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Abstract
The lymphatic vascular system represents a major route for dissemination of several solid tumors, including 
melanoma. Even though the members of the Vascular Endothelial Growth Factor family VEGF-C and VEGF-A have 
been shown to drive tumor lymphangiogenesis, experimental evidence indicates that also the pro-angiogenic 
factor Fibroblast Growth Factor-2 (FGF2) may play a role in the lymphangiogenic switch by triggering the activation 
of lymphatic endothelial cells (LECs) in cooperation with VEGFs.

The soluble pattern recognition receptor Long Pentraxin 3 (PTX3) acts as a natural FGF trap, thus exerting an 
oncosuppressive role in FGF-dependent tumors. Here, the capacity of PTX3 to modulate lymphangiogenesis was 
assessed in vitro and in vivo. The results demonstrate that recombinant human PTX3 inhibits the lymphangiogenic 
activity exerted by the VEGF-A/FGF2/sphingosine-1-phosphate (VFS) cocktail on human and murine LECs. In 
keeping with in vitro data, a reduced lymphangiogenic response was observed in a lymphangiogenic Matrigel plug 
assay following the subcutaneous injection of the VFS cocktail in PTX3-overexpressing transgenic TgN(Tie2-hPTX3) 
mice when compared to wild-type or Ptx3 null animals. Accordingly, the capacity of B16F10-VEGFC-luc melanoma 
cells to colonize the primary tumor-draining lymph node after grafting into the foot pad was dramatically impaired 
in PTX3-overexpressing mice.

Together with the observation that both the VFS cocktail and melanoma cell conditioned media caused a 
significant downregulation of PTX3 expression in LECs, these data indicate that the FGF trap activity of PTX3 may 
exert a key effect in the modulation of lymphangiogenesis and tumor metastatic dissemination.
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To the Editor,

In cancer, the lymphatic vascular system represents a 
major route for the dissemination of solid tumors. During 
tumor progression, cancer cells enter the tumor-draining 
LNs, which represent the first site of metastasis, and then 
reach distant organs [1].

I this context, the lymphangiogenic switch is induced 
and sustained by tumor-derived pro-lymphangiogenic 
factors, including the Vascular Endothelial Growth Fac-
tor family members VEGF-C and VEGF-A [1–3], nev-
ertheless scattered pieces of evidence indicate that also 
the pro-angiogenic Fibroblast Growth Factor-2 (FGF2) 
may play a relevant role in activating lymphangiogen-
esis through different mechanisms. Indeed, FGF2 has 
been shown to bind FGF Receptor 3 (FGFR3) expressed 
by lymphatic endothelial cells (LECs) [4] and to interact 
with the Lymphatic Vessel Endothelial hyaluronic acid 
receptor 1 (LYVE-1) which participates in FGF2 inter-
nalization [5]. In addition, FGF2 has been proposed to 
cooperate with VEGF-C and trigger tumor lymphangio-
genesis and metastasis through FGFR1/VEGFR3-depen-
dent pathways [6].

The soluble pattern recognition receptor Long Pentraxin 
3 (PTX3) is a member of the pentraxin family locally pro-
duced by different cell types in response to inflammatory 
signals, and exerting pleiotropic functions both in physi-
ological and pathological conditions, including cancer [7]. 
In the tumor microenvironment, PTX3 has been shown 
to play pro- or anti-tumor activities depending on cancer 
type. In particular, the oncosuppressive role of PTX3 relies 
on its anti-inflammatory properties [8] and on the capac-
ity to act as a FGF trap, thus preventing FGF-dependent 
tumor cell survival and proliferation, as well as angiogen-
esis and epithelial-to-mesenchymal transition [9–11]. 
Despite several observations about the impact of PTX3 on 
various aspects of cancer progression, to date no data are 
available about the role of PTX3 in lymphangiogenesis and 
tumor lymphogenous dissemination.

It has been shown that the combination of VEGF-A, 
sphingosine-1-phosphate (S1P) and FGF2 represents 
a potent pro-lymphangiogenic cocktail (VFS) able to 
induce LEC activation in vitro and lymphangiogenesis 
in vivo [12]. Notably, none of these mediators is able 
to induce the proliferation and 3D-sprouting of human 
dermal lymphatic endothelial cells (HDLECs) when 
tested alone or in double combination, thus indicat-
ing that the lymphangiogenic activity depends upon 
the synergistic action of all the components, including 
FGF2 (Fig. S1). On this basis, to assess the impact of 
the natural FGF-trap protein PTX3 on lymphangio-
genesis, murine lymphatic endothelial MELC-2 cells 
and human HDLECs were treated with the VFS cock-
tail in the absence or in the presence of recombinant 
human PTX3 (rhPTX3). In keeping with its FGF-trap 

activity, rhPTX3 reduced the activation of FGFRs in 
both murine and human LECs stimulated with VFS 
(Fig.  1  A). Accordingly, in both MELC-2 and HDLEC 
cells stimulated with VFS, treatment with rhPXT3 
resulted in a significant inhibition of proliferation, 
migration, 3D-sprouting and tube formation activ-
ity (Fig. 1B-D). Accordingly, a similar inhibitory effect 
was observed when HDLECs were treated with VFS 
in the presence of soluble FGFR1 (Fig. S2A), with no 
effect observed by the short pentraxin serum amyloid 
P component (SAP) which is devoid of any FGF-antag-
onist activity (Fig. S2B).

