboy RT, Ravel J, et al.
Insights on evolution of virulence and resistance from the complete genome
analysis of an early methicillin-resistant Staphylococcus aureus strain and a
biofilm-producing methicillin-resistant Staphylococcus epidermidis strain.
J Bacteriol (2005) 187:2426–38. doi: 10.1128/JB.187.7.2426-2438.2005

246. Massilamany C, Gangaplara A, Gardner DJ, Musser JM, Steffen D,
Somerville GA, et al. TCA cycle inactivation in Staphylococcus aureus
alters nitric oxide production in RAW 264.7 cells. Mol Cell Biochem
(2011) 355:75–82. doi: 10.1007/s11010-011-0840-3

247. Nandi A, Bishayi B. Intracellularly survived Staphylococcus aureus after
phagocytosis are more virulent in inducing cytotoxicity in fresh murine
peritoneal macrophages utilizing TLR-2 as a possible target. Microb Pathog
(2016) 97:131–47. doi: 10.1016/j.micpath.2016.06.007

248. Grayczyk JP, Alonzo F3. Staphylococcus aureus lipoic acid synthesis limits
macrophage reactive oxygen and nitrogen species production to promote
survival during infection. Infect Immun (2019) 87:e00344–19. doi: 10.1128/
IAI.00344-19

249. Grayczyk JP, Harvey CJ, Laczkovich I, Alonzo F3. A lipoylated metabolic
protein released by Staphylococcus aureus suppresses macrophage activation.
Cell Host Microbe (2017) 22:678–87.e9. doi: 10.1016/j.chom.2017.09.004

250. ZhangWJ, Frei B. Alpha-lipoic acid inhibits TNF-alpha-induced NF-kappaB
activation and adhesion molecule expression in human aortic endothelial
cells. FASEB J (2001) 15:2423–32. doi: 10.1096/fj.01-0260com
Frontiers in Immunology | www.frontiersin.org 25
251. Packer L. alpha-Lipoic acid: a metabolic antioxidant which regulates NF-
kappa B signal transduction and protects against oxidative injury. Drug
Metab Rev (1998) 30:245–75. doi: 10.3109/03602539808996311

252. Kim H-S, Kim H-J, Park K-G, Kim Y-N, Kwon T-K, Park J-Y, et al. Alpha-
lipoic acid inhibits matrix metalloproteinase-9 expression by inhibiting NF-
kappaB transcriptional activity. Exp Mol Med (2007) 39:106–13.
doi: 10.1038/emm.2007.12

253. Packer L, Witt EH, Tritschler HJ. alpha-Lipoic acid as a biological
antioxidant. Free Radic Biol Med (1995) 19:227–50. doi: 10.1016/0891-
5849(95)00017-r

254. Zhang WJ, Wei H, Hagen T, Frei B. Alpha-lipoic acid attenuates LPS-
induced inflammatory responses by activating the phosphoinositide 3-
kinase/Akt signaling pathway. Proc Natl Acad Sci USA (2007) 104:4077–
82. doi: 10.1073/pnas.0700305104

255. Bore E, Langsrud S, Langsrud Ø, Rode T, Holck A. Acid-shock Responses in
Staphylococcus Aureus Investigated by Global Gene Expression Analysis.
Microbiology (2007) 153:2289–303. doi: 10.1099/MIC.0.2007/005942-0

256. Lukacs G, Rotstein O, Grinstrein S. Phagosomal acidification is mediated by
a vacuolar-type H+-ATPase in murine macrophages. J Biol Chem (1990)
265:21099–107.

257. Maxson ME, Grinstein S. The vacuolar-type H+-ATPase at a glance – more
than a proton pump. J Cell Sci (2014) 127:4987–93. doi: 10.1242/JCS.158550

258. Sun-Wada G-H, Tabata H, Kawamura N, Aoyama M, Wada Y. Direct
recruitment of H+-ATPase from lysosomes for phagosomal acidification.
J Cell Sci (2009) 122:2504–13. doi: 10.1242/JCS.050443

259. Lukacs G, Rotstein O, Grinstein S. Determinants of the phagosomal pH in
macrophages. J Biol Chem (1991) 266:24540–8.

260. Brisseau GF, Grinstein S, Hackam DJ, Nordström T, Manolson MF, Khine
AA, et al. Interleukin-1 increases vacuolar-type H-ATPase activity in murine
peritoneal macrophages. J Biol Chem (1996) 271:2005–11. doi: 10.1074/
JBC.271.4.2005

261. Swallow C, Grinstein S, Sudsbury R, Rotstein O. Modulation of the
macrophage respiratory burst by an acidic environment: the critical role of
cytoplasmic pH regulation by proton extrusion pumps. Surgery (1990)
108:363–8.

262. Flannagan RS, Kuiack RC, McGavin MJ, Heinrichs DE. Staphylococcus
aureus uses the GraXRS regulatory system to sense and adapt to the
acidified phagolysosome in macrophages. MBio (2018) 9:e01143–18.
doi: 10.1128/mBio.01143-18

263. Surewaard B, Kubes P. Measurement of bacterial capture and phagosome
maturation of Kupffer cells by intravital microscopy.Methods (2017) 128:12–
9. doi: 10.1016/J.YMETH.2017.05.004

264. Styrt B, Klempner M. Effects of pH on killing of Staphylococcus aureus and
Escherichia coli by constituents of the neutrophil phagolysosome. J Med
Microbiol (1988) 25:101–7. doi: 10.1099/00222615-25-2-101

265. Jarry TM, Cheung AL. Staphylococcus aureus escapes more efficiently from
the phagosome of a cystic fibrosis bronchial epithelial cell line than from its
normal counterpart. Infect Immun (2006) 74:2568–77. doi: 10.1128/
IAI.74.5.2568-2577.2006

266. Lowy FD, Fant J, Higgins LL, Ogawa SK, Hatcher VB. Staphylococcus aureus-
human endothelial cell interactions. J Ultrastruct Mol Struct Res (1988)
98:137–46. doi: 10.1016/s0889-1605(88)80906-6

267. Ben Shlomo S, Mouhadeb O, Cohen K, Varol C, Gluck N. COMMD10-
Guided Phagolysosomal Maturation Promotes Clearance of Staphylococcus
aureus in Macrophages. iScience (2019) 14:147. doi: 10.1016/J.ISCI.
2019.03.024

268. Lacoma A, Cano V, Moranta D, Regueiro V, Domıńguez-Villanueva D,
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