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Abstract 1 

Metabolic reprogramming is a hallmark of cancer, enabling tumor cells to adapt to and 2 

exploit their microenvironment for sustained growth. The liver is a common site of 3 

metastasis, but the interactions between tumor cells and hepatocytes remain poorly 4 

understood. In the context of liver metastasis, these interactions play a crucial role in 5 

promoting tumor survival and progression. This study leverages multiomics coverage of the 6 

microenvironment via liquid chromatography and high-resolution, high-mass accuracy 7 

mass spectrometry-based untargeted metabolomics, 13C-stable isotope tracing, and RNA 8 

sequencing to uncover the metabolic impact of co-localized primary hepatocytes and a 9 

colon adenocarcinoma cell line, SW480, using a 2D co-culture model. Metabolic profiling 10 

revealed disrupted Warburg metabolism with an 80% decrease in glucose consumption and 11 

94% decrease in lactate production by hepatocyte-SW480 co-cultures relative to SW480 12 

control cultures. Decreased glucose consumption was coupled with alterations in 13 

glutamine and ketone body metabolism, suggesting a possible fuel switch upon co-14 

culturing. Further, integrated multiomic analysis indicates that disruptions in metabolic 15 

pathways, including nucleoside biosynthesis, amino acids, and TCA cycle, correlate with 16 

altered SW480 transcriptional profiles and highlight the importance of redox homeostasis in 17 

tumor adaptation. Finally, these findings were replicated in 3-dimensional microtissue 18 

organoids. Taken together, these studies support a bioinformatic approach to study 19 

metabolic crosstalk and discovery of potential therapeutic targets in preclinical models of 20 

the tumor microenvironment. 21 

22 
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Introduction 23 

The liver is the site of one of six cancers with increasing incidence of primary tumors –24 

hepatocellular carcinoma (hepatoma) (1). Moreover, the liver is a common site of solid 25 

tumor cell metastasis, including from breast and colorectal cancers, causing significant 26 

morbidity and mortality (2). Tumor cells within the liver interact with liver resident cell types, 27 

including hepatocytes. Metabolic adaptation is essential for tumor success throughout 28 

cancer cell transformation, proliferation, and metastasis (3, 4). Cancer cells reprogram their 29 

metabolism to meet increased demands for energy, biosynthesis, and redox homeostasis.  30 

Studies show this adaptation extends to the tumor microenvironment where cancer cells 31 

can tune and exploit their environment to meet metabolic needs (5-8). Within the liver, 32 

hepatocytes engage dynamic metabolic programs to support local and systemic physiology. 33 

Exploitation of this rich metabolic environment may represent an essential interaction that 34 

facilitates tumor cell colonization in the liver niche. However, our understanding of the 35 

specific interactions between cancer cells and hepatocytes that drive survival and 36 

proliferation in the metastatic liver niche remains limited. Previous studies profiling 37 

metabolism of HCC indicates transformed hepatocytes engage in aerobic glycolysis and 38 

altered lipid and amino acid metabolism (9, 10). Moreover, substrate fuels are used to 39 

program neighboring immune cells for repressed anti-tumor responses (7). Metastasizing 40 

cells have been shown to require adaptations that help them overcome the hypoxic liver 41 

microenvironment (11-13). But these studies do not consider the role of co-localized, non-42 

transformed hepatocytes. Additionally, these studies are limited in their coverage of the 43 

omics landscape. 44 
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Metabolomics technologies are well-positioned to reveal potential metabolic adaptation 45 

in cancer. Mass spectrometry-based untargeted metabolomics surveys global metabolic 46 

shifts among samples by measuring the fluctuations of multiple chemical feature 47 

abundances detected as mass-to-charge (m/z) signal and retention time pairs (14-16). An 48 

additional dimension of information can be gained by the convergent use of 13C-labeled 49 

stable isotope tracers. While static measurement of metabolites provides a snapshot of 50 

perturbed influxes or effluxes that lead toward or away from measured metabolites, these 51 

measurements often fail to reveal nodes through which shifts occur without significant fold 52 

changes in the static abundance of metabolites (17). Merging the advantages of high-53 

resolution mass spectrometry-based untargeted metabolomics with 13C-stable isotope 54 

labeling known as isotope tracing untargeted metabolomics (ITUM) provides a unique 55 

opportunity to discover dynamic and potentially crucial metabolic pathways (18-21). 56 

However, studying metabolic communication in the microenvironment is an ongoing 57 

challenge (22). Stable isotopes present an advantage, but developing model systems 58 

amenable to ITUM approaches while maintaining physiological relevance is difficult. Here, 59 

we present an approach using our untargeted metabolomics and ITUM pipelines in an 60 

engineered in vitro model to discover metabolic interactions between colon 61 

adenocarcinoma cells (SW480 cell line) and primary hepatocytes. To adapt our pipeline to a 62 

mixed cell model, we quantify extracellular and intracellular metabolite pools upon co-63 

culture to identify impacted metabolic pathways. Additionally, we hypothesized that the 64 

combined study of differential glucose utilization and metabolite-metabolite relationships 65 

could reveal tumor cell metabolic adaptation in the hepatocyte-SW480 microenvironment. 66 
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Therefore, we present approaches that extend the application of untargeted metabolomics 67 

and ITUM to reveal nodes of adaptation in the tumor-hepatocyte microenvironment. Finally, 68 

a multiomic integration with the transcriptome links metabolic adaptations to altered 69 

functional programs in tumor cells with co-localized hepatocytes. 70 

 71 

Results 72 

Co-culture of SW480 cells with primary hepatocytes reprograms metabolism. We used 73 

a co-culture model to study metabolic adaptation of tumor cells to the hepatocyte 74 

microenvironment. Culturing primary hepatocytes is challenged by their loss of hepatocyte-75 

like function through de-differentiation (23, 24). However, co-culture with 3T3-J2 murine 76 

embryonic fibroblasts can sustain hepatocellular function for more than 6 weeks (25). 77 

Therefore, we directly co-cultured primary rat hepatocytes, murine 3T3-J2 fibroblasts (J2s), 78 

and the human colon adenocarcinoma cell line, SW480 (Figure 1A). To form 2D co-cultures, 79 

J2s were growth arrested and then plated with hepatocytes in 12-well plates to sustain 80 

hepatocellular function (HJ cultures). Control plates of J2s were plated on the same day in 81 

preparation for SW480-J2 (SJ) control co-cultures. After 7 days, SW480s were seeded to form 82 

SW480-J2-Hepatocyte (SJH) co-cultures and SJ controls. All media and cells were collected 83 

on day 10 for metabolomics and transcriptomics analyses (Figure 1B). In each experiment, 84 

the group of interest, SJH, was compared to HJ and SJ controls. 85 

Cancer metabolism is hallmarked by high glucose consumption and utilization through 86 

aerobic glycolysis, resulting in high lactate production, known as the Warburg Effect (26, 27). 87 

Hepatocytes play significant roles in regulating glucose homeostasis. We hypothesized that 88 
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hepatocytes may impact glucose metabolism in co-cultures. Therefore, we quantified net 89 

changes in glucose and lactate concentrations in conditioned cell culture media using 1H-90 

nuclear magnetic resonance (NMR) spectroscopy. Then, we normalized changes in 91 

exogenous metabolite concentrations to cellular biomass (DNA content) to report net 92 

glucose consumption and lactate production over 24 hours. As expected, SJ controls model 93 

the Warburg effect in culture, consuming 2.50 ± 0.01 mol glucose/day/mg DNA, and 94 

producing 3.86 ± 0.05 mol lactate/day/mg DNA (Figure 2A). The presence of hepatocytes 95 

decreased total glucose consumption by 80% (0.5 ± 0.05 mol glucose/day/mg DNA) and 96 

lactate production by 94% to 0.23 ± 0.01 mol lactate/day/mg DNA. Furthermore, the ratio of 97 

lactate to glucose significantly decreased from 1.54 ± 0.02 to 0.46 ± 0.05, suggesting the 98 

presence of hepatocytes disrupts Warburg metabolism of SW480s (Figure 2B). 99 

To determine if decreased utilization of glucose by SW480 cells when co-cultured with 100 

hepatocytes could result from a fuel switch from glucose to other available substrates, we 101 

quantified hepatocyte-derived ketones and culture media-derived glutamine. Using a 102 