Notably, treatment with VFS caused a significant 
downregulation of PTX3 both at mRNA (Fig.  2  A) and 
protein (Fig. 2B) level. Similar results were obtained when 
HDLECs were treated with the conditioned medium 
obtained from human (A375) and murine (B16F10) mela-
noma cells (Fig. 2 C), thus suggesting that PTX3 modu-
lation might represent a requirement in the activation of 
LECs during tumor lymphangiogenesis.

These data point to a role for PTX3 in lymphangio-
genesis and demonstrate that its capacity to inhibit the 
FGF2/FGFR system hampers the acquisition of a pro-
lymphangiogenic phenotype in LECs in vitro.

In order to extend these observations in vivo, a lym-
phangiogenic Matrigel plug assay was performed [12] 
in which the VFS cocktail was injected subcutaneously 
in C57BL/6 wild-type (WT), in Ptx3 null (KO) mice or 
in transgenic TgN(Tie2-hPTX3) mice characterized by 
endothelial overexpression and stromal accumulation of 
PTX3 [10].

As shown in Fig. 2D, after 3 weeks, the quantification 
of newly formed CD31+/LYVE-1+ lymphatic vessels (LVs) 
in the dermis overlaying the implanted Matrigel revealed 
that VFS triggered a significant increase of newly formed 
LVs in both WT and KO mice when compared to control/
PBS plugs. At variance, no significant lymphangiogenic 
response was induced in PTX3 overexpressing TgN(Tie2-
hPTX3) animals, thus indicating that FGF trapping by 
endogenous PTX3 is able to suppress lymphangiogenesis 
in vivo.

Given the anti-lymphangiogenic potential of PTX3 in 
vitro and in vivo, and the modulatory effect exerted by 
VFS and melanoma cell conditioned medium on PTX3 
expression in LECs, we explored the impact exerted by 
PTX3 on lymphatic dissemination of melanoma cells 
in vivo taking advantage of the B16F10-VEGFC-luc 
melanoma cell line. This model is characterized by an 
extremely efficient lymphatic dissemination and the 
capacity to colonize the primary tumor-draining LN after 
injection into the foot pad [13]. B16F10-VEGFC-luc cells 
were injected into the foot pad of WT and PTX3 over-
expressing TgN(Tie2-hPTX3) mice and cancer cells dis-
semination was monitored by bioluminescence imaging 
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Fig. 1  PTX3 modulates the VFS-mediated LEC activation in vitro. A) Western blot analysis of MELC-2 (upper panel) and HDLEC (lower panel) treated 
or not with VFS mixture and rhPTX3. B-D) The effect of treatment with VFS on MELC-2 (C) and HDLEC (D) in presence or in absence of rhPTX3 was evalu-
ated in terms of cell proliferation, cell motility in wound healing assay, sprout formation and tube formation. Scale bars: 50 μm. Data are expressed as 
mean ± SEM, experiments were performed in triplicate. *p < 0.05, **p < 0.01, #p < 0.001
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(Fig. 2E). As shown in Fig. 2E, in vivo imaging performed 
at 3 and 4 weeks after tumor injection revealed that 
PTX3 overexpression significantly reduced the meta-
static spreading of B16F10-VEGFC-luc cells and their 
capacity to colonize the tumor-draining popliteal LN in 
TgN(Tie2-hPTX3) mice when compared to WT animals. 
This was further confirmed by melanoma cells staining 
(SOX10+ areas) in the LN at week 4 (Fig. 2 F). In line with 
this result, immunohistochemical analysis of the foot pad 
dermis in proximity to the primary tumor revealed a sig-
nificant decrease of LYVE-1+ LVs that goes along with 
the high levels of PTX3 in TgN(Tie2-hPTX3) mice when 
compared to WT animals (Fig. 2G).

It is widely recognized that a balance between angiogen-
esis inducers and inhibitors controls the rate of new blood 
vessel formation [14]. Our data indicate for the first time 
that PTX3 plays a negative regulatory role in LEC response 
to pro-lymphangiogenic stimuli and that its downregu-
lation by melanoma cells may represent a mechanism to 
overcome this inhibitory activity to sustain lymphan-
giogenesis and foster tumor cell dissemination. A better 
understanding of these regulatory mechanisms will add 
new information about the biology of lymphatic vessels 
and may pave the way to focused therapeutic approaches 
aimed to reduce lymphatic metastatic dissemination.
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