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Phospholipid flippases and Sfk1 are essential 
for the retention of ergosterol in the plasma 
membrane

ABSTRACT  Sterols are important lipid components of the plasma membrane (PM) in eukary-
otic cells, but it is unknown how the PM retains sterols at a high concentration. Phospholipids 
are asymmetrically distributed in the PM, and phospholipid flippases play an important role 
in generating this phospholipid asymmetry. Here, we provide evidence that phospholipid 
flippases are essential for retaining ergosterol in the PM of yeast. A mutant in three flippases, 
Dnf1-Lem3, Dnf2-Lem3, and Dnf3-Crf1, and a membrane protein, Sfk1, showed a severe 
growth defect. We recently identified Sfk1 as a PM protein involved in phospholipid asym-
metry. The PM of this mutant showed high permeability and low density. Staining with the 
sterol probe filipin and the expression of a sterol biosensor revealed that ergosterol was not 
retained in the PM. Instead, ergosterol accumulated in an esterified form in lipid droplets. We 
propose that ergosterol is retained in the PM by the asymmetrical distribution of phospholip-
ids and the action of Sfk1. Once phospholipid asymmetry is severely disrupted, sterols might 
be exposed on the cytoplasmic leaflet of the PM and actively transported to the endoplasmic 
reticulum by sterol transfer proteins.

INTRODUCTION
Heterogeneity in the distribution of membrane phospholipids and 
sterols is essential for the diverse functions of cells. In the plasma 
membrane (PM) of eukaryotic cells, phosphatidylcholine (PC), sphin-
golipids, and gangliosides are predominantly distributed in the ex-
tracellular leaflet, whereas phosphatidylethanolamine (PE), phos-
phatidylserine (PS), and other charged lipids are mainly localized to 
the cytoplasmic leaflet (Zachowski, 1993; van Meer, 2011; Murate 
et al., 2015; Kobayashi and Menon, 2018). This asymmetric distribu-
tion of phospholipids is controlled by three types of lipid transloca-
tors: flippase, catalyzing inward phospholipid translocation (flip) 
(Hankins et al., 2015; Panatala et al., 2015; Andersen et al., 2016); 
floppase, catalyzing outward phospholipid translocation (flop) 
(Quazi and Molday, 2011; Hankins et  al., 2015; Neumann et  al., 
2017); and scramblase, catalyzing bidirectional phospholipid trans-
location (Nagata et al., 2020).

Accumulating genetic and biochemical evidence indicates that 
flippases are integrally linked to phospholipid asymmetry of the or-
ganelle membrane from yeast to mammalian cells. Flippases, which 
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are type 4 P-type ATPases (P4-ATPases), have the ability to translo-
cate phospholipids from the extracellular leaflet of the PM or lumi-
nal leaflet of endomembranes to the cytoplasmic leaflet (Panatala 
et al., 2015). At the cellular level, flippases are associated with di-
verse physiological functions. Flippases in endomembranes func-
tion primarily in membrane trafficking processes (Chen et al., 1999; 
Gall et al., 2002; Hua et al., 2002; Pomorski et al., 2003; Saito et al., 
2004; Furuta et al., 2007; Mioka et al., 2014; Lee et al., 2015; Tanaka 
et al., 2016), whereas those located in the PM are involved in multi-
ple cellular processes: membrane trafficking (Hua et al., 2002; Po-
morski et al., 2003; Furuta et al., 2007; Hachiro et al., 2013), apop-
tosis signaling (Segawa et al., 2014), mating signaling (Sartorel et al., 
2015), the apical membrane barrier (Paulusma et al., 2006), cell po-
larity (Iwamoto et al., 2004; Saito et al., 2007; Das et al., 2012), and 
cell migration (Kato et al., 2013).

