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Pancreatic adenocarcinoma 
associated immune‑gene 
signature as a novo risk factor 
for clinical prognosis prediction 
in hepatocellular carcinoma
Lei Dai1,2, Joseph Mugaanyi1,2, Xingchen Cai1, Caide Lu1* & Changjiang Lu1*

Pancreatic adenocarcinoma (PAAD) has high mortality and a very poor prognosis. Both surgery and 
chemotherapy have a suboptimal therapeutic effect, and this caused a need to find new approaches 
such as immunotherapy. Therefore, it is essential to develop a new model to predict patient prognosis 
and facilitate early intervention. Our study screened out and validated the target molecules based 
on the TCGA‑PAAD dataset. We established the risk signature using univariate and multivariate Cox 
regression analysis and used GSE62452 and GSE28735 to verify the accuracy and reliability of the 
model. Expanded application of PAAD‑immune‑related genes signature (‑IRGS) on other datasets was 
conducted, and the corresponding nomograms were constructed. We also analyzed the correlation 
between immune‑related cells/genes and potential treatments. Our research demonstrated that a 
high riskscore of PAAD‑IRGS in patients with PAAD was correlated with poor overall survival, disease‑
specific survival and progression free interval. The same results were observed in patients with LIHC. 
The models constructed were confirmed to be accurate and reliable. We found various correlations 
between PAAD‑IRGS and immune‑related cells/genes, and the potential therapeutic agents. These 
findings indicate that PAAD‑IRGS may be a promising indicator for prognosis and of the tumor‑
immune microenvironment status in PAAD. 

Pancreatic adenocarcinoma (PAAD) is one of the most common carcinomas globally and ranks 6th in cancer-
related  deaths1. Although considerable progress has been made in diagnosis and  treatment2, the 5-year survival 
rate of PAAD is still less than 10%3. Therefore, there is still a need for new ways to predict patient prognosis and 
augment early intervention to maximize long-term survival.

The development of high-throughput sequencing has revolutionized DNA and RNA  research4 and broadened 
the scope of research into potential biological progress and mechanisms of human  disease5. Several studies have 
revealed differentially expressed mRNA/miRNA/lncRNA and differentially expressed genes (DEGs) of pancre-
atic carcinoma in recent  years6–10. Although its theoretical value to the diagnosis and prognosis of pancreatic 
carcinoma has been detailed, the biological mechanisms, clinical significance, and the interaction between DEGs 
during pancreatic carcinoma tumorigenesis are yet to be explored.

Inflammation mediates and participates in various pathophysiological processes, including classic pathways 
of infection, immune elimination, tissue repair and  regeneration11,12. The current studies put forwards a new 
point of view that inflammation is tightly associated with tumorigenesis, progression and metastasis of  cancer13,14. 
Tumor risk factors can stimulate an extrinsic inflammatory response, while innate inflammatory response con-
tributes to tumor progression, indicating that a complex network exists in tumor-immune microenvironment. 
Furthermore, immune-related genes (IRGs), including interleukin (IL)-1015, IL-616, tumor necrosis factor-α 
(TNF-α)17 and (C-X-C motif) ligand (CXCL) chemokine  family18 played a vital role in tumor proliferation, 
metabolism and metastasis. The occurrence and development of pancreatic cancer are recognized to be closely 
linked with inflammation. Local and systemic chronic inflammation could elevate the risk of PAAD, and PAAD-
related inflammatory infiltration might simultaneously enhance tumor progression and  metastasis19. Beyond 
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the mechanism of an imbalance between inflammatory cell infiltration and immunosuppressive phenotype in 
the tumor-immunity microenvironment, obesity and diabetes are associated with promoting inflammation and 
inhibiting autophagy to Create a suitable environment for the tumorigenesis of PAAD through oxidative stress 
and metabolic  impairments20.

Due to the interaction between immune-mediated inflammation and tumorigenesis, identifying whether 
immune response influences the prognosis of cancer patients has become a research hotspot. Quite a few carci-
noma prognosis-related biomarkers have been identified and used to create models to predict patient  survival21–24. 
However, there has not been much regarding IRGs signature for PAAD, let alone an immune-related prognostic 
model. In this study, we used the Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) 
database to screen out high-risk IRGs and create a novel risk-score signature and nomogram based on the IRGs 
for predicting the prognosis of PAAD patients. We also identified and comprehensively analyzed potential 
clinical therapeutic targets. Our findings may highlight the outstanding function of the IRGs signature in pre-
dicting PAAD patients’ prognosis and reveal its potential ability to predict the prognosis of patients with liver 
hepatocellular carcinoma (LIHC).

Materials and methods
Data acquisition and processing. We downloaded the TCGA-PAAD and TCGA-LIHC data sets, includ-
ing: RNA sequences, raw clinical data and prognostic information, from the TCGA database (https:// portal. gdc. 
cancer. gov/). Data of normal tissues from the GTEx database (https:// gtexp ortal. org/) was obtained for sup-
plementary. The gene expression data were converted to Transcripts per million reads (TPM) format and log2 
transformed. Other data was cleaned and batch corrected with clinical information retained. Gene expression 
profiles and prognostic data of  GSE2873525 and  GSE6245226 were collected from the GEO database (http:// www. 
ncbi. nlm. nih. gov/ geo/) and used as validation datasets.

We obtained complete IRGs names, totaling 2483 from the “Resources-Gene Lists” module of the Immunol-
ogy Database and Analysis Portal (ImmPort)27 (https:// www. immpo rt. org/ home).

DEGs & IRGs screening and intersecting. We first conducted a differential gene expression analysis 
to screen for genes expressed differently between pancreatic tumors and normal tissues, based on the RNA 
sequence dataset of TCGA-GTEx-PAAD. The log2(Fold Change) (FC) and adjusted p-value (P.adj) were cal-
culated using R. Then, |log2(FC)|> 1 & P.adj < 0.05 was considered as the cut-off criteria for significant DEGs. 
These were subsequently intersected with the IRGs above. “ggplot2” package of R was used to visualize the per-
formance with volcanoes plot and Venn diagram.

Enrichment analysis for DEGs & IRGs. We performed the Kyoto encyclopedia of genes and genomes 
(KEGG) pathway and Gene Ontology (GO) enrichment analysis and the results were plotted using “ggplot2” 
(version 3.3.3) and “clusterProfiler” (version 3.14.3) packages in  R28 for the genes of intersection. The settings 
modes used were: biological process (BP), cellular component (CC) and molecular function (MF) with P.
adj < 0.05 were considered statistically significant and output visualized cnetplots respectively.

Construction of PAAD‑related IRGs signature (PAAD‑IRGS) for prognosis. Based on the gene 
analysis above, we obtained independent immune-related prognostic risk genes using the Least absolute shrink-
age and selection operator (Lasso) regression  analysis29, followed by univariate and multivariate Cox regression 
analysis for further identification. LASSO is a popular algorithm, extensively utilized in medical  studies30–33. 
Next, the Toil procedure from the university of California Santa Cruz (UCSC) Xena (34 was used to analyze the 
difference in the expression of the genes identified above in unpaired samples of PAAD. The log2(Transcripts per 
million (TPM) + 1) for log-scale was used in the assessments. The diagnostic value of these genes was evaluated 
using receiver operating characteristic (ROC) curves.

After this procedure, the optimal related IRGs were retained to establish the PAAD-IRGS. We compared the 
expression level of these genes in different pathologic stages and conducted the exclusively related KEGG and 
GO analysis. According to the expression level (EXP) and multivariate COX regression coefficient β value of the 
genes, the formula of the immune-related risk score signature is as  follows35:

Based on the risk score of each sample, the cohort was divided into two groups (low-risk with 0–50% vs high-
risk with 50–100%). The performance of the classifier was assessed using ROC. Finally, we performed survival 
analyses of overall survival (OS) for single and combined genes using Kaplan–Meier and the log-rank test.