UHPLC-MS/MS based approach, we quantified total ketone bodies in the conditioned media 103 

of co-cultures after 24 hours. As expected, primary rat hepatocyte control co-cultures 104 

produced the ketone bodies acetoacetate (AcAc) and β-hydroxybutyrate (βOHB, Figure 2C). 105 

In the presence of SW480s, total ketone bodies recovered in the media were diminished by 106 

64%, suggesting either decreased production by hepatocytes or increased consumption of 107 

ketones by non-hepatocyte cells. Glutamine abundance was also significantly decreased in 108 

SJH co-cultures relative to both HJ and SJ controls (Figure 2D). Interestingly, glutamine 109 

abundance decreased 36% in SJH relative to SJ controls, suggesting the presence of 110 
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hepatocytes further enhanced glutamine dependence of SW480s. Together these data 111 

suggest an adaptation to fuel utilization in hepatocyte-SW480 co-cultures. 112 

To survey metabolic interaction-dependent metabolite shifts resulting from co-culture, 113 

we next used differential analysis of features detected by LC-MS-based label-free 114 

untargeted metabolomics. Prior to any downstream analysis, low variance features were 115 

removed, features of interest were annotated in Compound Discoverer 3.3, and when 116 

possible, matched to commercial standards and MS/MS spectral libraries. Five metabolic 117 

features by LC-MS-based untargeted profiling increased more than 2-fold (log2 ≥ 1) in SJH 118 

compared to HJ controls. This included putative S-adenosylhomocysteine (SAH; Table 1, 119 

Figure 2E), an intermediate of one-carbon metabolism. Compared to HJ, SJH co-cultures 120 

showed 142 downregulated features, including pyruvate (Supplemental Figure 1A), acetyl-121 

CoA (Supplemental Figure 1B), and propionyl-CoA (Supplemental Figure 1C), metabolites 122 

important in glucose metabolism and the TCA cycle. Relative to SJ controls, SJH co-cultures 123 

show a greater than 2-fold increase in 10 features, including propionyl-CoA (Figure 2F; 124 

Supplemental Figure 1C), glutamyl-glycine, an intermediate of glutathione metabolism, 125 

and acetyl-CoA (Supplemental Figure 1B). A ≥2-fold decrease was observed in 119 features 126 

in SJH compared to SJ controls, including pyruvate (Supplemental Figure 1A), lactate 127 

(Supplemental Figure 1D), NAD+ (Supplemental Figure 1E), and ATP (Supplemental 128 

Figure 1F). However, decreases in the NAD+ pool did not lead to a significant change in the 129 

NAD+/NADH ratio in SJH relative to SJ (Supplemental Figure 1G). Finally, we calculated 130 

energy charge to determine the current energy status of the co-culture based on relative 131 

abundance of AMP, ADP, and ATP pools. We saw a modest, but not statistically significant, 132 
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decrease in SJH relative to SJ co-cultures, suggesting a possible decrease in available energy 133 

(Supplemental Figure 1H-I). 134 

Untargeted metabolomics of mixed cell populations represent metabolite pools that are 135 

combined across all cell types. Therefore, changes in relative abundance may represent an 136 

adaptation in one cell type, a combination of adaptations across multiple cell types, or could 137 

simply be a product of dilution of the pool after adding biomass. Due to the observed number 138 

of features that were significantly decreased in SJH relative to either HJ or SJ controls, we 139 

sought to determine if our approach detects true biological interactions in hepatocyte and 140 

SW480 co-cultures, rather than simple dilutions of HJ or SJ metabolite pools. Therefore, we 141 

implemented a dilution approach to identify those features that were significantly different 142 

from a HJ-SJ dilution (Figure 3A). HJ and SJ extracts were combined 1:1 (1T1) prior to LC-MS 143 

injection, alongside HJ, SJ, and SJH samples. Putative metabolites with pool sizes that 144 

significantly differed between SJH and controls were compared to the 1T1 dilution sample. 145 

A low threshold for discovery was used (p< 0.05) to identify those features that may indicate 146 

metabolic interactions. Lactate was significantly decreased in SJH relative to 1T1 samples 147 

(Figure 3B; Table 2).  Normalized ion counts for each group and the analytical control, 1T1, 148 

are shown in Supplemental Figure 2, demonstrating a likely metabolic interaction between 149 

SW480s and hepatocytes beyond an outcome that could be explained by simple metabolite 150 

pool dilution. Additionally, four glutamyl peptides – including glutamyl-glycine, as well as 151 

uracil, uridine diphosphate (UDP), aspartate, and malate were increased more than 2-fold in 152 

SJH relative to 1T1 (Figure 3B; Table 2). Employment of an analytical 1T1 dilution of controls 153 
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for differential analysis of directly co-cultured cells reveals biological derangement of 154 

metabolite abundances belonging to glycolytic, amino acid, and nucleoside pathways. 155 

Metabolite exchange of nucleoside intermediates. Untargeted metabolomics results 156 

indicate altered activity in both purine and pyrimidine pathways when SW480s are co-157 

cultured with hepatocytes, whose identities were confirmed by retention time and MS/MS 158 

fragmentation match to commercial standards (Figure 2E-F; Figure 3B). We hypothesized 159 

that the presence of hepatocytes may facilitate adaptation through exchange of purine and 160 

pyrimidine intermediates. Therefore, we performed LC-MS-based untargeted metabolomics 161 

on cell extracts and media after the first 24 hours of direct co-culture to evaluate fold 162 

changes in nucleoside intermediate abundance over time. In all three groups, hypoxanthine, 163 

an intermediate of purine metabolism, was depleted comparing starting media (t0) to media 164 

harvested after 24 hours, indicating uptake from serum-containing media or conversion to 165 

other metabolic products (Figure 4A, Table 3). SJH co-cultures had 23% (±3%) greater 166 

depletion of hypoxanthine compared to HJ controls and 12% (±4%) less than SJ controls 167 

(Supplemental Figure 3). Interestingly, hypoxanthine abundance was coupled with 168 

diminished extracellular uric acid, the terminal product of purine degradation, in HJ and SJH 169 

groups, while SJ controls show an average 809% increase in uric acid (Figure 4A, 170 

Supplemental Figure 3). Hypoxanthine and uric acid are both metabolites that can be found 171 

in starting media due to the presence of serum. We further analyzed media under normal 172 

culture conditions and in the absence of cells to control for possible spontaneous 173 

degradation and observed an accumulation of hypoxanthine and uric acid (9% and 47%, 174 

respectively) after 24 hours, suggesting instability of upstream metabolites at 37°C (denoted 175 
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as dotted lines, Supplemental Figure 3). Therefore, these data indicate significant 176 

metabolic activity in the purine degradation pathway in SJ controls that is altered by the 177 

presence of hepatocytes. To investigate if this impacts intracellular purine intermediates, we 178 

measured inosine in cellular extracts. Inosine, an intermediate in the purine salvage 179 

pathway, showed a 2-fold increase in hepatocyte-containing cultures while it was modestly 180 

diminished in SJ controls after 24 hours (Figure 4B). Finally, inosine was uniquely enriched 181 

from [U-13C6]glucose in HJ and SJH groups but not detectable in SJ in 3D microtissue 182 

organoids (Figure 4C). Conversely, the average total 13C-enrichment of HJ and SJH groups 183 

was 58.7% (± 1.5%) and 64.7% (± 4.5%) of the total inosine pool. This observation suggests 184 

that changes in glucose contribution to inosine pools may be localized to hepatocytes. 185 