Flippases form heterodimeric complexes with noncatalytic sub-
units of the Cdc50 family. Budding yeast has five P4-ATPases: Drs2, 
Dnf1, Dnf2, Dnf3, and Neo1 (Tanaka et al., 2011) and three Cdc50 
family member proteins: Cdc50, Lem3, and Crf1 (Saito et al., 2004; 
Furuta et al., 2007). Drs2 and Dnf3 interact with Cdc50 and Crf1, 
respectively, and are mainly localized to the endomembrane, such 
as the trans-Golgi network (TGN) and endosomes. On the other 
hand, both Dnf1 and Dnf2 form complexes with Lem3 and are 
mainly localized to the PM (Kato et al., 2002; Pomorski et al., 2003). 
Except for Neo1, interactions between the P4-ATPases and Cdc50 
subunits are essential for endoplasmic reticulum (ER) exit and proper 
subcellular localization of the complexes but may also contribute to 
their lipid translocase activity and functions (Saito et al., 2004; Noji 
et al., 2006; Furuta et al., 2007; Bryde et al., 2010; Takahashi et al., 
2011; Puts et al., 2012). Thus, phenotypes in P4-ATPase mutants are 
phenocopied by their subunit mutants (Saito et  al., 2004; Furuta 
et al., 2007).

Dnf1/2-Lem3 complexes are endocytosed but recycled back to 
the PM through the endocytic recycling pathway (Saito et al., 2004; 
Furuta et al., 2007), maintaining the localization of these complexes 
to the PM. Genetic analyses suggested that the Dnf1/2-Lem3 com-
plexes have PE and PS translocation activity (Kato et al., 2002; Po-
morski et al., 2003; Parsons et al., 2006; Stevens et al., 2008). Con-
sidering the localization and activity of Dnf1/2-Lem3 complexes, 
they maintain phospholipid asymmetry predominantly at the PM. 
Compared to the other four P4-ATPases, little is known about the 
activity and function of the Dnf3-Crf1 complex. However, the dele-
tion of DNF3 increases the sensitivity of the dnf1∆ dnf2∆ double 
mutant to the PE-binding peptide duramycin (Sartorel et al., 2015), 
and Dnf3 is implicated in the translocation of PS across the PM (Frø-
sig et  al., 2020), suggesting possible functions of the Dnf3-Crf1 
complex in PM phospholipid translocation.

In addition to Dnf1/2-Lem3, some regulators are involved in 
phospholipid asymmetry of the PM. Serine/threonine kinases 
Fpk1/2 up-regulate Dnf1/2 flippase activity via phosphorylation (Na-
kano et al., 2008). Pdr5p and Yor1p, two multidrug ABC transporters 
(Decottignies et al., 1998; Pomorski et al., 2003), and Opt2, a mem-
ber of the oligopeptide transporter family (Yamauchi et al., 2015), 
are implicated in the flop of phospholipids. Recently, we isolated 
Sfk1 as a multicopy suppressor of the lem3∆ mutant; overexpression 
of Sfk1 suppressed PE and PS exposure in the PM (Mioka et  al., 
2018). Sfk1 is a conserved transmembrane protein belonging to the 
TMEM150/FRAG1/DRAM family (Chung et al., 2015). From genetic 
analyses, we proposed that Sfk1 might negatively regulate the 
transbilayer movement of phospholipids irrespective of direction in 
an unprecedented way. The lem3∆ sfk1∆ double mutant exhibits 
more severe defects in PE and PS asymmetry in the PM than the 

lem3∆ mutant, and the lem3∆ sfk1∆ mutant exhibits increased per-
meability of the PM (Mioka et al., 2018). However, these mutations 
do not affect cell growth. Given that PM phospholipid asymmetry is 
commonly observed in eukaryotes, it may be speculated that phos-
pholipid asymmetry plays an important role (e.g., is essential for cell 
growth). Thus, there might be a gene that functions redundantly 
with LEM3 and SFK1 to control phospholipid asymmetry.

Another important feature of the PM is that this membrane is rich 
in sterols. Sterols such as mammalian cholesterol and the fungal er-
gosterol are essential membrane components with tightly controlled 
homeostasis (Lange and Steck, 2016). At the cellular level, the PM 
contains approximately 30–40 mol% cholesterol in PM lipids, 
whereas the ER contains approximately 5 mol% cholesterol 
(Radhakrishnan et al., 2008; Holthuis and Menon, 2014). Sterols are 
inserted into lipid membranes through the interaction between 
3-hydroxyl groups and hydrocarbon rings of sterols and polar head 
groups and hydrocarbon chains of phospholipids, respectively (Ali 
et al., 2007). Each phospholipid has a different affinity for sterols, 
which determines the strength of their interaction with sterols (Lange 
and Steck, 2008; Almeida, 2009). Sphingolipids, PC, and PS interact 
strongly with sterol, whereas phospholipids with small polar head 
groups and unsaturated fatty acyl tails exhibit weaker interactions 
(Ramstedt and Slotte, 2006; Lange et al., 2013; Maekawa and Fairn, 
2015). Numerous studies have suggested that these interactions 
contribute to the properties of the PM, including tight packing, high 
rigidity, and low permeability. However, it is unclear how the PM re-
tains such a high concentration of sterols and whether the asymmet-
ric distribution of PE and PS is involved in retaining sterols in the PM.