Assessment of PAAD‑IRGS and relevant clinical nomogram. The model to predict 1–3 years OS 
was evaluated using time-dependent ROC and decision curve analysis (DCA). Next, clinicopathologic char-
acteristics of patients from TCGA-PAAD were collected and analyzed using univariate and multivariate COX 
regression analysis. Based on the clinical risk indicators (CRI) and PAAD-IRGS, we established a nomogram 
model to predict 1–3 years OS probability in PAAD patients. The nomogram was calibrated and assessed using 
DCA to verify its accuracy and reliability. The predictive accuracy of classical TMN-stage, PAAD-IRGS, CRI and 
nomogram were compared using the concordance index (C-Index).

PAAD− IRGS =

n∑

k=1

EXPk ∗ βk.

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://gtexportal.org/
http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
https://www.immport.org/home
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Validation and extended application of PAAD‑IRGS. To validate the specificity and precision of 
PAAD-IRGS, we utilized GSE28735 and GSE62452, which contained sufficient gene expression and prognosis 
data, to conduct differential expression analysis, survival analysis, diagnostic/prognostic value and applicability 
of clinical decision evaluation.

For assessing the extended applicability of PAAD-IRGS, considering the disease categories and histologi-
cal homologies, we selected the TCGA-LIHC (n = 374) for further validation of the model. The difference in 
expression level of these genes between tumor and normal tissues was compared, and their individual and 
unified diagnostic ability. According to the standard established above, the LIHC cohort was grouped as low- 
(0–50%) and high-risk (50–100%) groups. Single-gene and unified signature OS analyses were performed using 
Kaplan–Meier curves, followed by time-dependent ROC and DCA analysis. Similarly, we established a nomo-
gram model to predict 1–3 years OS probability in LIHC patients, based on the PAAD-IRGS and CRI, obtained 
from the TCGA-LIHC cohort through univariate and multivariate COX regression analysis. Calibration and 
DCA were performed to verify the reliability and accuracy of the model. Then the classical TMN-stage, PAAD-
IRGS, CRI of TCGA-LIHC, and synthetic nomogram were compared with C-Index to assess their accuracy and 
clinical value for LIHC.

Furthermore, we expanded the application of PAAD-IRGS to predict 1–3 years disease-specific survival (DSS) 
and progression-free interval (PFI) of patients in TCGA-PAAD.

Immuno‑correlation analysis and drug prediction of PAAD‑IRGS. We conducted the PAAD-IRGS 
risk score correlation analysis with 24 immune-related  cells36 in PAAD using the spearman’s  test37. Subsequently, 
survival analysis of several significant immune-related cells was conducted to identify whether they were risk 
factors of PAAD using tumor immune estimation resource (TIMER), version 2.0  database38–40. Then we down-
loaded the immunophenoscore (IPS)41 data from The Cancer Immunome Atlas (TCIA) database (https:// tcia. 
at/ patie nts), which supports results of comprehensive immunogenomic analysis of next generation sequencing 
data (NGS) based on TCGA 42, for analyzing the correlation between PAAD-IRGS and immune response in 
PAAD patients.

Relationships between PAAD-IRGS risk score and three kinds of immunomodulators expression in PAAD 
based on TCGA were explored and visualized with heatmaps, as well as relevant drug prediction accordingly 
via tumor-immune system interaction database (TISIDB)43 (http:// cis. hku. hk/ TISIDB/ index. php), integrating 
multiple heterogeneous data. We searched the website with the gene symbol S100P, S100A2 and MMP12 and 
download relevant information in the "drug" module. Circle map and annotations were performed accordingly.

Analysis of protein expression of the PAAD‑IRGS. The human protein atlas (HPA)  database44,a spa-
tial map of the human proteome (http:// www. prote inatl as. org/ human prote ome/ patho logy) was used to ascer-
tain the physiological and pathological expression data of S100P, S100A2 and MMP12. As supplementary, we 
used UALCAN (http:// ualcan. path. uab. edu/ index. html) to conduct protein level analysis of S100P, S100A2 and 
MMP12 genes. It is a comprehensive and interactive public resource for cancer OMICS data  analysis45, provided 
by the Clinical proteomic tumor analysis consortium (CPTAC)  dataset46.

Statistical analysis. All statistical analyses were performed with R (version 3.6.3). Normally distributed 
variables were analyzed using the t-test and one-way ANOVA test and non-normally distributed variables with 
nonparametric tests. Log-rank test and Cox regression were used for survival analysis, Pearson’s correlation and 
spearman’s rank correlation test for correlation analysis. P or P.adj < 0.05 was considered statistically signifi-
cant. The correlations was defined as follows: 0.00–0.10 (negligible), 0.10–0.39 (weak), 0.40–0.69 (moderate), 
0.70–0.89 (strong), 0.90–1.00 (very strong)47.

Results
The study design for this work is shown in Fig. 1.

DEGs & IRGs analysis. 178 PAAD patients with gene expression and prognostic information and 4 
matched adjacent normal samples were included in the training cohort. 25,597 gene IDs were analyzed after 
removing null values, in which we obtained 539 differentially expressed genes that met the cut-off criterion of 
|log2(FC)|> 1 & P.adj < 0.05 in PAAD (236 genes up-regulated while 303 down-regulated) (Fig. 2A). Through the 
intersection of 490 DEGs and 1744 IRGs, 49 differentially expressed IRGs in PAAD were screened out (Fig. 2B).

Enrichment analysis. The KEGG pathways which were most associated with immunity involved in natural 
killer mediated cytotoxicity (P < 0.001), B cell receptor signaling pathway (P < 0.001) and chemokine signaling 
pathway (P < 0.05) (Fig. 2C). Specifically, regulation of the immune effector process, cell killing and humoral 
immune response of the biological process (BP) module (all P < 0.001) were observed to be associated with 
immunity. So was major histocompatibility complex (MHC) protein binding and cytokine receptor binding of 
molecular functional (MF) module (Fig. 2D). Gene overlap is highlighted in the volcano plot (Fig. 2E).

Construction and assessment of PAAD‑IRGS. We further analyzed the genes identified above to 
identify the potential diagnostic and prognostic value of IRGs in PAAD. Based on LASSO regression analysis, 
four prognostic risk biomarkers were identified (high expression of S100P, S100A2, and MMP12 was associated 
with poor prognosis, while low expression of DEFA5 was associated with better prognosis) (Fig. 3A). S100P, 
S100A2 and MMP12 were expressed higher in tumor tissues, compared with normal tissues (P < 0.001), while 

https://tcia.at/patients
https://tcia.at/patients
http://cis.hku.hk/TISIDB/index.php
http://www.proteinatlas.org/humanproteome/pathology
http://ualcan.path.uab.edu/index.html
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Figure 1.  Study design flow chart. TCGA  the cancer genome atlas, PAAD pancreatic adenocarcinoma, LIHC 
liver hepatocellular carcinoma, ROC receiver operating characteristic curve. This cover has been designed using 
images from Freepik.com.
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the opposite was true for DEFA5 expression (P < 0.05) (Fig. 3B). The area under curve (AUC) of S100P, S100A2, 
and MMP12 were 0.971, 0.968, and 0.981, indicating their excellent diagnostic value. However, DEFA5 was 
considered an inefficient biomarker for diagnosis (AUC = 0.438) (Fig. 3C). Subsequent univariate and multi-
variate COX regression analyses were conducted on the four genes, excluding DEFA5 (P = 0.164) (Fig.  3D). 
The model of PAAD-IRGS was finally comprised of S100P, S100A2 and MMP12. We plugged the correspond-
ing regression coefficients into the equation as follows to complete the establishment of PAAD-IRGS: PAAD-
IRGS = EXP(S100P) × 0.132 + EXP(S100A2) × 0.098 + EXP(MMP12) × 0.095.