Together these data suggest the presence of hepatocytes increases purine salvage, rescuing 186 

cells from uric acid accumulation. 187 

Pyrimidine metabolism is increased in hepatocytes by co-culture with SW480 cells. 188 

Hepatocytes are a primary source of uridine, an intermediate of pyrimidine metabolism. We 189 

hypothesized that altered pyrimidine pools may be a result of newly available uridine from 190 

hepatocytes. Therefore, we measured pyrimidine intermediates by LC-MS/MS in media and 191 

cell extracts to observe changes in pool sizes over 24 hours compared to starting media. As 192 

expected, we observed an accumulation of uridine in the media of hepatocyte-containing 193 

co-cultures that was not present in SJ controls (Figure 4D). Interestingly, we observed an 194 

even greater accumulation of orotic acid, an intermediate of de novo pyrimidine 195 

biosynthesis (Table 3). We did not observe a significant difference between SJH and HJ 196 

controls, suggesting these media signals are primarily driven by hepatocytes. However, 197 
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intracellular pool sizes of pyrimidine metabolites showed greater increases in SJH relative to 198 

HJ controls, including carbamoyl aspartate – the product of the rate-limiting step in de novo 199 

pyrimidine biosynthesis, suggesting the co-localization of hepatocytes and SW480s 200 

upregulates the pyrimidine biosynthetic pathway (Figure 4E).  201 

Discriminant 13C-ITUM analysis of SJH co-cultures. 13C-stable isotope tracing of 202 

metabolic substrates has been used to detect metabolic adaptation (20, 28). However, 203 

incorporation of glucose-derived carbon in diverse metabolic pathways in mammalian cells 204 

convolutes biological interpretation of enrichment patterns in complex samples. We 205 

hypothesized that informatic integration of co-13C-enriched metabolites elucidates pathway 206 

activity. Therefore, we employed univariate and multivariate statistical approaches to 207 

characterize glucose utilization in co-culture. SJ and SJH co-cultures were treated with [U-208 

13C6]-glucose for 24 hours on day 9. On day 10, cells were snap frozen for 13C-ITUM and 209 

acquired LC-MS data was analyzed for 13C-enriched mass isotopomers (i.e., isotopologues) 210 

[M+0, M+1, …, M+n] to identify nodes of glucose-derived metabolism that differentiate SJH 211 

co-cultures from SJ controls. We first used principal components analysis (PCA) to identify 212 

isotopologues that discriminate SJH co-cultures from HJ and SJ controls (Figure 5A). PC1 213 

significantly separated SJH and SJ groups, while PC2 moderately separated SJH from HJ 214 

controls. Strong association with PC1 indicated co-13C-enrichment of these metabolites 215 

captures the impact of hepatocytes on SW480s. To further investigate adaptations to 216 

glucose metabolism after co-culturing hepatocytes on SW480s, we performed a univariate 217 

correlation analysis of top contributors to PC1 loadings, including only SJ and SJH 13C-218 

enrichment. We visualized these relationships in a correlation matrix (Figure 5B; 219 
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Supplemental Figure 4). A positive correlation between feature pairs indicates co-13C-220 

enrichment of isotopologue pools in response to SW480 co-culture with hepatocytes 221 

relative to SW480 alone, while a negative correlation indicates a possible bifurcation of 13C-222 

labeled carbon because of co-culture. As would be expected, fractional enrichment of M+0, 223 

the isotopologue indicating no 13C incorporation, of several metabolites, including TCA cycle 224 

intermediates, were positively associated with each other and clustered together (“Region 225 

1” on Figure 5B). These M+0 species show a strong negative correlation with the 13C-226 

enriched isotopologues (species in “Region 2”), e.g., M+0 of Glutamate (“E_M0”) versus the 227 

incorporation of four 13C atoms (“E_M4”). This is the expected relationship and supports the 228 

validity of this analytical framework, which also reveals many unanticipated relationships. 229 

For example, the M+6 isotopologue of uridine diphosphate N-acetylglucosamine 230 

(UDPGlcNAc, corresponding to the direct incorporation of a labeled glucose molecule into 231 

glucosamine), clustered with unenriched (M+0) isotopologues of several metabolites in 232 

Region 1 (Red arrow, Figure 5B) and negatively correlated with enriched glutathione (e.g., 233 

GSH_M3, found in Region 2; Blue arrow). UDPGlcNAc M+6 enrichment decreases in co-234 

culture, while enrichment of GSH increases (relative to the SJ condition), suggesting glucose 235 

is redirected from the hexosamine biosynthetic pathway to glutathione synthesis in co-236 

culture (Supplemental Figure 5). Region 3 shows a cluster of isotopologues from glycolytic 237 

and TCA cycle intermediates with strong co-enrichment. As expected, this includes 238 

enriched isotopologues of metabolites in the same pathway, such as glutamate (E_M4), a 239 

precursor to GSH (GSH_M4; Yellow arrows, Figure 5B). The positive co-enrichment of other 240 

TCA cycle intermediates with GSH may meet GSH demand in response to co-culture. Finally, 241 

11

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 14, 2024. ; https://doi.org/10.1101/2024.12.06.627264doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.06.627264
http://creativecommons.org/licenses/by-nc-nd/4.0/


Region 4 shows isotopologues with nominal relationships to each other, suggesting little 242 

change in response to co-culture. Together these data indicate 13C-enrichment of 243 

glutathione from glucose is significantly impacted by co-culturing of SW480s and 244 

hepatocytes. Glutathione is an important metabolite in redox homeostasis within the cell 245 

and changes to its biosynthesis may be a significant adaptation of metabolic pathways to 246 

the tumor-hepatocyte microenvironment. 247 

Transcriptomic analysis of 3-dimensional hepatocyte-SW480 microtissue organoids. To 248 

evaluate SW480 adaptation to co-culturing with hepatocytes in a more physiological setting, 249 

we also performed transcriptomic profiling of SJ and SJH groups using a 3D microtissue 250 

organoid model. We co-cultured SW480 with primary rat hepatocytes and 3T3-J2 fibroblasts 251 

within collagen I-based microtissues (Figure 6A). Conditions included SJ cells and SJH using 252 

the same cell numbers and proportions as 2D co-culture. The SJH tricultures alongside co-253 

culture controls were maintained for 7 days before harvesting for transcriptional and 254 

metabolic analyses. To identify transcriptional alterations that occur in cancer cells upon 255 

exposure to hepatocytes, we performed bead isolation using antibodies against CD326 256 

(EpCAM) to isolate the SW480 tumor cells grown in the presence and absence of 257 

hepatocytes and supporting J2s and performed bulk RNA-seq analysis to identify genes and 258 

pathways that are modulated when exposed to hepatocytes. We found that exposure of 259 

tumor cells to hepatocytes led to increased expression of 708 genes and decreased 260 

expression of 762 genes in SW480 cells (adj. p <0.05) (Figure 6B). Further analysis of gene 261 

ontology (GO) and gene set enrichment analysis (GSEA) demonstrated significant 262 

alterations in hallmark pathways of Myc targets and pathways associated with several 263 
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metabolic processes, including oxidative phosphorylation, metabolism of amino acids, GSH 264 

metabolism, and fatty acid metabolism (Figure 6C-E; Supplemental Table 1,2). We also 265 

compared RNAseq findings to oncogenic pathways (Figure 6F). These findings demonstrate 266 

that hepatocytes drive transcriptional changes in tumor cells, many of which are associated 267 

with changes in metabolic pathways. 268 

Multiomics analysis of differentially expressed genes and static metabolite pools. Our 269 