In this study, we searched for genes that functionally interact with 
LEM3 and SFK1 by synthetic lethal genetic screening and identified 
dnf3 and crf1 as interacting partners. The conditional crf1 lem3 sfk1 
triple mutant cannot maintain ergosterol in the PM and instead ac-
cumulates esterified ergosterol in the lipid droplet (LD). Our results 
suggest that Dnf1/2-Lem3 and Dnf3-Crf1 flippases and Sfk1 func-
tion cooperatively to maintain the phospholipid asymmetry of the 
PM, which is essential for sterol retention in the PM and thus for the 
homeostatic control of sterol.

RESULTS
Dnf3-Crf1 flippase is involved in PM phospholipid 
asymmetry together with Dnf1/2-Lem3 flippases and Sfk1
To isolate genes involved in the regulation of phospholipid asym-
metry of the PM in conjunction with Lem3 and Sfk1, we searched for 
mutations that display synthetic lethality with lem3∆ sfk1∆ muta-
tions at 30°C. We isolated a new allele of the flippase noncatalytic 
subunit crf1 (Figure 1A). To confirm this synthetic lethality, we 
crossed the crf1∆ lem3∆ mutant to the lem3∆ sfk1∆ mutant, fol-
lowed by tetrad analysis (Supplemental Figure 1, A and B). The 
crf1∆ lem3∆ sfk1∆ triple mutant did not germinate at 30°C but ger-
minated at 25°C despite severe growth defects (Supplemental 
Figure 1B), which allowed us to obtain the crf1∆ lem3∆ sfk1∆ triple 
mutant for further analysis. We next tested the growth of the crf1∆ 
lem3∆ sfk1∆ triple mutant at 30 and 37°C. The triple mutant grew 
very slowly at 30°C and showed lethality at 37°C (Figure 1B). The 
deletion of DNF3, which encodes the catalytic subunit of Crf1 (Fu-
ruta et al., 2007), also grew poorly when combined with lem3∆ sfk1∆ 
(Supplemental Figure 1C).

Dnf3 is mainly localized to endosomal/Golgi membranes (Hua 
et al., 2002; Pomorski et al., 2003), but it was suggested that Dnf3 
also functions at the PM (Frøsig et al., 2020). To examine whether 
Dnf3-Crf1 is transported to the PM, we used the endocytosis-
deficient vrp1∆ mutant (Munn et  al., 1995). Both Dnf3-3xGFP 
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(triple tandem green fluorescent protein [GFP]) and Crf1-GFP were 
localized to intracellular structures but were barely detectable in 
the PM of the wild type. However, they were observed in the PM 
when endocytosis was inhibited (Figure 1C). This result indicates 
that the Dnf3-Crf1 flippase is transported between the PM and 
endomembranes, similar to Drs2-Cdc50 (Saito et al., 2004). These 
results raise the possibility that the synthetic growth defect of the 
crf1∆ lem3∆ sfk1∆ mutant is caused by defects in the PM, and this 
point was analyzed further.

We attempted to perform phenotypic analysis of the crf1∆ lem3∆ 
sfk1∆ triple mutant. However, the expression of some GFP-fused 
proteins resulted in lethality in the crf1∆ lem3∆ sfk1∆ background. 
Thus, we constructed temperature-sensitive (ts) mutants of SFK1 by 
random mutagenesis in the lem3∆ crf1∆ background as described 
in Materials and Methods. The crf1∆ lem3∆ sfk1-2 mutant exhibited 
acceptable growth at 30°C but a severe growth defect at 37°C 
(Figure 2A). From the growth profiles of the crf1∆ lem3∆ sfk1-2 mu-
tant at 30 and 37°C (Supplemental Figure 2), we analyzed pheno-
types of the triple mutant after culturing for 6 h after the shift to 
37°C. DNA sequencing of the sfk1-2 mutant allele revealed that 
sfk1-2 contained one mutation that resulted in an amino acid substi-
tution W16R (Figure 2B), which was located in the N-terminal trans-
membrane region.