Furthermore, we performed PAAD-IRGS specialized differential expression analysis in different pathology 
stages. Using the Gene expression profiling interactive analysis (GEPIA)  database48, a statistically significant 
difference in S100P expression was observed in different pathology stages of TCGA-PAAD (P < 0.001) (Fig. 4A). 
After a single gene correlation analysis of these three genes, we obtained 79 co-correlated genes (Fig. 4B). Based 
on further enrichment analysis, KEGG pathways seemingly involved in ECM-receptor interaction, regulation 
of actin cytoskeleton, p53 signaling pathway, focal adhesion and pancreatic cancer, and GO pathway focused on 
cell-membrane organization and connection (Fig. 4C).

The model showed a better diagnostic capability than individual genes with an AUC of 0.993 (95% confidence 
interval (CI) = 0.987–0.998) (Fig. 4D). By single gene survival analysis, we observed that patients in S100A2 high-
expression group had a worse OS than patients in S100A2 low-expression group (hazard ratio (HR) = 1.62, 95% 
CI = 1.07–2.46, P = 0.023). However, there is no statistically significant difference between low and high expression 
groups of S100P or MMP12 (Fig. 4E). Patients in the PAAD-IRGS high-risk score group had a much worse OS 
than patients in low-risk score group (HR = 2.21, 95% CI = 1.45–3.39, P < 0.001) (Fig. 4F).

Establishment of PAAD‑IRGS based prognosis model. A total of 182 TCGA-PAAD patients were 
included in the prognostic analysis with the baseline characteristics shown in Table 1. Time-dependent ROC 
analysis was conducted to assess the accuracy of PAAD-IRGS for prediction of OS in PAAD patients. It showed 
an above average performance of 1 (AUC = 0.679), 2 (AUC = 0.696), and 3 years (AUC = 0.713) (Fig. 5A). DCA 
showed that model has a good clinical utility (Fig. 5B). T3&T4 stage (P = 0.030), N1 stage (P = 0.004), pathologi-
cal stage II (P = 0.033), radiation therapy (P = 0.013), primary therapy outcome of PR&CR (P < 0.001), R1&R2 
resection (P = 0.028), histological grade G2 (P = 0.047)/G3&G4 (P = 0.008), non-head of pancreas neoplasm 
(P = 0.004) and PAAD-IRGS (P < 0.001) were significantly correlated with OS. Radiation therapy (HR = 0.437, 
95%CI = 0.228–0.835, P = 0.012), primary therapy outcome of PR&CR (HR = 0.547, 95%CI = 0.324–0.923, 

Figure 2.  Screening of differentially expressed genes and immune-related genes related to pancreatic 
adenocarcinoma. (A) Volcano plot of 539 DEGs; (B) Venn diagram of intersection of DEGs and IRGs. (C) 
KEGG pathways analysis of genes in DEGs & IRGs; (D) GO analysis of genes in DEGs & IRGs; (E) Volcano plot 
of 49 genes in DEGs & IRGs. DEGs differentially expressed genes, IRGs immune-related genes, KEGG Kyoto 
Encyclopedia of Genes and Genomes, GO Gene Ontology.
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Figure 3.  Establishment of IRGs signature (IRGS). (A) Ten-time cross-validation for tuning parameter 
selection in the Lasso regression model and risk analysis of four immune-related genes in patients with 
PAAD; (B) differential expression of four IRGs between tumor and normal tissues of patients with PAAD; (C) 
diagnostic value of four IRGs for patients with PAAD; (D) univariate and multivariate COX analysis of four 
IRGs is shown in forest map. *P < 0.05, **P < 0.01, ***P < 0.001.
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P = 0.024), R1&R2 resection (HR = 1.896, 95%CI = 1.087–3.308, P = 0.024) and PAAD-IRGS (HR = 2.312, 
95%CI = 1.245–4.294,P = 0.008) were independent factors impacting the OS of patients with PAAD (Table 2). 
Based on the above analysis, the nomogram incorporating PAAD-IRGS and multiple clinicopathological char-
acteristics was plotted (Fig. 5C). Through comparison, the concordance index (C-Index) of TNM-stage, PAAD-
IRGS, Nomogram (only clinical indicators), and Nomogram + IRGS was 0.567, 0.639, 0.706 and 0.723 (Table 
3), respectively. Additionally, Nomogram calibration curves (Fig. 5D) showed good predictive accuracy of the 
model and DCA (Fig. 5E).

Validation and extension of PAAD‑IRGS. For further validation of the reliability of PAAD-IRGS, we 
employed two datasets of the GEO database. Differential expression, survival, diagnostic value, prognostic value 
analysis and DCA were performed in both datasets. The three genes had a higher expression in the tumor tis-
sues than in normal tissues (P < 0.001) of GSE28735 (Fig. 6A). Patients in a high-risk group of PAAD-IRGS 
had worse OS than that of the low-risk group (HR = 2.35, 95%CI = 1.08–5.14, P = 0.032) (Fig. 6B). Consistent 
with the results above, although S100P (AUC = 0.929), S100A2 (AUC = 0.764), MMP12 (AUC = 0.828) (Fig. 6C) 
showed considerable diagnostic values for PAAD respectively, PAAD-IRGS had the optimum diagnostic ability 
(AUC = 0.943, 95%CI = 0.896–0.991) (Fig.  6D). In addition, time-dependent ROC showed the model had an 
above-average ability to predict 1—(AUC = 0.671), 2—(AUC = 0.600), and 3—year OSs (AUC = 0.866) (Fig. 6E). 
The model also had an acceptable net benefit based on DCA (C-Index = 0.644, 95%CI = 0.598–0.690) (Fig. 6F). 
Similar results of differential expression (P < 0.001) (Fig.  7A) and OS probability (HR = 1.84, 95%CI = 1.02–
3.32, P = 0.044) (Fig.  7B) were obtained in GSE62452, as well as the independent diagnostic value of S100P 
(AUC = 0.865), S100A2 (AUC = 0.745), MMP12 (AUC = 0.811) (Fig. 7C) and all of them combined (AUC = 0.885, 
95%CI = 0.828–0.943) (Fig.  7D). The corresponding ROC analysis showed an above-average performance in 
predicting 1—(AUC = 0.536), 2—(AUC = 0.672), and 3—year prognosis (AUC = 0.861) (Fig.  7E). Although 

Figure 4.  A comprehensive evaluation of IRGS. (A) Expression of 3 signature genes in different pathologic 
stages of PAAD; (B) Venn diagram of intersection of enrichment analysis of 3 signature genes; (C) GO and 
KEGG analysis of 3 signature genes; (D) diagnostic value of IRGS in PAAD; (E) single-gene survival analysis of 
OS was shown in Kaplan–Meier curves respectively; (F) Kaplan–Meier curves show that OS was significantly 
different between the low- and high-risk groups in TCGA-PAAD. OS overall survival; *P < 0.05, **P < 0.01, 
***P < 0.001.
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1-year net benefit of prognostic prediction was not satisfactory, 2- and 3-years showed a much better net benefit 
(C-Index = 0.580, 95%CI = 0.531–0.629) (Fig. 7F).

Hepatobiliary and pancreatic carcinoma were categorized as a unity of clinical disease due to their close ana-
tomical correlation and mutual functional assistance. To verify the universal applicability of the PAAD-IRGS, the 
TCGA-LIHC data was used to validate the findings. S100A2, S100P and MMP12 were all over expressed in tumor 
tissues based on paired (P < 0.01) (Fig. 8A) and unpaired expression analysis (P < 0.001) (Fig. 8B). The diagnostic 
ROC curves also showed their independent and unified diagnostic value for LIHC (S100P: AUC = 0.739; S100A2: 
AUC = 0.723; MMP12: AUC = 0.773; model: AUC = 0.812, 95%CI = 0.767–0.857) (Fig. 8C,D). LIHC patients had a 
worse OS in S100P (HR = 1.43, 95% CI = 1.01–2.02, P = 0.44)/S100A2 (HR = 1.81, 95% CI = 1.27–2.57, P = 0.001)/
MMP12 (HR = 1.58, 95% CI = 1.11–2.23, P = 0.01) high-expression group (Fig. 8E) and PAAD-IRGS high-risk 
group (HR = 1.83, 95% CI = 1.29–2.60, P = 0.001) (Fig. 8F). PAAD-IRGS also had a considerable prognostic value 

Table 1.  Baseline characteristics of patients (TCGA-PAAD).  Data are presented as n (%). PAAD pancreatic 
adenocarcinoma. *Compared with each group (Fisher exact test, or Pearson’s chi-square test). p value < 0.05 
was considered statistically significant (highlighted in bold). 