2D co-culture metabolomics pipeline and 3D transcriptional profiling both identified 270 

adaptations in amino acid, biosynthetic, and oxidative pathways. Therefore, we integrated 271 

these datasets in 2D to identify metabolite-gene relationships important to the SW480-272 

hepatocyte microenvironment. Multiomic integration of a tumor cell transcription profile 273 

and metabolomic datasets can help establish the relationship between bulk metabolic 274 

adaptation and tumor cell phenotype. After bead isolation from hepatocytes and 3T3-J2s 275 

using antibodies against CD326 (EpCAM), RNA from SW480s was isolated and sequenced. 276 

Differentially expressed genes (adj. p < 0.01) were combined with significantly altered 277 

metabolite pools (Figure 3B) for univariate association analysis, recovering 627 mRNAs that 278 

were significantly correlated with 255 putative metabolites (p < 0.001, Supplemental Table 279 

3). We further filtered this correlation matrix to only include very strong associations (R > 280 

|0.98|) to identify a subset of genes related to metabolic adaptation. A total of 151 unique 281 

genes correlated strongly with lactate, orotic acid, glutamyl-glycine (glu-gly), malate, and 282 

UMP (Figure 7A). In these analyses, positive correlations indicate co-expression in response 283 

to co-culture while negative correlations indicate opposing expression pattern in response 284 

to co-culture. Given our findings of glutathione metabolism, we chose to look closer at the 285 
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98 genes that associated with the metabolite glutamyl-glycine for gene-gene relationships 286 

(Figure 7B). GO enrichment analysis of biological processes of 98 genes associated with glu-287 

gly revealed enrichment regulation of the cell cycle, response to hypoxia, and tissue 288 

morphogenesis (Figure 7C). Ontologies associated with all 151 genes further included 289 

adhesion, hypoxia, and angiogenesis (Supplemental Figure 6A-B).  290 

In this study we have demonstrated a multiomic platform that uses LC-MS-based 291 

untargeted metabolomics approaches and bulk RNA-sequencing to reveal complex 292 

interactions in a mixed cell population. Additionally, these approaches can be translated to 293 

3D microtissue organoid models. Bioinformatic interrogation of datasets suggests an 294 

important adaptation in the oxidative environment and in reactive oxygen species 295 

(ROS) homeostasis in the tumor microenvironment upon introduction to hepatocytes. 296 

 297 

Discussion 298 

This study employed a multiomic approach to uncover metabolic adaptation in the tumor-299 

hepatocyte microenvironment using co-cultures of human colon adenocarcinoma cells 300 

(SW480) and primary rat hepatocytes, with the support of murine 3T3-J2 fibroblasts. By 301 

integrating untargeted metabolomics, 13C-stable isotope tracing untargeted metabolomics 302 

(ITUM), and transcriptomic analysis, we identified several critical metabolic alterations 303 

driven by the interaction between tumor cells and hepatocytes. First, co-culture of SW480s 304 

with primary hepatocytes significantly altered glucose metabolism. Hepatocytes reduced 305 

glucose consumption by 80% and lactate production by 94%, compared to SW480 306 

monocultures. This suggests hepatocytes disrupt the classical Warburg effect in SW480 307 
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cells by influencing glucose metabolism (4, 27, 29). Previous work indicates that aerobic 308 

glycolysis is an important adaptation for overcoming hypoxia within the liver, thus 309 

suppression by hepatocytes may impact survival (11). Hepatocytes display highly dynamic 310 

metabolism that serves to regulate glucose homeostasis. In the presence of high glucose 311 

levels, hepatocytes can direct excess glucose molecules to storage as glycogen, de novo 312 

lipogenesis, or to produce uridine (30). Additionally, hepatocytes can use lactate for 313 

gluconeogenesis. Further study is necessary to deconvolute these intersectional and 314 

dynamic metabolic programs of varying glucose consumption (by both tumor cells and 315 

hepatocytes) and glucose production (hepatocytes) when cells are co-cultured in a manner 316 

that mimics the tumor microenvironment.  317 

In response to reduced glucose consumption, SW480 cells adapted their fuel utilization. 318 

We observed a substantial reduction in ketone bodies and glutamine in the media of co-319 

cultures, indicating increased consumption of these alternative substrates. In absence of 320 

glucose, tumor cells can reportedly shift to alternative fuels, such as glutamine, however 321 

whether this plasticity extends to ketone bodies is not yet well understood. Ketogenesis has 322 

been a topic of interest in cancer research (31). Studies have indicated a relationship 323 

between diminished expression of rate-limiting enzyme, 3-hydroxy-3-methylglutaryl 324 

synthase 2 (HMGCS2), and tumorigenesis (32-34). Thus, it is also possible diminished 325 

ketones in the media is due to reduced production through ketogenesis. Further, targeting 326 

ketogenesis has been proposed as a potential therapeutic strategy for inhibiting tumor 327 

progression, though responses in vivo vary between cancer types and stages (31, 35-38). Our 328 

studies suggest an impact of SW480-hepatocyte interaction on ketone body metabolism 329 
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may represent adaptation for tumor survival. As ketogenic capacity has also been shown to 330 

vary across the spectrum of metabolic dysfunction-associated steatotic liver disease 331 

(MASLD), further study of the relationship between ketogenesis, cancer, and liver health is 332 

warranted.  333 

Untargeted metabolomics revealed additional changes in metabolites associated with 334 

the TCA cycle and energy metabolism. Notably, acetyl-CoA was elevated, while pyruvate, 335 

ATP, and NAD+ were decreased, highlighting key metabolic nodes affected by hepatocyte 336 

presence. The co-culture system revealed a possible metabolic exchange between 337 

hepatocytes and SW480 cells, particularly in purine and pyrimidine metabolism. SW480s in 338 

co-culture displayed enhanced salvage and reduced uric acid production, coupled with 339 

increased pyrimidine biosynthesis. Uric acid can regulate oxidative stress, activity of 340 

enzymes related to glucose metabolism, and is associated with development of metabolic 341 

syndrome (39). Additionally, uric acid is linked with cancer risk (40, 41). Therefore, the 342 

modulation of uric acid levels and purine metabolism may be critical for targeting tumor 343 

growth. Further, due to comorbidities of cancer and obesity, the intersection of uric acid and 344 

metabolic syndrome in the tumor-hepatocyte niche may be an important area of further 345 

study. Recent work has established the pyrimidine intermediate, uridine, as an alternative 346 

fuel source for cancer cells in a glucose restricted environment (42, 43). As uridine was 347 

elevated in the media of hepatocyte-containing cultures, it is possible SW480s utilize this 348 

metabolite to drive activity in the pyrimidine pathway. Further study is needed to understand 349 

how access to uridine impacts cancer metabolism in the liver and how flux through these 350 

nucleoside pathways may impact the oxidative environment. 351 
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13C-stable isotope tracing of mixed cell populations results in convoluted 13C-enrichment 352 

datasets that can be difficult to interpret for individual cell populations. For this reason, 353 

studies often employ conditioned media exchange to study intercellular metabolic 354 

dependencies. These studies are limited by the lack of cellular contact that may be relevant 355 

to metabolic interactions and the difficulty adapting these methods toward the more 356 

complex and advantageous preclinical models of the microenvironment, such as 3D 357 

microtissue organoids. Using unsupervised dimension reduction and association analyses, 358 

discriminant 13C-ITUM allows for pathway analysis by identifying 1) enriched isotopologues 359 

that discriminate groups and 2) metabolite-metabolite relationships within the 360 

discriminating isotopologue set. Therefore, discriminant 13C-ITUM is a form of pathway 361 

analysis that highlights co-enriched metabolic pathways characterizing mixed cell 362 

populations. This systems-level approach enables specificity to substrate utilization with 363 

fewer constraints than metabolic flux analysis. 364 

Transcriptomic profiling of SW480s revealed adaptation to metabolic pathways and 365 

enrichment of oncogenic pathways, including YAP, PTEN, and MYC. These signaling hubs 366 

have been implicated in the regulation of cancer cell metabolism (44-46). Here we observe 367 

their regulation in response to the presence of hepatocytes in the tumor microenvironment. 368 