Phospholipid asymmetry defects cause the exposure of PS and 
PE to the extracellular leaflet of the PM. The exposed PS and PE can 
be indirectly measured by examination of the growth sensitivities of 
the mutants to the PS-binding cyclodepsipeptide papuamide B 

(PapB) and PE-binding tetracyclic peptide duramycin. We previously 
reported that the lem3∆ sfk1∆ double mutant exhibited high sensi-
tivities to both peptides (Mioka et al., 2018). Thus, we first tested the 
growth sensitivity of the crf1∆ lem3∆ sfk1-2 triple mutant to these 
peptides at 30°C (Figure 2C). The addition of either the crf1∆ or the 
dnf3∆ mutation to the lem3∆ mutant elevated the sensitivities to 
both peptides (Supplemental Figure 3A), consistent with a previous 
report on the dnf1∆ dnf2∆ dnf3∆ mutant (Sartorel et al., 2015). The 
crf1∆ lem3∆ sfk1-2 mutant did not grow at the concentrations at 
which the crf1∆ lem3∆ and lem3∆ sfk1-2 double mutants could 
grow (Figure 2C). This was confirmed by dose-response growth 
curve experiment (Supplemental Figure 3B). These results suggest 
that the crf1∆ lem3∆ sfk1-2 triple mutant exposed more PS and PE 
even at the permissive temperature than did the double mutants. To 
further confirm the defect in phospholipid asymmetry in the triple 
mutant, we next visualized the PE exposed to the extracellular sur-
face using the PE-binding biotinylated Ro 09-0198 peptide (Bio-Ro). 
Fluorescence signals were not detected in either the wild type or 
the crf1∆ sfk1∆ double mutant but were detected in both the crf1∆ 
lem3∆ (45%) and lem3∆ sfk1∆ (58%) double mutants (Figure 2D, left 
and middle panels). In the crf1∆ lem3∆ sfk1∆ triple mutant, the pro-
portion of cells with fluorescence signals increased to 85%. Further-
more, the average signal intensity in the triple mutant was 1.35-fold 
higher than that in the lem3∆ sfk1∆ mutant (Figure 2D, right panel).

Next, we examined PS distribution in the cytoplasmic leaflet of 
the PM in the crf1∆ lem3∆ sfk1-2 triple mutant. To visualize PS, we 
expressed PS biosensors, the C2 domain of lactadherin (Lact-C2) 
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FIGURE 1:  Synthetic growth defects of the crf1∆ lem3∆ sfk1∆ mutant. (A) Growth profiles on 5-fluoroorotic acid 
(5-FOA) plate medium in yeast plasmid shuffling assay. The crf1∆ lem3∆ sfk1∆ mutant harboring pRS316-SFK1 was 
transformed with YCplac111 (pLEU2-Con), YCplac111-LEM3 (pLEU2-LEM3), YCplac111-CRF1 (pLEU2-CRF1), or 
pRS315-SFK1 (pLEU2-SFK1). Transformants were streaked onto an SD-Leu + 5-FOA plate and grown at 30°C for 3 d. 
The cells that require pRS316-SFK1 for growth are sensitive to 5-FOA because pRS316 contains the URA3 gene (Boeke 
et al., 1984). The right panel illustrates this assay system. (B) Growth profiles by spot growth assay. As described in 
Materials and Methods, 10-fold serial dilutions of cell cultures were spotted onto YPDA and grown for 1.5 d at 30 or 
37°C. (C) Localizations of Dnf3-3xGFP (triple tandem GFP) and Crf1-GFP in the endocytosis-defective vrp1∆ mutant. 
Cells were grown to mid–log phase in YPDA medium at 30°C. Arrows indicate the cells showing the PM localization of 
examined proteins. Bar, 5 µm. DIC, differential interference contrast.
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(Yeung et  al., 2008) and the pleckstrin homology (PH) domain of 
evectin-2 (evt-2PH) (Uchida et al., 2011). GFP-Lact-C2 was mainly 
distributed in the PM of the examined cells, but intracellular localiza-
tion was also observed in the triple mutant (Figure 2E, left panel; 
Supplemental Figure 3C). In contrast, GFP-evt-2PH was normally 
distributed only to the PM in the wild type and double mutants 
(more than 96% of cells with PM distribution), whereas the GFP-evt-
2PH signal was lost or significantly reduced from the PM in the crf1∆ 
lem3∆ sfk1-2 triple mutant (59% of cells with PM distribution) (Figure 
2E, middle and right panels; Supplemental Figure 3D). We specu-
late that Lact-C2 has a higher affinity for PS, resulting in the detec-
tion of a lower level of PS at the PM. Both GFP-Lact-C2 and GFP-
evt-2PH were localized to intracellular structures in the triple mutant. 
However, they appeared to be localized to different structures, 
which may represent PS-containing membranes or nonspecific pro-
tein aggregations. Taken together, these results suggest that the 
asymmetric distribution of PE and PS was most disturbed in the 
crf1∆ lem3∆ sfk1 triple mutants.