Characteristics Levels

Low-risk group High-risk group

p value*N = 89 N = 89

T stage, n (%)

T1 6 (6.9%) 1 (1.1%) 0.037

T2 16 (18.4%) 8 (9%)

T3 64 (73.6%) 78 (87.6%)

T4 1 (1.1%) 2 (2.2%)

N stage, n (%)
N0 27 (31.8%) 23 (26.1%) 0.517

N1 58 (68.2%) 65 (73.9%)

M stage, n (%)
M0 37 (97.4%) 42 (91.3%) 0.372

M1 1 (2.6%) 4 (8.7%)

Pathologic stage, n (%)

Stage I 16 (18.4%) 5 (5.7%) 0.022

Stage II 69 (79.3%) 77 (87.5%)

Stage III 1 (1.1%) 2 (2.3%)

Stage IV 1 (1.1%) 4 (4.5%)

Radiation therapy, n (%)
No 53 (65.4%) 65 (79.3%) 0.072

Yes 28 (34.6%) 17 (20.7%)

Primary therapy outcome, n (%)

PD 19 (28.8%) 30 (41.1%) 0.386

SD 5 (7.6%) 4 (5.5%)

PR 4 (6.1%) 6 (8.2%)

CR 38 (57.6%) 33 (45.2%)

Gender, n (%)
Female 40 (44.9%) 40 (44.9%) 1.000

Male 49 (55.1%) 49 (55.1%)

Age, n (%)
 ≤ 65 49 (55.1%) 44 (49.4%) 0.548

 > 65 40 (44.9%) 45 (50.6%)

Residual tumor, n (%)

R0 59 (70.2%) 48 (60%) 0.201

R1 24 (28.6%) 28 (35%)

R2 1 (1.2%) 4 (5%)

Histologic grade, n (%)

G1 23 (26.4%) 8 (9%) 0.001

G2 46 (52.9%) 49 (55.1%)

G3 16 (18.4%) 32 (36%)

G4 2 (2.3%) 0 (0%)

Anatomic neoplasm subdivision, n (%)
Head of Pancreas 72 (80.9%) 66 (74.2%) 0.369

Other 17 (19.1%) 23 (25.8%)

Smoker, n (%)
No 30 (44.1%) 35 (46.1%) 0.948

Yes 38 (55.9%) 41 (53.9%)

Alcohol history, n (%)
No 36 (43.9%) 29 (34.5%) 0.281

Yes 46 (56.1%) 55 (65.5%)

History of diabetes, n (%)
No 48 (69.6%) 60 (77.9%) 0.337

Yes 21 (30.4%) 17 (22.1%)

History of chronic pancreatitis, n (%)
No 61 (92.4%) 67 (89.3%) 0.733

Yes 5 (7.6%) 8 (10.7%)

Family history of cancer, n (%)
No 21 (39.6%) 26 (45.6%) 0.659

Yes 32 (60.4%) 31 (54.4%)
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for LIHC patients according to ROC analysis (1-year: AUC = 0.651; 2-year: AUC = 0.612; 3-year: AUC = 0.597) 
(Fig. 8G) and DCA (Fig. 8H). Furthermore, we extracted baseline characteristics of TCGA-LIHC shown in 
Table 4 and conducted univariate and multivariate COX regression analysis to establish a nomogram based on 
PAAD-IRGS and multiple clinicopathologic factors (Fig. 8I). T3&T4 stage (P < 0.001), M1 stage (P = 0.017), 
pathological stage III&IV (P < 0.001), tumor-bearing status (P < 0.001) and PAAD-IRGS (P < 0.001) were sig-
nificantly correlated with OS. Tumor-bearing status (HR = 1.992, 95%CI = 1.246–3.185, P = 0.004) and PAAD-
IRGS (HR = 2.180, 95%CI = 1.180–4.026, P = 0.013) were independent factors impacting the OS of patients with 
LIHC (Table 5). Nomogram calibration curves (Fig. 8J) showed good predictive accuracy of the model, and 
DCA (Fig. 8K) confirmed the clinical utility of the nomogram. Consistent with the nomogram of PAAD, the 
comprehensive nomogram of LIHC showed the best accuracy (C-Index = 0.666, 95%CI = 0.630–0.701) than any 
other indicator (Table 3).

Figure 5.  Evaluation of PAAD-IRGS and establishment and assessment of relevant nomograms. (A) The 
time-dependent ROC curve of the PAAD-IRGS for predicting 1, 2, and 3-year OS; (B) decision curve analysis 
for evaluating the PAAD-IRGS; (C) an PAAD-IRGS -based nomogram included with 8 clinical components 
predicting 1, 2, and 3-year OS of PAAD; (D) nomogram calibration curve for 1, 2, and 3-year. (E) decision curve 
analysis for evaluating the net benefits of nomogram at 1, 2, and 3 years. *P < 0.05, **P < 0.01, ***P < 0.001.
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Table 2.  The univariate and multivariate analysis for the OS (TCGA-PAAD).  OS overall survival, CI 
confidence interval, NA reference group or could not be evaluated. *Compared with each group (Log-Rank test 
or Omnibus test for univariate, Cox regression analysis with adjusted hazard for multivariate). p < 0.05 means 
statistically significant (highlighted in bold).

Characteristics Total(N)

Univariate analysis Multivariate analysis

Hazard ratio (95% CI) P value* Hazard ratio (95% CI) P value*

T stage
T1&T2 31 Reference NA

T3&T4 145 2.023 (1.072–3.816) 0.030 1.588 (0.558–4.523) 0.386

N stage
N0 50 Reference NA

N1 123 2.154 (1.282–3.618) 0.004 2.077 (0.952–4.529) 0.066

M stage
M0 79 Reference

M1 5 0.756 (0.181–3.157) 0.701

Pathologic stage

Stage I 21 Reference NA

Stage II 146 2.332 (1.069–5.088) 0.033 0.413 (0.091–1.868) 0.251

Stage III&IV 8 1.446 (0.369–5.664) 0.597 0.325 (0.043–2.451) 0.275

Gender
Female 80 Reference

Male 98 0.809 (0.537–1.219) 0.311

Age
 ≤ 65 93 Reference

 > 65 85 1.290 (0.854–1.948) 0.227

Radiation therapy
No 118 Reference NA

Yes 45 0.508 (0.298–0.866) 0.013 0.437 (0.228–0.835) 0.012

Primary therapy outcome
PD&SD 58 Reference NA

PR&CR 81 0.425 (0.267–0.677)  < 0.001 0.547 (0.324–0.923) 0.024

Residual tumor
R0 107 Reference NA

R1&2 57 1.645 (1.056–2.561) 0.028 1.896 (1.087–3.308) 0.024

Histologic grade

G1 31 Reference NA

G2 95 1.961 (1.008–3.812) 0.047 1.351 (0.523–3.488) 0.535

G3&G4 50 2.578 (1.284–5.176) 0.008 2.005 (0.732–5.494) 0.176

Anatomic neoplasm subdivi-
sion

Head of Pancreas 138 Reference NA

Other 40 0.417 (0.231–0.754) 0.004 0.586 (0.275–1.251) 0.167

Smoker
No 65 Reference

Yes 79 1.086 (0.687–1.719) 0.724

Alcohol history
No 65 Reference

Yes 101 1.147 (0.738–1.783) 0.542

History of diabetes
No 108 Reference

Yes 38 0.927 (0.532–1.615) 0.790

History of chronic pancreatitis
No 128 Reference

Yes 13 1.177 (0.562–2.464) 0.666

Family history of cancer
No 47 Reference

Yes 63 1.117 (0.650–1.920) 0.689

Model 178 2.718 (1.733–4.263)  < 0.001 2.312 (1.245–4.294) 0.008

Table 3.  The C-Index values of TNM-stage, PAAD-IRGS, nomogram and nomogram + IRGS in 
different cohorts.  C-Index concordance index, IRGS immune-related genes signature, PAAD pancreatic 
adenocarcinoma, LIHC liver hepatocellular carcinoma, OS overall survival, DSS disease specific survival, PFI 
progress free interval.