Multiomic integration of metabolomics and RNA-seq data further showed that metabolic 369 

adaptations were associated with significant transcriptional changes in SW480 cells. These 370 

changes were linked to key biological processes, including adhesion, hypoxia response, and 371 

angiogenesis, indicating that tumor cells undergo functional adaptation in response to the 372 

hepatocyte microenvironment. These results are further supported by co-enrichment 373 
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networks through a novel analysis of ITUM datasets, which we have called discriminant 374 

ITUM. This analysis indicated the importance of glutathione synthesis in differentiating 375 

SW480-hepatocyte co-cultures from SW480 controls. Finally, these findings were supported 376 

by preliminary studies of a 3D microtissue organoid model, which demonstrated that co-377 

culturing SW480 cells with hepatocytes induces similar transcriptional and metabolic 378 

changes observed in 2D co-culture system. 379 

While this study provides important insights into the metabolic interplay between tumor 380 

cells and hepatocytes, several limitations should be acknowledged. First, the use of 2D co-381 

cultures, though effective in revealing key metabolic interactions, lacks the complexity of in 382 

vivo systems and may not fully capture the spatial and structural dynamics present in the 383 

liver microenvironment. Future work in advanced models such as organ-on-a-chip or 3D 384 

culture systems could provide more physiologically relevant insights. Additionally, our 385 

analysis primarily focused on the metabolic and transcriptional changes in tumor cells, 386 

leaving the metabolic impact on hepatocytes underexplored. Future work should involve a 387 

comprehensive assessment of hepatocyte responses to tumor interaction, including 388 

potential metabolic reprogramming. Mechanistic studies targeting the identified metabolic 389 

nodes, such as altered glucose and ketone metabolism or nucleoside exchange, could 390 

further elucidate their roles in tumor progression and present potential therapeutic 391 

strategies to disrupt these metabolic dependencies. 392 

 393 

Materials and Methods 394 

Reagents 395 
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LCMS grade water (H2O) (Fisher, W6-4), LCMS grade methanol (MeOH) (Fisher, A456-4), 396 

LCMS grade acetonitrile (ACN) (Fisher, A955-4), DMEM (high glucose) (Thermo, 11965092), 397 

DMEM (no glucose) (Thermo, A1443001), fetal bovine serum (Biotechne, S11150), Pen/Strep 398 

(Thermo, 15140122), L-glutamine (200 mM) (Thermo, 25030081), Phosphate Buffered Saline 399 

(PBS) (no CaCl2 or MgCl2) (Thermo, 14190144), Molecular Biology Grade Water (Corning, 400 

46-000-CM), Pierce BCA Protein Assay Kit (Thermo, 23225), Genomic DNA kit (blood and 401 

cultured cells) (IBI scientific, IB47201). 0.25% Trypsin-EDTA (Corning 25-053-Cl), Hank’s 402 

Balanced Salt Solution (HBSS) (with CaCl2 or MgCl2) (Gibco 14025-076), Collagenase Type 403 

IV (Sigma Aldrich, C5138), Human CD326 (EpCAM) MicroBeads (Miltenyi Biotec, 130-061-404 

101), CD16/CD32 Monoclonal Antibody (Invitrogen 14-0161-82), LS Magnetic Separation 405 

Columns (Miltenyi Biotec 130-042-401), QuadroMACS Magnetic Separator (Miltenyi Biotec 406 

130-090-976),  RNeasy Mini Kit (Qiagen, 74104). 407 

 408 

2D and 3D culture platform 409 

For both 2D and 3D cultures, 3T3-J2 fibroblasts (Kerafast, Catalog Number:  EF3003)  and 410 

SW480 cells (ATCC, lot Number: 700031955) are maintained in tissue culture flasks until 411 

ready for use. Primary rat hepatocytes (PRH, Cryopreserved Male Wistar Rat Plateable 412 

Hepatocytes AMY 7 mil, Catalog Number: r3000.H15 Lot No. 1210326) were thawed 413 

immediately before use. 3T3-J2 fibroblasts are growth arrested using 1 µg/mL mitomycin-C 414 

for 4 hours in culture before detachment using trypsin-EDTA. 415 

In 2D, 150k PRH and 150k 3T3-J2 fibroblasts are plated per well for all HJ, SJH, SJ wells. 416 

On day 7, 50k SW480 cells are seeded to SJH and SJ wells. On day 9, cell culture media is 417 
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changed to exchange equimolar (22 mM) unlabeled glucose for non-radioactive, stable 418 

isotopically labeled 22 mM [U-13C6]glucose according to previously established protocols 419 

(47). Cells and final conditioned media are collected on day 10. 420 

3D microtissue organoids were fabricated as previously described (25). Briefly, plates 421 

were with 2% agarose and allowed to stiffen for 24 hours. We then used a microwell stamp 422 

made from a PDMS mold to create 200 µM microwells that held the microtissues separately 423 

within the same well. After cleaning the microwells with a series of washes, we added media 424 

to the wells. We maintained the microtissues in Human Hepatocyte Maintenance Media 425 

(HHM) (43.25mL 1x DMEM, 5 mL Bovine Serum, 750 µL HEPES, 1M, pH 7.6, 500 µL 426 

insulin/human transferring/selenous acid and linoleic acid premix (Corning premix 427 

solution), 500 µL Penicillin-streptomycin, 100X solution of 50 mg/mL stock, 0.5 µL 428 

Dexamethasone, 10 mM in DMSO, 0.5 µL Glucagon, 0.7 mg/mL in 0.05 M acetic acid. During 429 

the study, we provided fresh media changes every 48 hours by removing 300 µL from each 430 

well and replacing it with 300 µL of fresh media. We then removed the microtissues at their 431 

respective time point. 432 

Quantification of Glucose and Lactate via 1 H NMR 433 

~50 µL of cell culture media was dried to completion in a SpeedVac in the presence of D2O 434 

to aid in water suppression. Samples were reconstituted in D2O (99.9%) spiked with 0.3 mM 435 

d4-trimethyl-silyl propionate (TSP). 1H-NMR signals were acquired using a Bruker Avance III 436 

600 NMR instrument equipped with a CryoProbe, then the integrated intensities of the α-437 

anomeric proton on glucose carbon-1, the methyl signal for lactate, and the tri-methyl signal 438 
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from TSP, were used to calculate molar concentrations of the respective substrates. For all 439 

1H-NMR collections, spectra were collected by conventional pulse-and-collect 440 

measurements under quantitative conditions (10-ppm spectral range using ~15 μs [90°] 441 

excitation pulse and 22-second delay between each of 20 transients). 442 

Untargeted Metabolomics and Isotope Tracing Untargeted Metabolomics pipeline 443 

Cells are harvested, metabolites extracted, and raw data acquired using liquid 444 

chromatography (LC) on a Thermo Vanquish UHPLC system, and full-scan high-resolution 445 

mass spectrometry (HR-MS) on a Thermo QExactive plus hybrid quadrupole-orbitrap mass 446 

spectrometer fitted with heated electrospray ionization source and operated in negative and 447 

positive polarity mode.  448 

Cell collection for metabolomics. Media was collected and snap frozen, then adherent 449 

cells were washed twice with 1 mL warm (37°C) PBS (-MgCl2, -CaCl2), once with warm 450 

(37°C) cell-culture grade H2O, then the entire plate was submerged into liquid nitrogen to 451 

snap freeze cells, which rapidly quenches metabolism. To preserve the metabolome, cells 452 

were scraped in 500 μL of cold (-20°C) LCMS grade MeOH per well of cells. Two wells were 453 

combined to form each replicate, n = 3 per group. Finally, MeOH was evaporated using a 454 

SpeedVac. Dried cell pellets were stored at -80°C until analysis. 455 

Metabolite extraction. Metabolites from cell pellets and conditioned media were 456 

extracted and analyzed by LC-MS untargeted metabolomics according to previously 457 

published protocols (47, 48). Briefly, cell pellets are reconstituted in 1 mL 2:2:1 (v/v/v) 458 