As the Dnf3-Crf1 complex was mainly localized to endosomal/
TGN compartments (Figure 1C) (Hua et al., 2002; Pomorski et al., 
2003), the crf1∆ lem3∆ sfk1-2 mutant may exhibit a defect in mem-
brane trafficking. We examined the localization of the endocytic recy-
cling marker GFP-Snc1, which is mainly localized to polarized PM 
sites (Lewis et al., 2000), but its localization was not affected in the 
crf1∆ lem3∆ sfk1-2 triple mutant at 37°C (Figure 2F). Similarly, two 
PM proteins, Pdr5-GFP (ABC transporter) (de Thozee et al., 2007) 
and Pma1 (H+-ATPase) (Malinska et al., 2004), were normally trans-
ported to the PM in the crf1∆ lem3∆ sfk1-2 triple mutant (Figure 2F). 
We also examined endocytosis in the crf1∆ lem3∆ sfk1-2 triple mu-
tant by uptake of the lipophilic dye FM4-64 (Vida and Emr, 1995). The 
FM4-64 signal was well colocalized to the vacuole membrane marker 
Vph1-3xGFP (Peters et  al., 2001) in both the wild type and crf1∆ 
lem3∆ sfk1-2 triple mutant after 30 min of incubation, suggesting 
that the triple mutant did not have obvious defects in endocytosis 
(Figure 2G). These results suggest that the crf1∆ lem3∆ sfk1-2 triple 
mutant is not defective in membrane trafficking to or from the PM.

The PM shows high permeability and low density in the 
crf1∆ lem3∆ sfk1 triple mutants
Phospholipid asymmetry defects may have a profound effect on PM 
properties. Previously, we showed that the lem3∆ sfk1∆ double mu-
tant exhibits an increase in membrane permeability by measuring 
rhodamine dye uptake (Mioka et  al., 2018). This experiment was 
performed in the crf1∆ lem3∆ sfk1∆ triple mutant, and the results 
suggest that the permeability is further enhanced in the triple mu-
tant compared with that in the lem3∆ sfk1∆ double mutant (Figure 
3A). The large increase in membrane permeability prompted us to 
examine whether the lipid composition changes in the PM of the 
crf1∆ lem3∆ sfk1-2 triple mutant. We performed sucrose density 
gradient fractionation to isolate the PM. In the wild type, PM mark-
ers, both Pdr5-GFP (de Thozee et  al., 2007) and Pma1 (Serrano 
et al., 1986; Bagnat et al., 2001), were recovered in high-density 
fractions, whereas Kex2, which is localized to endosomal/TGN com-
partments (Brickner and Fuller, 1997; Lewis et al., 2000), peaked at 
a lower density (Figure 3B). However, in the crf1∆ lem3∆ sfk1-2 triple 
mutant, Pdr5-GFP, Pma1, and Kex2 were recovered together in 
lower-density fractions (fractions 3–9) (Figure 3B). Pdr5-GFP and 
Pma1 were normally localized to the PM in the crf1∆ lem3∆ sfk1-2 
triple mutant in microscopic analysis (Figure 2F), suggesting a de-
crease in PM density, which makes PM isolation from the triple mu-
tant technically challenging. Thus, we measured the phospholipid 
composition in the total cellular lipids. No significant difference in 

lipid composition was found in the double and triple mutants (Sup-
plemental Figure 4). These results suggest that a major change oc-
curs in the PM of the crf1∆ lem3∆ sfk1 triple mutant.