Cohorts

C-Index (95% CI)

TNM-stage PAAD-IRGS Nomogram Nomogram + IRGS

PAAD-OS 0.567 (0.538–0.596) 0.639 (0.609–0.670) 0.706 (0.672–0.740) 0.723 (0.690–0.756)

LIHC-OS 0.616 (0.588–0.644) 0.615 (0.588–0.644) 0.637 (0.603–0.672) 0.666 (0.630–0.701)

PAAD-DSS 0.571 (0.528–0.614) 0.680 (0.649–0.711) 0.749 (0.714–0.784) 0.775 (0.742–0.808)

PAAD-PFI 0.543 (0.508–0.578) 0.649 (0.618–0.681) 0.699 (0.664–0.733) 0.742 (0.712–0.771)
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For the further expanded application of PAAD-IRGS, we found that it performed well in predicting disease-
specific survival (DSS) and progression-free interval (PFI) of PAAD patients. Patients in PAAD-IRGS high-risk 
group had a significantly worse DSS (HR = 2.54, 95%CI = 1.55–4.15, P < 0.001) (Fig. 9A). Time-dependent ROC 
showed its robust prognostic predictive value (1-year: AUC = 0.730; 2-year: AUC = 0.724; 3-year: AUC = 0.749) 
and DCA further validated its clinical applicability (C-Index = 0.680, 95%CI = 0.649–0.711) (Fig. 9B,C). We 
constructed a comprehensive nomogram composed of PAAD-IRGS and clinicopathological factors (Table 6) 
(Fig. 9D). Its accuracy and efficiency were evaluated (C-Index = 0.775, 95%CI = 0.742–0.808, Table 3) (Fig. 9E,F). 
Similarly, Patients in PAAD-IRGS high-risk group had a significantly worse PFI (HR = 2.28, 95%CI = 1.53–3.40, 
P < 0.001) (Fig. 10A). The model had good clinical utility (C-Index = 0.649, 95%CI = 0.618–0.681) (Fig. 10B) 
and predictive value for prognosis (1-year: AUC = 0.666; 2-year: AUC = 0.723; 3-year: AUC = 0.730) (Fig. 10C). 
The nomogram based on this model is shown in Fig. 10D using variables summarized in Table 7. The validation 
analysis results are in Table 3 and Fig. 10E,F (C-Index = 0.742, 95%CI = 0.712–0.771).

Immunity associated analysis of PAAD‑IRGS. Tumor-infiltrating immunocytes (TIICs) play an 
important role in the complex tumor-immune microenvironment and have been shown to influence the pro-

Figure 6.  Validation of PAAD-IRGS with GSE28735. (A) Expression level of 3 IRGs in GSE28735 cohort; (B) 
Kaplan–Meier curves show a better OS in the low-risk group than the high-risk group; (C) diagnostic value 
of 3 IRGs for PAAD patients in GSE28735 cohort; (D) diagnostic value of PAAD-IRGS in GSE28735 cohort; 
(E) time-dependent ROC curve analysis of the PAAD-IRGS at 1, 2, and 3 years in GSE28735 cohort; (F) 
decision curve analysis for evaluating the net benefits of PAAD-IRGS in GSE28735 cohort. *P < 0.05, **P < 0.01, 
***P < 0.001.
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gression of various  tumors49,50. Thus, we must investigate any relationship between PAAD-IRGS and TIICs in 
PAAD. We used a lollipop plot to perform the correlation analysis of 24 immune-related cells (Fig. 11A). There 
was a significant positive correlation between PAAD-IRGS and NK CD56bright cells (r = 0.333, P < 0.001) and 
Th2 cells (r = 0.367, P < 0.001) and negative correlation with plasmacytoid dendritic cells (pDC) (r = −0.348, 
P < 0.001) and follicular helper T cell (TFH) (r = -0.344, P < 0.001). However, only B cell, CD4+ T cell and NK cell 
infiltration levels were correlated with OS of PAAD patients. Patients with high B cell (HR = 0.776, P = 0.0147) 
or NK cell (HR = 0.788, P = 0.0226) infiltration level had a better OS, while high CD4+ T cell + Th2 cell infiltra-
tion level associated with worse OS (HR = 1.36, P = 0.00337) (Fig. 11B). There was no statistically significant 
difference between high-risk and low-risk groups in patients with PD-1 blocker/CTLA4 blocker/CTLA4&PD-1 
blocker or without immune-blocker (Fig. 11C).

As a supplement, we conducted correlation analysis between immunomodulators and PAAD-IRGS, which 
were visualized as heatmaps (Figs. 12A, 13A, 14A). For immune-inhibitors, PAAD-IRGS had positive correla-
tion with TGFB1 (r = 0.372, P < 0.001), LGALS9 (r = 0.674, P < 0.001), IL10RB (r = 0.555, P < 0.001) and CD274 
(r = 0.227, P = 0.002), negative correlation with KDR (r = −0.330, P < 0.001), CD160 (r = −0.358, P < 0.001), BTLA 
(r = −0.224, P = 0.003) and ADORA2A (r = −0.243, P = 0.001) (Fig. 12B). For (MHC) molecule, HLA-B (r = 0.271, 

Figure 7.  Validation of PAAD-IRGS with GSE62452. (A) Expression level of 3 IRGs in GSE62452 cohort; (B) 
Kaplan–Meier curves show a better OS in the low-risk group than the high-risk group; (C) diagnostic value 
of 3 IRGs for PAAD patients in GSE62452 cohort; (D) diagnostic value of PAAD-IRGS in GSE62452 cohort; 
(E) time-dependent ROC curve analysis of the PAAD-IRGS at 1, 2, and 3 years in GSE62452 cohort; (F) 
decision curve analysis for evaluating the net benefits of PAAD-IRGS in GSE62452 cohort. *P < 0.05, **P < 0.01, 
***P < 0.001.
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Figure 8.  Validation of PAAD-IRGS with TCGA-LIHC. (A) Paired comparison of 3 IRGs expression levels in TCGA-
LIHC; (B) unpaired comparison of 3 IRGs expression levels in TCGA-LIHC by including the relevant normal tissues 
of the GTEx database as controls; (C) diagnostic value of 3 IRGs for TCGA-LIHC patients; (D) diagnostic value of 
PAAD-IRGS for TCGA-LIHC patients; (E) single-gene survival analysis of OS for TCGA-LIHC; (F) PAAD-IRGS 
survival analysis of OS for TCGA-LIHC; (G) time-dependent ROC curve analysis of the PAAD-IRGS at 1, 2, and 
3 years for TCGA-LIHC; (H) decision curve analysis for evaluating the net benefits of PAAD-IRGS for TCGA-LIHC; 
(I) an PAAD-IRGS-based nomogram included with 4 clinical components predicting 1, 2, and 3-year OS of TCGA-
LIHC; (J) nomogram calibration curve for 1, 2, and 3-year. (K) Decision curve analysis for evaluating the net benefits 
of nomogram at 1, 2, and 3 years. *P < 0.05, **P < 0.01, ***P < 0.001.
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P < 0.001), HLA-C (r = 0.229, P = 0.002), B2M (r = 0.482, P < 0.001), HLA-A (r = 0.357, P < 0.001), TAP2 (r = 0.302, 
P < 0.001), TAPBP (r = 0.330, P < 0.001), HLA-F (r = 0.261, P < 0.001) and TAP1 (r = 0.324, P < 0.001) were posi-
tively related with PAAD-IRGS (Fig. 13B). As to immune-stimulators, there were 6 genes negatively related with 
PAAD-IRGS (Fig. 14B) while 15 genes had a positive correlation (Fig. 14C).