ACN:MeOH:Water, then vortexed (30s), flash frozen in liquid nitrogen (1 min), and sonicated 459 

(25°C, 10 min) in three cycles. After 1 hour at -20°C, samples are centrifuged at 15k x g at 4°C 460 
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for 10 minutes. Supernatant was transferred to a fresh tube and dried by SpeedVac 461 

overnight, while the remaining cell pellet was stored at -80°C after removing any remaining 462 

solvent for DNA quantification.  Cell extracts are reconstituted in 40 µL 1:1 (v/v) ACN:Water 463 

for analysis. 20 µL of conditioned media was extracted in 80 µL 1:1 (v/v) ACN:MeOH. Media 464 

underwent a single cycle of vortex and sonication, then followed the same procedure as cell 465 

pellets. Media samples were reconstituted in 200 µL 1:1 (v/v) ACN:Water for analysis. 466 

Data acquisition. For this study, polar metabolites were acquired using hydrophilic 467 

interaction chromatography (HILIC) and energy nucleotides were acquired by reverse phase 468 

(RP), using two unique UHPLC methods: [1] SeQuant ZIC-pHILIC column (2.1 x 150 mm, 5 469 

μm) (Millipore Sigma, 1.50460). Mobile phase A (MPA) was 95% H2O, 5% ACN, 10 mM 470 

ammonium acetate, and 10 mM ammonium hydroxide. Mobile phase B (MPB) was 100% 471 

ACN. The total run time was 50 minutes, flow rate was 2 mL/min, column chamber was set 472 

to 45°C, and 2 µL sample was injected. Mobile phase gradient was as follows: 0-0.5 min, 473 

90% MPB; 0.5-30 min, 9030% MPB; 30-31 min, 30% MPB; 31-32 min, 300% MPB; 32-33 474 

min, 090% MPB; 33-50 min, 90% MPB. [2] Energy nucleotides (ATP, ADP and AMP), and 475 

redox nucleotides (NAD+ and NADH) were measured as previously described, with 476 

modifications. Briefly, metabolites were extracted from cells for ITUM in MeOH:ACN:H2O 477 

(2:2:1), then extracts were separated and detected using ion-pairing RP UHPLC-MS/MS on a 478 

C18 column (Waters Xbridge, 150 x 2.1mm, 3μm). Nucleotides were detected as adducts of 479 

dibutylamine acetate on a Thermo QExactive Plus mass spectrometer, operated in positive 480 

ionization mode, using parallel reaction monitoring transitions as previously described. 481 
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For all metabolomics pipelines, both blanks and pooled quality control (QC) samples are 482 

injected periodically throughout the run. Blanks were ACN:H2O (1:1) and the QC sample was 483 

a pooled sample including all naturally-occurring and 13C-labeled samples. To aid in 484 

chemical feature identification, two additional samples were also injected. First, was a 485 

standard mix consisting of authentic standards, for all expected analytes. Second, was a 486 

pooled sample consisting only of the naturally-occurring samples, analyzed via data-487 

dependent analysis (DDA) tandem mass spectrometry (MS/MS) using IE omics script and R-488 

Studio (49). 489 

Data preparation. Data processing and initial analysis was performed using Thermo 490 

Compound Discoverer 3.3. After raw mass spectra were uploaded, background ions were 491 

removed, retention time (RT) for detected signals were aligned across samples, chemical 492 

formulas were predicted, then grouped chemical features were profiled to determine 493 

compound identity, based on (1) the m/z predicted from the chemical formula, (2) the RT 494 

compared to an authentic external standard, and (3) the MS/MS fragmentation pattern, 495 

compared to in-house standards or online databases. 496 

For ITUM experiments, putatively identified metabolites and lipids were then carried 497 

forward and [13C] stable-isotope enrichment with correction for natural abundance. To carry 498 

out [13C] stable isotope tracing, all [13C] mass isotopomers (i.e., isotopologues) within the 499 

isotopic envelope of each identified metabolic pool were identified based on the diagnostic 500 

shift in m/z (Δm/z = 1.0033 Da, natural abundance, 1.11% of all carbon) induced by the 501 

presence of 13C-labeled compounds. Raw ion counts for each isotopologue were extracted, 502 

summed, and expressed as a percentage of the total pool. After natural abundance 503 

23

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 14, 2024. ; https://doi.org/10.1101/2024.12.06.627264doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.06.627264
http://creativecommons.org/licenses/by-nc-nd/4.0/


correction, the fractional intensities were then graphed as a function of [13C] content, 504 

generating mass isotopologue distributions (MIDs) for each detected metabolite or lipid. 505 

For static pool analysis, total ion counts were exported from Compound Discoverer and 506 

normalized to biomass (either total DNA or total protein). DNA was quantified from cell 507 

pellets after metabolite extraction using IBI Scientific genomic DNA kit for cultured cells as 508 

previously described for metabolite normalization following kit instructions (50). Total 509 

protein was quantified using the Pierce BCA Protein Assay Kit from separately cultured and 510 

harvested samples in parallel with metabolomics experiments.  511 

Quantification of Total Ketone Bodies 512 

Acetoacetate (AcAc) and β-hydroxybutyrate (BOHB) were formally quantified using UHPLC-513 

MS/MS as described previously (51, 52). Briefly, [U-13C4]AcAc and [3,4,4,4-D4]βOHB internal 514 

standards were spiked into ice cold MeOH:ACN (1:1), then ketones were extracted, 515 

separated via reverse-phase UHPLC, and detected via parallel reaction monitoring (PRM) on 516 

a QExactive Plus hybrid quadrupole-orbitrap mass spectrometer. 517 

Bulk RNA sequencing and analysis 518 

For the 2D platform, cells were collected from the plates using 0.25% Trypsin-EDTA. For the 519 

3D platform, microtissues were collected from the wells and dissociated by incubating at 520 

37°C with 0.1mg/mL Collagenase Type IV in HBSS (+CaCl2, +MgCl2) for 30 minutes, then 521 

manually disrupted to form a single cell suspension. For both platforms, 8 wells were 522 

combined to form replicates, n=3 per group. The single cell suspensions were incubated with 523 

MicroBeads against human CD326 (EpCAM) and antibody against CD16/CD32 to block 524 
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nonspecific binding, then isolated across Miltenyi LS magnetic separation columns. RNA 525 

was isolated from the sorted SW480 cells using a Qiagen RNeasy Mini Kit. 526 

Bulk RNA-seq Analysis. RNA-seq analysis was performed at the Minnesota 527 

Supercomputing Institute at the University of Minnesota. Briefly, Fastq files were first 528 

processed with the CHURP pipeline (version 0.2.3) (53) to perform adaptor trimming using 529 

trimmomatic (version 0.33) (54); reads were then mapped to Homo sapiens GRCh38 530 

genome using HiSat2 (version 2.1.0) (55). Subreads count was generated using the Subreads 531 

featureCounts tool (version 1.6.2) (56) using the Homo_sapiens.GRCh38.100.gtf annotation. 532 

Count data were filtered by removing genes that were less than 300 nt in length and including 533 

only genes that had a cpm (counts per million) value greater than 1 cpm in at least two 534 

sample replicates. The quasi-likelihood test was used to evaluate differential expression 535 

(DE) with edgeR (version 3.38.1) (57, 58). The Benjamini-Hochberg method was used to 536 

adjust p-values for multiple hypothesis testing and an adjusted p-value ≤ 0.05, with a log2 537 

fold change > 0 was used as a DE significance threshold. For gene ontology (GO pathway and 538 

GSEA analysis, the R package clusterProfiler (version 4.4.4) (59, 60) was used. Normalized 539 

Enrichment Score (NES) indicates the distribution of genes across a ranked list and 540 

normalizes the correlation between gene sets and datasets to gene set size, allowing for 541 

comparison. For GSEA analysis specifically, Hallmark and 18 selected C2 pathways were 542 

combined and used for testing (see full GSEA pathway results and selected C2 pathways in 543 