Isolation of KES1 as a multicopy suppressor of the crf1∆ 
lem3∆ sfk1-2 mutation
To explore the essential functions of phospholipid asymmetry in the 
PM, we screened for multicopy suppressors of the ts growth defect 
of the crf1∆ lem3∆ sfk1-2 triple mutant. Multicopy suppressor is a 
gene whose overexpression suppresses a mutant phenotype. We 
found that overexpression of KES1 suppressed the growth defect 
(Figure 4A). Kes1, also known as Osh4, is an oxysterol-binding pro-
tein (OSBP) homologue (Osh) that is implicated in sterol transport 
within cells (Antonny et  al., 2018). Budding yeast contains seven 
Osh homologues, Osh1–7, that exchange specific lipids between 
organelles (Lev, 2010). We next tested whether overexpression of 
other Osh proteins, except for OSH1, which localizes to the nu-
cleus–vacuole junction (Manik et  al., 2017), could suppress the 
growth defect of the crf1∆ lem3∆ sfk1-2 triple mutant. Only KES1 
overexpression suppressed the ts growth defect of the crf1∆ lem3∆ 
sfk1-2 triple mutant (Figure 4A). Increased rhodamine uptake was 
also suppressed by KES1 overexpression in the crf1∆ lem3∆ sfk1-2 
triple mutant (Figure 4B)

We next examined whether the sterol-binding activity of Kes1 is 
required to suppress the growth defect of the crf1∆ lem3∆ sfk1-2 
triple mutant. Overexpression of KES1E117A, KES1L111D, and KES1Y97F, 
which abolishes the binding of Kes1 to sterols (Im et al., 2005), did 
not suppress the growth defect of the triple mutant (Figure 4C). Cor-
respondingly, overexpression of KES1L111D did not suppress rhoda-
mine accumulation (Figure 4B, pKes1m). These results suggest that 
the crf1∆ lem3∆ sfk1-2 triple mutant may have a defect in intracel-
lular transport, homeostasis, or distribution of ergosterol.

Ergosterol is reduced in the PM of the crf1∆ lem3∆ sfk1 
triple mutants
We examined the distribution of ergosterol in the crf1∆ lem3∆ sfk1 
triple mutants. Filipin is a polyene antibiotic that binds to cholesterol 
and ergosterol and is used as a probe for cellular sterol distribution 
(Beh and Rine, 2004; Kishimoto et al., 2016). Wild type and double 
mutants were evenly labeled with filipin at the PM (Figure 5A: Sup-
plemental Figure 5). However, the crf1∆ lem3∆ sfk1∆ triple mutant 
drastically decreased filipin labeling to the PM and instead showed 
the enhancement of intracellular labeling (Figure 5A). Eighty-three 
percent of the crf1∆ lem3∆ sfk1∆ triple mutant cells clearly displayed 
the loss or reduction of filipin signal in the PM (n = 98 cells). Quanti-
tative analysis of fluorescence images further confirmed the de-
crease in filipin intensity on the PM in the triple mutant (Figure 5A).

We also examined another sterol biosensor, D4H. A bacterial 
protein toxin, perfringolysin O, binds to cholesterol via its domain 4 
(D4) (Shimada et al., 2002; Johnson et al., 2012). A D4 derivative, 
D4H (D4D434S), has been developed as a more sensitive probe; it 
binds to liposomes containing 20–30% cholesterol mole concentra-
tion (Johnson et  al., 2012; Maekawa and Fairn, 2015). Although 
D4H has recently been used to detect the PM sterol in fission yeast 
(Marek et al., 2020), D4H has not been applied to budding yeast. 
We generated two fluorescent protein–conjugated D4Hs, GFP-D4H 
and GFPenvy-D4H, in which GFPenvy is a photostable dimeric GFP 
derivative (Slubowski et  al., 2015; Bajar et  al., 2016). When ex-
pressed in wild-type cells, GFP-D4H was localized to the PM in 35% 
of the cells (Figure 5B). In contrast, GFPenvy-D4H was localized to 
the PM in 94% of the cells. Interestingly, GFPenvy-D4H showed a 
characteristic localization pattern; it preferentially localized to 
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FIGURE 2:  The crf1∆ lem3∆ sfk1 triple mutants show severe defects in phospholipid asymmetry but not in membrane 
trafficking. (A) Isolation of the sfk1-2 ts mutant. Tenfold serial dilutions of cell cultures were spotted onto a YPDA plate, 
followed by incubation at 30 or 37°C for 1.5 d. (B) Amino acid substitution of the Sfk1-2 mutant protein. The W16R 
substitution occurs in the first transmembrane domain of Sfk1-2. (C) The crf1∆ lem3∆ sfk1-2 triple mutant was sensitive 
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followed by incubation at 30°C for 2 d. (D) PE was most exposed in the crf1∆ lem3∆ sfk1∆ mutant. Left panels: cells 
were cultured in YPDA at 30°C, and exposed PE was visualized by staining with Bio-Ro and Alexa Fluor 488–labeled 
streptavidin. Dashed lines indicate cell edges. Middle panel: the percentages of cells showing PE exposure were 
determined and are expressed as the mean ± SD of three independent experiments (n > 81 cells in total for each strain). 
An asterisk indicates a significant difference, as determined by the Tukey–Kramer test (p < 0.05). Right panel: 
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daughter cells compared with mother cells. This localization pattern 
is described in the last part of Results in more detail.