PAAD‑IRGS related drugs. TISIDB is a web portal for tumor and immune system interaction, which 
supports genomics, transcriptomics, and clinical data from TCGA and mechanism, and drug information from 
public databases. We can only obtain potential drugs associated with PAAD-IRGS, which is demonstrated in a 

Table 4.  Baseline characteristics of patients (TCGA-LIHC).  Data are presented as n (%). LIHC liver 
hepatocellular carcinoma. *Compared with each group (Fisher exact test, or Pearson’s chi-square test). p 
value < 0.05 was considered statistically significant (highlighted in bold).

Characteristics Levels

Low-risk group High-risk group

p value*N = 186 N = 187

T stage, n (%)

T1 106 (57.9%) 77 (41.2%) 0.011

T2 36 (19.7%) 58 (31%)

T3 36 (19.7%) 44 (23.5%)

T4 5 (2.7%) 8 (4.3%)

N stage, n (%)
N0 132 (98.5%) 122 (98.4%) 1.000

N1 2 (1.5%) 2 (1.6%)

M stage, n (%)
M0 134 (99.3%) 134 (97.8%) 0.622

M1 1 (0.7%) 3 (2.2%)

Pathologic stage, n (%)

Stage I 102 (59%) 71 (40.3%) 0.002

Stage II 32 (18.5%) 54 (30.7%)

Stage III 38 (22%) 47 (26.7%)

Stage IV 1 (0.6%) 4 (2.3%)

Tumor status, n (%)
Tumor free 104 (57.8%) 98 (56.3%) 0.866

With tumor 76 (42.2%) 76 (43.7%)

Gender, n (%)
Female 53 (28.5%) 68 (36.4%) 0.130

Male 133 (71.5%) 119 (63.6%)

Age, n (%)
≤ 60 81 (43.5%) 96 (51.3%) 0.161

 > 60 105 (56.5%) 91 (48.7%)

Residual tumor, n (%)

R0 169 (96.6%) 157 (92.9%) 0.176

R1 6 (3.4%) 11 (6.5%)

R2 0 (0%) 1 (0.6%)

Histologic grade, n (%)

G1 39 (21.5%) 16 (8.6%)  < 0.001

G2 94 (51.9%) 84 (44.9%)

G3 42 (23.2%) 81 (43.3%)

G4 6 (3.3%) 6 (3.2%)

Adjacent hepatic tissue inflammation, n (%)

None 64 (50.8%) 54 (49.1%) 0.966

Mild 53 (42.1%) 48 (43.6%)

Severe 9 (7.1%) 8 (7.3%)

AFP(ng/ml), n (%)
 ≤ 400 116 (81.7%) 99 (72.3%) 0.084

 > 400 26 (18.3%) 38 (27.7%)

Albumin(g/dl), n (%)
 < 3.5 40 (25.3%) 29 (20.6%) 0.403

 ≥ 3.5 118 (74.7%) 112 (79.4%)

BMI, n (%)
 ≤ 25 83 (49.4%) 94 (56%) 0.275

 > 25 85 (50.6%) 74 (44%)

Child–Pugh grade, n (%)

A 120 (90.9%) 98 (90.7%) 0.902

B 11 (8.3%) 10 (9.3%)

C 1 (0.8%) 0 (0%)

Fibrosis Ishak score, n (%)

0 44 (38.6%) 31 (31%) 0.607

1/2 14 (12.3%) 17 (17%)

3/4 14 (12.3%) 14 (14%)

5/6 42 (36.8%) 38 (38%)

Vascular invasion, n (%)
No 118 (73.3%) 90 (57.7%) 0.005

Yes 43 (26.7%) 66 (42.3%)
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network diagram (Fig. 15). Currently, drugs targeting PAAD-IRGS (S100P, S100A2 and MMP12) remained in 
the experimental stage, and effective targeted drugs for pancreatic cancer are still in the blank.

Analysis of protein expression of the PAAD‑IRGS. We obtained the protein expression pattern of 
S100P and S100A2 in different cancers based on the HPA database. Expression of S100P in most pancreatic 
(83.3%) and liver (54.5%) cancers showed moderate to intense cytoplasmic and nuclear staining (Fig.S1A). 
Immunohistochemistry (IHC) results also confirmed that S100P was highly expressed in PAAD and LIHC than 
in corresponding normal tissues (Fig.S1B). Although the level of S100A2 protein expression was lower than that 
of S100P (Fig.S2A), we can still observe the moderate intensity of S100A2 in PAAD and LIHC than in corre-
sponding normal tissues (Fig.S2B). The information on MMP12 in the HPA database was absent, we conducted 
further verification using the UALCAN database. To be consistent, the protein expression of S100P was higher 
in PAAD and LIHC than in corresponding normal tissues (P < 0.001) (Fig.S3A), as well as in MMP12 (P < 0.001) 
(Fig.S3B). Despite the data absent in LIHC, the protein expression of S100A2 was higher in PAAD than in nor-
mal tissues (P < 0.01) (Fig.S3C).

Table 5.  The univariate and multivariate analysis for the OS (TCGA-LIHC).  OS overall survival, CI 
confidence interval, NA reference group or could not be evaluated. *Compared with each group (log-rank test 
or omnibus test for univariate, Cox regression analysis with adjusted hazard for multivariate). p < 0.05 means 
statistically significant (highlighted in bold).

Characteristics Total (N)

Univariate analysis Multivariate analysis

Hazard ratio (95% CI) P value* Hazard ratio (95% CI) P value*

T stage
T1&T2 277 Reference NA

T3&T4 93 2.598 (1.826–3.697)  < 0.001 1.441 (0.196–10.607) 0.720

N stage
N0 254 Reference

N1 4 2.029 (0.497–8.281) 0.324

M stage
M0 268 Reference NA

M1 4 4.077 (1.281–12.973) 0.017 1.237 (0.294–5.203) 0.771

Pathologic stage

Stage I 173 Reference NA

Stage II 86 1.416 (0.868–2.312) 0.164 1.425 (0.765–2.653) 0.264

Stage III&IV 90 2.823 (1.862–4.281)  < 0.001 1.793 (0.240–13.410) 0.570

Tumor status
Tumor free 202 Reference NA

With tumor 152 2.317 (1.590–3.376)  < 0.001 1.992 (1.246–3.185) 0.004

Gender
Female 121 Reference

Male 252 0.793 (0.557–1.130) 0.200

Age
 ≤ 60 177 Reference

 > 60 196 1.205 (0.850–1.708) 0.295

BMI
 ≤ 25 177 Reference

 > 25 159 0.798 (0.550–1.158) 0.235

Residual tumor
R0 326 Reference

R1&2 18 1.604 (0.812–3.169) 0.174

Histologic grade

G1 55 Reference

G2 178 1.162 (0.686–1.968) 0.577

G3&G4 135 1.222 (0.710–2.103) 0.469

Adjacent hepatic tissue inflam-
mation

None 118 Reference

Mild&Severe 118 1.194 (0.734–1.942) 0.475

AFP (ng/ml)
 ≤ 400 215 Reference

 > 400 64 1.075 (0.658–1.759) 0.772

Albumin (g/dl)
 < 3.5 69 Reference

 ≥ 3.5 230 0.897 (0.549–1.464) 0.662

Child–Pugh grade
A 218 Reference

B&C 22 1.643 (0.811–3.330) 0.168

Fibrosis Ishak score
0&1/2 106 Reference

3/4&5/6 108 0.740 (0.445–1.232) 0.247

Vascular invasion
No 208 Reference

Yes 109 1.344 (0.887–2.035) 0.163

Model 373 2.718 (1.676–4.410)  < 0.001 2.180 (1.180–4.026) 0.013
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Discussions
Although pancreatic cancer is still one of the leading causes of cancer-related death worldwide, some improve-
ments in patient outcomes have been made due to advancements in  therapeutics51. Since there are no obvious 
clinical symptoms in the early stage, pancreatic cancer is usually advanced at diagnosis. Secondly, the high 
mortality of PAAD seems to be inextricably associated with its suppressed immune microenvironment and 
significant decrease of T cell infiltration levels in the  tumor52. Although immunotherapy has revolutionized 
the cancer treatment model, PAAD patients rarely respond to these therapies due to poor activation and infil-
tration of T cells in the tumor-immunity microenvironment (TIME). Recent research has revealed potential 