Supplemental Table 1, 2). Analysis of GSEA C6 oncogenic pathways, read counts were 544 

converted to normalized counts using the DESeq2 (version 1.42.0) R package and were 545 

further filtered to get rid of genes with zero expression across all samples. GSEA was then 546 
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performed using the standalone software (version 4.3.2) developed by the Broad Institute, 547 

and statistical significance was assessed via gene set permutation testing (1000 548 

permutations) (61, 62). GEO accession number GSE282081. 549 

Statistics and Multi-omic Analysis 550 

Descriptive data are expressed as mean and standard error (SEM) for continuous measures. 551 

Comparison of metabolite abundance were made between HJ and SJH or SJ and SJH by 552 

unpaired t-test and corrected for multiple comparisons by Benjamini-Hochberg using 553 

GraphPrism v10.2.3. Multi-omic integration of bulk transcriptomic and metabolomics 554 

datasets were performed in R v4.2.3 using rcorr() from the Hmisc package and the igraph 555 

package for visualization of correlations. Given the small dataset, only highly significant 556 

correlations (p-value of Pearson correlation coefficient < 0.001) were included in 557 

downstream pathway and gene ontology analysis. Genes that correlated strongly with 558 

metabolites of interest were included as a set of gene IDs and fold changes in an 559 

ExpressAnalyst query for functional analysis (63). 560 

Discriminant ITUM was performed using a curated dataset of positively identified 561 

metabolites by commercial standard and / or MS/MS match in mzCloud. Selected 562 

metabolites showed significant total enrichment in the SJH group after correction for natural 563 

abundance of 13C (1.11% of all carbon in nature), performed within the Compound 564 

Discoverer “stable isotope labeling” node based on predicted chemical formula. All 565 

isotopologues with enrichment were included for a given metabolite as individual variables, 566 

i.e. S_M0, S_M1, S_M2, S_M3 included as four unique variables representing serine 567 

enrichment. Data presented in 0-100 range and represents percentage of the total 568 
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metabolite pool detected by LC-MS in full scan (MS1). Total pools are calculated by sum of 569 

ion counts for each possible isotopologue (i.e. total ion counts of serine = S_M0 + S_M1 + 570 

S_M2 + S_M3; % Enrichment of S_M3 = ion counts of S_M3 / total ion counts of serine * 100). 571 

The resulting multivariate dataset was used for Principal Components Analysis (PCA) to 572 

identify co-enriched isotopologues that discriminate SJH co-cultures from SJ or HJ controls. 573 

PCA was performed in GraphPrism v10.2.3. Data was standardized prior to PCA. A 574 

correlation network was graphed from the top contributing isotopologues distinguishing SJH 575 

from SJ controls using the igraph package in the R environment for qualitative pathway 576 

analysis of glucose utilization in mixed cell populations. Joint pathway analysis of 3D 577 

microtissue transcriptomics and metabolomics datasets performed in MetaboAnalyst 4.0 578 

(64). 579 
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Tables 755 

Table 1. Differential abundance of select metabolites in SJH co-cultures relative to HJ or SJ 756 
controls. FC: fold change; ctrl: control. 757 

Putative metabolite Log2 (FC: SJH / ctrl) Adjusted p-value Direction;  
Relative to [HJ] or [SJ] 

S-
Adenosylhomocysteine 

1.87 0.0004 ↑; HJ 

Pyruvate -1.05 0.0001 ↓; HJ 
Acetyl-CoA -1.98 0.002 ↓; HJ 

Propionyl-CoA -1.89 0.012 ↓; HJ 
Propionyl-CoA 5.01 0.0004 ↑; SJ 

Glutamyl-glycine 2.47 0.00007 ↑; SJ 
Acetyl-CoA 1.63 0.016 ↑; SJ 

Pyruvate -3.60 0.0006 ↓; SJ 
Lactate -2.78 0.0012 ↓; SJ 

NAD+ -1.85 0.012 ↓; SJ 
ATP -1.09 0.03 ↓; SJ 

 758 

 759 

Table 2. Differential abundance of select metabolites in SJH co-cultures relative to 1T1 760 
dilution. Abbreviations: FC: fold change 761 

Putative metabolite Log2 (FC: SJH / HJ) Adjusted p-value Direction relative to 1T1 
Glutamyl-glycine 2.59 0.0018 ↑ 

Uracil 2.24 0.0044 ↑ 
Uridine diphosphate 1.42 0.021 ↑ 

Aspartate 1.17 0.0018 ↑ 
Malate 1.03 0.0029 ↑ 
Lactate -1.08 0.013 ↓ 

 762 

 763 
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Table 3. Fold change in extracellular and intracellular metabolite abundance after 24-hour 765 
incubation relative to starting media (t0). Adjusted p-value by t-test comparing T24 766 
abundance to T0 abundance with BH correction for multiple testing. Abbreviations: FC: fold 767 
change; E: Extracellular; I: Intracellular; NC: no change. 768 

 Log2 (FC: T24 / T0) [adj. p-value]  
Putative metabolite 

(E/I) HJ SJH SJ Direction relative to T0 

Hypoxanthine (E) -1.36 
[<0.0001] 

-2.62 
[<0.0001] 

-4.73 
[<0.00001] ↓; ↓; ↓ 

Uric Acid (E) -3.97 
[<0.001] 

-4.20 
[<0.001] 

3.17 [<0.001] ↓; ↓; ↑ 

Inosine (I) 1.00 [0.002] 1.27 [0.003] -0.42 [0.27] ↑; ↑; NC 

Uridine (E) 2.36 
[<0.0001] 1.94 [<0.001] -0.50 [0.15] ↑; ↑; NC 

Orotic Acid (E) 4.27 
[<0.00001] 4.19 [<0.001] 0.40 [<0.001] ↑; ↑; ↑ 

Aspartate (I) 0.04 [0.87] 0.55 [0.02] -0.11 [0.49] NC; ↑; NC 
Carbamoyl aspartate 

(I) -0.16 [0.19] 5.47 [0.036] -0.17 [>0.99] NC; ↑; NC 

UDP (I) 0.32 [0.62] 1.44 [0.017] 0.51 [0.33] NC; ↑; NC 
Uridine (I) 1.13 [0.10] 3.23 [0.005] -0.25 [0.33] NC; ↑; NC 

Orotic Acid (I) 0.09 [0.62] 3.48 [0.029] -0.38 [0.37] NC; ↑; NC 
 769 
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Figure Legends 771 

Figure 1. Multiomic study of co-cultures of primary hepatocytes and SW480s. (A) 772 
Scheme of 2D co-culture system and timeline for cell collection. (B) -Omic coverage of co-773 
cultured groups. 774 

 775 

Figure 2. Fuel utilization in 2-dimensional co-cultures. (A) Glucose consumption and 776 
lactate production in moles per ng total DNA per day. (B) Lactate / glucose ratio of media 777 
concentration after 24h. (C) Concentration of acetoacetate (AcAc), β-hydroxybutryrate 778 
(βOHB) and total ketone bodies (TKB) in mmol/g DNA measured in media after 24h 779 
incubation. (D) Relative abundance of glutamine in total ion counts after normalization to 780 
total ng DNA. Volcano plot showing upregulated and downregulated metabolites in SJH 781 
compared to: (E) HJ control cultures and (F) SJ control cultures; positive log2FC = up in SJH. 782 
Significance tested using unpaired t-test, comparison HJ vs SJH or SJ vs SJH, and corrected 783 
for multiple comparisons using Benjamini-Hochberg method. *: p adj. < 0.05, **: p adj. < 784 
0.01, ***: p adj. < 0.001, ****: p adj. < 0.0001. Abbreviations: HJ: Hepatocyte+3T3-J2 co-785 
culture; SJH: SW480+3T3-J2+Hepatocyte co-culture; SJ: SW480+3T3-J2 co-culture. 786 