We next examined the binding activity of recombinant GFP-D4H 
and GFPenvy-D4H to ergosterol in vitro by liposome sedimentation 
assay using 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) lipo-
somes containing either 50% cholesterol or 50% ergosterol. Consis-
tent with a previous report (Savinov and Heuck, 2017), GFP-D4H 
bound to ergosterol liposomes at an efficiency of 20% of that to 
cholesterol liposomes (Figure 5C). On the other hand, GFPenvy-
D4H bound to ergosterol liposomes at an efficiency of 56% of that 
to cholesterol liposomes (Figure 5C), consistent with the results in 
living cells. The affinity of GFPenvy-D4H to ergosterol was exam-
ined with DOPC liposomes containing different concentrations of 
ergosterol from 10 to 60 mol%. Binding was detected when the er-
gosterol concentration was 25% or higher (Figure 5D). These results 
are comparable to the affinity of D4H to cholesterol (Maekawa and 
Fairn, 2015). The higher affinity of GFPenvy-D4H to ergosterol than 
GFP-D4H might be because GFPenvy forms a dimeric structure 
(Bajar et al., 2016).

We next confirmed that GFPenvy-D4H binds to ergosterol in liv-
ing cells. The ERG11 gene encodes lanosterol demethylase, which 
is essential for ergosterol synthesis (Daum et al., 1998). The shutoff 
of ERG11 gene expression inhibited the distribution of GFPenvy-
D4H to the PM, accompanied by a decrease in free ergosterol levels 
(Figure 5E; Supplemental Figure 6A). Treatment with the Erg11 in-
hibitor fluconazole confirmed this observation (Supplemental Figure 
6B). We also examined the localization of GFPenvy-D4H in mutants 
of genes involved in the late steps of the ergosterol biosynthesis 
pathway (ERG2-6) (Munn et al., 1999; Heese-Peck et al., 2002). GF-
Penvy-D4H was not localized to the PM except for erg4∆, which 
catalyzes the last step (Supplemental Figure 6C). These results sug-
gest that GFPenvy-D4H is localized to the PM by binding to 
ergosterol.

We examined the distribution of GFPenvy-D4H in the crf1∆ 
lem3∆ sfk1-2 triple mutant. The localization of GFPenvy-D4H to the 
PM decreased to some extent in the lem3∆ sfk1-2 and crf1∆ lem3∆ 
double mutants, but it drastically decreased to 16% in the crf1∆ 
lem3∆ sfk1-2 triple mutant (Figure 5F; Supplemental Figure 6D). 
Taking this together with the results of filipin staining, we concluded 
that ergosterol is significantly lost from the PM in the crf1∆ lem3∆ 
sfk1 triple mutants. Kes1 overexpression increased the PM localiza-
tion of GFPenvy-D4H from 25 to 55% in the crf1∆ lem3∆ sfk1-2 tri-
ple mutant (Supplemental Figure 6E). These results suggest that the 
increased Kes1 enhances ergosterol transport to or inhibits loss of 
ergosterol from the PM in the triple mutant and that loss of ergos-
terol from the PM causes phenotypes of the triple mutant, including 
the growth defect.