Figure 9.  Establishment and assessment of PAAD-IRGS-based nomograms for DSS in TCGA-PAAD. (A) 
Single-gene and IRGs signature Survival analysis of DSS in PAAD; (B) the time-dependent ROC curve of the 
PAAD-IRGS for predicting 1, 2, and 3-year DSS; (C) decision curve analysis for evaluating the PAAD-IRGS; 
(D) an PAAD-IRGS-based nomogram included with 8 clinical components predicting 1, 2, and 3-year DSS of 
PAAD; (E) nomogram calibration curve for 1, 2, and 3-year. (E) Decision curve analysis for evaluating the net 
benefits of nomogram at 1, 2, and 3 years. DSS, disease-specific survival; *P < 0.05, **P < 0.01, ***P < 0.001.
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epigenetic-transcriptional mechanisms by which tumor cells remodel their TIME and suggested EGFR inhibitors 
as potential immunotherapy sensitizers in  PAAD53. Intra-tumoral IFN-γ-producing Th22 cells were reported 
to be associated with TNM staging and the worst outcomes in  PAAD54. γδ T Cells were also considered to pro-
mote pancreatic oncogenesis by restraining αβ T Cells  activation55. Each T cell subpopulations secretes different 
cytokines and chemokines that modulate the immune response in synergistic and opposite  ways56. Additionally, 
expansion of immunosuppressive B cells induced by IL-1β might promote  PAAD57, and many extracellular matrix 
(ECM) components, including collagen, growth factors, cytokines, chemokines, and cancer-associated fibroblast 
(CAF) play vital role in tumor  progression58. All tumor-immunity components in the TIME interact continuously, 
constructing a complex stroma-tumor crosstalk network. Due to the complexity of tumor-immunity mechanisms, 
there is still no effective way to predict prognosis in clinical practice. Our study aimed to discover immune-related 
biomarkers and establish a robust model to predict prognosis in PAAD patients.

The TCGA-PAAD dataset was used to screen for potentially immune-related DEGs , then analyzed for dif-
ferential expression and intersection. GO and KEGG enrichment analyses were also performed to confirm that 
the mechanisms involved in these genes were focused on immune-related pathways (Fig. 2D). Furthermore, we 
narrowed down the results by Lasso regression analysis and obtained three key IRGs finally through the univari-
ate and multivariate Cox regression analysis. The PAAD-IRGS comprised of S100P, S100A2 and MMP12 had an 
outstanding diagnostic value (Fig. 4D) and accurately predicted the prognosis for PAAD patients (Fig. 5A,B). We 

Table 6.  The univariate and multivariate analysis for the DSS (TCGA-PAAD).  DSS disease specific survival, 
CI confidence interval, NA reference group or could not be evaluated. *Compared with each group (log-rank 
test or Omnibus test for univariate, Cox regression analysis with adjusted hazard for multivariate). p < 0.05 
means statistically significant (highlighted in bold).

Characteristics Total (N)

Univariate analysis Multivariate analysis

Hazard ratio (95% CI) P value* Hazard ratio (95% CI) P value*

T stage
T1&T2 30 Reference

T3&T4 140 3.119 (1.346–7.229) 0.008 3.275 (0.768–13.970) 0.109

N stage
N0 48 Reference

N1 119 2.746 (1.473–5.121) 0.001 2.787 (1.138–6.825) 0.025

M stage
M0 76 Reference

M1 5 0.896 (0.212–3.777) 0.881

Pathologic stage

Stage I 20 Reference

Stage II 141 3.294 (1.191–9.110) 0.022 0.313 (0.045–2.192) 0.242

Stage III&IV 8 2.401 (0.530–10.874) 0.256 0.267 (0.025–2.874) 0.276

Gender
Female 76 Reference

Male 96 0.751 (0.473–1.194) 0.227

Age
 ≤ 65 92 Reference

 > 65 80 1.067 (0.670–1.701) 0.784

Radiation therapy
No 114 Reference

Yes 43 0.445 (0.238–0.834) 0.011 0.346 (0.161–0.742) 0.006

Primary therapy outcome
PD&SD 56 Reference

PR&CR 79 0.283 (0.164–0.490)  < 0.001 0.321 (0.169–0.608)  < 0.001

Residual tumor
R0 103 Reference

R1&2 55 1.861 (1.137–3.046) 0.013 1.934 (1.028–3.639) 0.041

Histologic grade

G1 30 Reference NA

G2 92 1.862 (0.889–3.898) 0.099 1.191 (0.414–3.421) 0.746

G3&G4 48 2.594 (1.199–5.611) 0.016 1.585 (0.522–4.809) 0.416

Anatomic neoplasm subdivi-
sion

Head of Pancreas 133 Reference

Other 39 0.447 (0.234–0.854) 0.015 0.883 (0.378–2.062) 0.773

Smoker
No 64 Reference

Yes 74 1.075 (0.643–1.799) 0.783

Alcohol history
No 62 Reference

Yes 98 1.211 (0.733–2.002) 0.454

History of diabetes
No 105 Reference

Yes 35 0.820 (0.425–1.581) 0.553

History of chronic pancrea-
titis

No 124 Reference

Yes 11 0.888 (0.354–2.232) 0.801

Family history of cancer
No 46 Reference

Yes 60 0.994 (0.553–1.784) 0.983

Model 172 2.718 (1.749–4.226)  < 0.001 3.240 (1.656–6.342)  < 0.001
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specially performed secondary enrichment analysis on PAAD-IRGS, revealing that this model was also associated 
with pathways of ECM and cell-membrane junction and immune-related pathways (Fig. 4C).

Among the three genes, S100P, a 95-amino-acid protein belonging to the S100 family, was regarded as a prom-
ising  diagnostic59 and prognostic  biomarker60 for pancreatic cancer with a potential mechanism of regulating 

Figure 10.  Establishment and assessment of PAAD-IRGS-based nomograms for PFI in TCGA-PAAD. (A) 
Single-gene and PAAD-IRGS survival analysis of PFI in PAAD; (B) the time-dependent ROC curve of the 
PAAD-IRGS for predicting 1, 2, and 3-year PFI; (C) decision curve analysis for evaluating the PAAD-IRGS; (D) 
an PAAD-IRGS-based nomogram included with 7 clinical components predicting 1, 2, and 3-year PFI of PAAD; 
(E) nomogram calibration curve for 1, 2, and 3-year. (E) Decision curve analysis for evaluating the net benefits 
of nomogram at 1, 2, and 3 years. PFI progress free interval; *P < 0.05, **P < 0.01, ***P < 0.001.
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invasion into the lymphatic endothelial  monolayer61, which is consistent with our results. S100A2, another 
member of the S100 family, was reported as a prognostic biomarker involved in immune infiltration and immu-
notherapy response prediction in pancreatic  cancer62, which matches our findings. Turn to MMP12, as one of 
the members of the matrix metalloproteinases family, it encodes extracellular matrix participating in the (EMT) 
which was identified as a strictly programmed shift playing a crucial role in tumor invasion and  metastasis63. 
MMP12 was also revealed to be a potential diagnostic biomarker for pancreatic carcinoma. Its up-regulation 
was associated with a poor  prognosis64. These genes were verified to be closely correlated with different cancers, 
especially the diagnosis and prognosis of PAAD, a finding we also made in this work. Although many types of 
diagnostic or prognostic biomarkers, and even to some extent predictive models have been identified in recent 
 studies60,65–68, we discovered three IRGs with high specificity. We integrated them to establish a novel prognostic 
model for PAAD. Compared with other models, our model had an extremely remarkable performance on both 
diagnosis and prognosis prediction in PAAD patients.