 787 

Figure 3. Analytical dilution of co-culture controls reveals metabolic adaptation in SJH 788 
co-cultures. (A) Schematic of analytical dilution of HJ and SJ controls to form a 1-to-1 ratio 789 
(1T1) after metabolite extraction. (B) Volcano plot upregulated and downregulated 790 
metabolites in SJH compared to 1T1 ion counts; positive log2FC = up in SJH. 791 

 792 

Figure 4. Metabolic interactions of biosynthetic pathways in SJH co-cultures. Fold 793 
change of metabolite abundance after 24h co-culture relative to time point 0 in: (A) media 794 
abundance of purine metabolism products, hypoxanthine and uric acid, (B) intracellular 795 
inosine pools, (D) media abundance of pyrimidine biosynthesis intermediates, uridine and 796 
orotic acid, and (E) intracellular pyrimidine intermediates and substrates, aspartate, 797 
carbamoyl aspartate, orotic acid, UDP, and uridine. (C) 13C-enrichment of intracellular 798 
inosine pools from 22 mM [U-13C6]glucose in 3D microtissue organoids. Statistical 799 
comparison by unpaired t-test; letters indicate significance in comparison to HJ controls 800 
(“a”) or SJ controls (“b”). 801 

 802 

Figure 5. Discriminant ITUM analysis of SJH co-cultures. (A) Biplot of first two principal 803 
components (PC1, PC2) of PCA of HJ, SJH, and SJ co-cultures by 13C-glucose-enriched 804 
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isotopologues. Black filled circles represent samples. Spheres show co-culture groups. Blue 805 
directed vectors show isotopologue loadings for PC1 and PC2. (B) Hierarchical clustering of 806 
ITUM SJH vs SJ Pearson correlation matrix. White triangle with “1” label indicates control 807 
cluster of isotopologues; Yellow shapes with “2” and “3” label corresponds to cluster of 808 
isotopologues from region of strongly co-enriched isotopologues in response to co-culture; 809 
Black shapes with “4” label corresponds to cluster of isotopologues with weak co-810 
enrichment in response to co-culture. Red arrow, U_M6 positive correlation with unenriched 811 
M+0 isotopologues in Region 1; Blue arrow, U_M6 negative correlation with multiple 812 
isotopologues including GSH_M3 in Region 2; Yellow arrow, GSH_M4 positive correlation 813 
with metabolic precursor E_M4 in Region 3. Abbreviations: M#: isotopologue representing 814 
number of heavy carbons present in the molecule (i.e., M1 indicates presence of 1 heavy 13-815 
carbon), aKG: alpha-ketoglutarate, S: serine, M: Malate, L: lactate, C: citrate, ATP: adenosine 816 
triphosphate, U: uridine diphosphate N-Acetylglucosamine, G: glycine, D: Asparate, E: 817 
Glutamate, GSH: glutathione, Sc: Succinate, GPI: glycerophosphoinositol. 818 

 819 

Figure 6. Transcriptional profiling of tumor cells in 3D microtissues identifies 820 
alterations in metabolic pathways upon exposure to hepatocytes. (A) 3D microtissue 821 
organoid scheme. (B) Volcano plot showing significantly upregulated and downregulated 822 
genes in samples from SJH cultures compared with SJ cultures. Positive logFC indicates up 823 
in SJH cultures. (C) Gene ontology analysis using DEG as input. (D) GSEA Hallmark analysis 824 
of SJ compared with SJH. A positive NES score indicates gene profiles that are enriched in 825 
tumor cells from the SJH condition compared with the SJ condition. All shown pathways 826 
adjusted FDR < 0.05. (E) Expression patterns of core enriched genes associated with Myc 827 
pathway and two metabolic pathways, oxidative phosphorylation and glutathione 828 
metabolism, that are positively enriched in the SJH condition and heat maps. (F) GSEA 829 
Oncogenic analysis of SJ compared with SJH. A negative NES score indicates gene profiles 830 
that are enriched in tumor cells from the SJ condition compared with the SJH condition. All 831 
shown pathways adjusted FDR < 0.05. 832 

Figure 7. Multiomic pathway analysis of metabolic adaptation to hepatocytes. (A) 833 
Correlation network of differentially expressed genes (DEGs) and metabolites in SJH co-834 
cultures compared to SJ control cultures. Gene names filtered from full bulk RNA-835 
sequencing DEGs for significance of correlation to metabolites of interest (p < 0.001). Red 836 
lines indicate strong positive associations and blue represent strong negative associations 837 
(R >|0.98|). (B) Hierarchical clustering of Pearson correlation matrix of transcripts highly 838 
correlated with glutamyl-glycine (Glu-Gly). (C) Gene counts with functional group 839 
membership of 98 transcripts found to correlate strongly with glutamyl-glycine (Glu-Gly)  840 
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Supplemental Figure 1. Metabolite abundance in 2D co-cultures. Ion counts after 841 
normalization to total ng DNA of: (A) pyruvate, (B) Acetyl-CoA, (C) Propionyl-CoA, (D) Lactate, 842 
(E) NAD+, (F) NADH, and (H) AMP, ADP, ATP nucleotides. (G) Ratio of NAD+ to NADH ion 843 
counts. (I) Calculated energy charge of each co-culture group based on ion counts of AMP, 844 
ADP, and ATP. Significance tested using unpaired t-test, comparison HJ vs SJH or SJ vs SJH, 845 
and corrected for multiple comparisons using Benjamini-Hochberg method. *: p adj. < 0.05, 846 
**: p adj. < 0.01, ***: p adj. < 0.001, ****: p adj. < 0.0001. 847 
 848 
Supplemental Figure 2. Lactate abundance in co-culture and 1T1 dilution. Bar graph of 849 
total ion counts after normalization to DNA compared to analytical dilution (1T1). 850 
Significance tested using unpaired t-test, comparison HJ vs SJH or SJ vs SJH, and 1T1 vs SJH; 851 
corrected for multiple comparisons using Benjamini-Hochberg method. *: p adj. < 0.05, **: 852 
p adj. < 0.01 853 
 854 
Supplemental Figure 3. Percent change in media purines. Percent difference in media 855 
after 24h incubation with co-cultured cells where time point 0 represents starting media 856 
abundance prior to cell exposure. Dotted lines represent accumulation of hypoxanthine 857 
(Hpx) and uric acid (UA) after 24h at 37oC in media in absence of cells. Statistical comparison 858 
by unpaired t-test; letters indicate significance in comparison to HJ controls (“a”) or SJ 859 
controls (“b”). 860 
 861 
Supplemental Figure 4. Correlation matrix of SJH vs HJ ITUM in 2D co-cultures. 862 
Correlation matrix assessing co-enriched isotopologues in response to presence of 863 
hepatocytes (SJ, SJH cultures). Red gradient represents positive associations while blue 864 
represents negative associations. Correlations measuring by Pearson correlation method. 865 
  866 
Supplemental Figure 5. Distribution of 13C enrichment. Percent enrichment of total pools 867 
of (A) Uridine diphosphate N-acetyglucosamine and (B) glutathione after 24h incubation 868 
with [U-13C6]glucose at 37oC. *: p adj. < 0.05 869 
 870 
Supplemental Figure 6. Multiomic pathway analysis. (A) Gene counts with functional 871 
group membership of 151 genes found to correlate strongly with glutamyl-glycine (Glu-Gly), 872 
orotic acid, lactate, uridine monophosphate, and malate. (B) Functional network of shared 873 
genes in represented transcriptional profile with strong metabolite-gene associations; 874 
analysis performed using ExpressAnalyst. (C) Scatter plot of joint pathway analysis from 875 
MetaboAnalyst v4.0 using DEGs and full static metabolomics dataset based on associated 876 
fold changes. X and y axes show enrichment score in genes and metabolite peaks, 877 
respectively. 878 
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