In our study, patients in the PAAD-IRGS high-risk group had a significantly worse OS than those in the low-
risk group (Fig. 4F), indicating that the PAAD-IRGS score may be an independent risk factor when evaluating 
the prognosis of PAAD patients. Additionally, time-dependent ROC and DCA results (Fig. 5A,B) showed that 
PAAD-IRGS had a good performance in prediction prognosis. The nomogram integrating PAAD-IRGS and 
multiple clinicopathological variables showed better accuracy and reliability than any singular variable (Table 3).

Table 7.  The univariate and multivariate analysis for the PFI (TCGA-PAAD).  PFI progress free interval, CI 
confidence interval, NA reference group or could not be evaluated. *Compared with each group (log-rank test 
or Omnibus test for univariate, Cox regression analysis with adjusted hazard for multivariate). p < 0.05 means 
statistically significant (highlighted in bold).

Characteristics Total (N)

Univariate analysis Multivariate analysis

Hazard ratio (95% CI) P value* Hazard ratio (95% CI) P value*

T stage
T1&T2 31 Reference

T3&T4 145 2.414 (1.309–4.452) 0.005 1.536 (0.605–3.903) 0.367

N stage
N0 50 Reference

N1 123 1.735 (1.113–2.705) 0.015 1.613 (0.853–3.048) 0.141

M stage
M0 79 Reference

M1 5 0.837 (0.300–2.336) 0.734

Pathologic stage

Stage I 21 Reference

Stage II 146 2.966 (1.353–6.501) 0.007 0.572 (0.152–2.162) 0.410

Stage III&IV 8 2.965 (0.976–9.014) 0.055 0.494 (0.101–2.422) 0.384

Gender
Female 80 Reference

Male 98 0.968 (0.658–1.423) 0.867

Age
 ≤ 65 93 Reference

 > 65 85 1.256 (0.848–1.861) 0.256

Radiation therapy
No 118 Reference

Yes 45 0.744 (0.474–1.168) 0.199

Primary therapy outcome
PD&SD 58 Reference

PR&CR 81 0.336 (0.216–0.524)  < 0.001 0.454 (0.278–0.743) 0.002

Residual tumor
R0 107 Reference

R1&2 57 2.253 (1.494–3.398)  < 0.001 2.042 (1.239–3.363) 0.005

Histologic grade

G1 31 Reference NA

G2 95 1.740 (0.956–3.170) 0.070 0.774 (0.355–1.685) 0.518

G3&G4 50 2.570 (1.361–4.853) 0.004 1.149 (0.500–2.641) 0.743

Anatomic neoplasm subdivi-
sion

Head of Pancreas 138 Reference

Other 40 0.495 (0.299–0.820) 0.006 0.637 (0.335–1.210) 0.168

Smoker
No 65 Reference

Yes 79 1.048 (0.683–1.606) 0.831

Alcohol history
No 65 Reference

Yes 101 1.217 (0.799–1.851) 0.360

History of diabetes
No 108 Reference

Yes 38 0.783 (0.460–1.333) 0.368

History of chronic pancrea-
titis

No 128 Reference

Yes 13 0.885 (0.426–1.840) 0.744

Family history of cancer
No 47 Reference

Yes 63 0.955 (0.574–1.590) 0.860

Model 178 2.718 (1.881–3.929)  < 0.001 2.783 (1.670–4.639)  < 0.001
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We not only evaluated and validated the PAAD-IRGS by using two datasets of pancreatic cancer from GEO, 
but also investigated its application to hepatocellular carcinoma. Hepatobiliary and pancreatic diseases are often 
classified into the same category since they are anatomically and functionally linked. Although the cholangiocar-
cinoma dataset of TCGA was discarded due to its small sample size, we found that the PAAD-IRGS had excellent 
diagnostic and prognostic value on LIHC patients. We also combined relevant clinicopathological variables with 
PAAD-IRGS to construct a comprehensive nomogram model, which showed good accuracy and robustness. 
Based on the results, we might speculate whether the three genes participated in the oncogenesis, progression 
and metastasis of LIHC and PAAD partially or collectively. However this needs further exploration. We also 
looked into using PAAD-IRGS to predict DSS and PFI in patients with PAAD. The results of PAAD-IRGS and 
the relevant prognostic model were encouraging. Unlike other biomarkers that only had diagnostic value, PAAD-
IRGS had the dual capability to predict diagnosis and prognosis with high accuracy. Several multiple-genes 
prognostic model have been established and  reported67,68. Compared with them, our model had outstanding 
general applicability with high accuracy and stability. As to the miRNA or lncRNA-related  signatures65,69–71, our 
PAAD-IRGS was more stable and convinced; Compared with multiple-gene  signatures9,68, necroptosis-related 

Figure 11.  Analysis of correlation between PAAD-IRGS and immune-related cells and relevant 
immunotherapy. (A) Lollipop plot of PAAD-IRGS and immune infiltration cells correlation in TCGA-PAAD; 
(B) survival analysis of immune-related cells infiltration in PAAD; (C) analysis of immunotherapeutic efficiency 
based on PAAD-IRGS in TCGA-PAAD. IPS immunephenoscore. *P < 0.05, **P < 0.01, ***P < 0.001.
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Figure 12.  Analysis of correlation between PAAD-IRGS and immuno-inhibitors. (A) Immune-inhibitor 
genes—PAAD-IRGS heatmap; (B) correlation analysis of immune-inhibitor genes and PAAD-IRGS. *P < 0.05, 
**P < 0.01, ***P < 0.001.
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Figure 13.  Analysis of correlation between PAAD-IRGS and MHC molecule. (A) MHC molecule genes—
PAAD-IRGS heatmap; (B) correlation analysis of MHC molecule genes and PAAD-IRGS. MHC major 
histocompatibility complex; *P < 0.05, **P < 0.01, ***P < 0.001.
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gene  signature72 and m6A-related gene  signature73,74, which had been reported, our PAAD-IRGS was new and 
more versatile with outstanding performance. It can be well applied to prognostic prediction of multiple cancers 
with different prognostic parameters. Its good diagnostic ability for various cancer and its relationship with 
tumor-immunity would make it promising for further research.

There were several limitations of this research to be concerned about. The limitation to this study worth 
noting include: there may be an effect on the result due to batch effect and differences in sample sizes that are 
difficult to eliminate completely. Secondly, although the prognostic value of the PAAD-IRGS was evaluated in 
multiple datasets, large-scale clinical research is still necessary for further validation. Thirdly, we conducted 
correlation analyses between PAAD-IRGS and immune-related cells/immunomodulators and disclosed some 
potential immune-related targets. However, the underlying mechanisms and pathways need further investiga-
tion and experiment validation.

In conclusion, our study established a novel prognostic model comprised of three genes with high specificity 
for predicting prognosis in patients with PAAD. This model demonstrated excellent performance in predicting 

Figure 14.  Analysis of correlation between PAAD-IRGS and immuno-stimulators. (A) Immune-stimulator 
genes—PAAD-IRGS e heatmap; (B) correlation analysis of immune-stimulator genes and PAAD-IRGS 
(negative). (C) Correlation analysis of immune-stimulator genes and PAAD-IRGS (positive). *P < 0.05, 
**P < 0.01, ***P < 0.001.
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both diagnosis and prognosis. Since PAAD-IRGS can be generalized, it may be a beneficial predictive model in 
clinical practice.

Data availability
The original contributions presented in the study are included in the article/supplementary material. Further 
inquiries can be directed to the corresponding author/s. All data and original files in our work are freely avail-
able under a ‘Creative Commons BY 4.0’ license. All methods were carried out in accordance with relevant 
guidelines and regulations.
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