We next examined whether exogenously added ergosterol 
would suppress the growth defect in the crf1∆ lem3∆ sfk1-2 triple 
mutant. We used strains carrying the gain-of-function mutation of a 
transcription factor UPC2, upc2-1 (G888D), which results in in-
creased uptake of exogenous ergosterol under aerobic conditions 
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FIGURE 3:  Increased permeability and decreased density of the PM 
in the crf1∆ lem3∆ sfk1 triple mutants. (A) Rhodamine uptake is 
increased in the crf1∆ lem3∆ sfk1∆ triple mutant. Cells were cultured 
in YPDA medium at 30°C, preincubated in SD medium in the absence 
(+ATP) or presence (–ATP) of 1 mM sodium azide for 30 min at 30°C, 
and incubated with rhodamine 6G for 60 min at 30°C. Rhodamine 
accumulation was measured as described in Materials and Methods. 
Values represent the mean ± SD from three independent experiments. 
Asterisks indicate a significant difference, as determined by the 
Tukey–Kramer test (p < 0.05). (B) Sucrose density gradient 
centrifugation analysis of PM proteins, Pdr5-GFP and Pma1, and a 
TGN/endosome protein, Kex2, in the crf1∆ lem3∆ sfk1-2 triple 
mutant. Cells were cultured as in Figure 2E. Cell lysates were 
prepared from the wild type and the crf1∆ lem3∆ sfk1-2 triple mutant 
expressing Pdr5-GFP and fractionated in 22–60% sucrose step density 
gradients as described in Materials and Methods. Equivalent volumes 
from each fraction were subjected to SDS–PAGE, and proteins were 
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difference, as determined by the Tukey–Kramer test (p < 0.05). (E) GFP-evt-2PH was mislocalized in the crf1∆ lem3∆ 
sfk1-2 mutant. Cells were grown in YPDA medium to mid–log phase at 30°C and then shifted to 37°C, followed by 
incubation for 6 h. Right panel: the percentage of cells with GFP-evt-2PH at the PM was determined and is expressed as 
the mean ± SD of three independent experiments (n >154 cells in total for each strain). An asterisk indicates a significant 
difference, as determined by the Tukey–Kramer test (p < 0.05). (F) Normal localization of PM proteins in the crf1∆ lem3∆ 
sfk1-2 mutant. Cells were cultured as in E. Pma1 was detected by immunostaining as described in Materials and 
Methods. (G) Endocytosis was not significantly affected in the crf1∆ lem3∆ sfk1-2 mutant. Cells expressing the vacuole 
membrane marker Vph1-3xGFP were cultured as in E. Then, cells were incubated with FM4-64 on ice for 30 min, 
followed by incubation at 37°C for 30 min. Arrows indicate the colocalization of FM4-64 and Vph1-3xGFP. Bars, 5 µm.
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(Lewis et al., 1988; Crowley et al., 1998). The exogenously added 
ergosterol, which was sufficient to suppress the growth defect of the 
ergosterol-deficient hem1∆ mutant (Georgiev et al., 2011), did not 
suppress the growth defect of the crf1∆ lem3∆ sfk1-2 triple mutant 
even when KES1 was overexpressed (Figure 6A). We presumed that 
the triple mutant cannot retain exogenously added ergosterol in the 
PM. Thus, we monitored the distribution of exogenously added 
TopFluor-cholesterol (TF-Chol), a fluorescent dye–conjugated cho-
lesterol analogue (Barajas et al., 2014). TF-Chol was retained in the 
PM of the wild type and double mutants containing upc2-1 but was 
not in the crf1∆ lem3∆ sfk1-2 upc2-1 mutant; only 23% of the triple 
mutant showed TF-Chol in the PM (Figure 6B; Supplemental Figure 
7). TF-Chol appeared to be internalized into the cell to be incorpo-
rated into cytoplasmic punctate structures in the crf1∆ lem3∆ sfk1-2 
upc2-1 mutant (Figure 6B). These results suggest that ergosterol is 
not retained in the PM and that it is transported to intracellular 
punctate structures in the crf1∆ lem3∆ sfk1-2 mutant.

Ergosterol is esterified and accumulated in LDs in the crf1∆ 
lem3∆ sfk1-2 mutant
The loss of ergosterol in the PM raises a question: where does er-
gosterol distribute in the cell? We performed thin-layer chroma-
tography (TLC) analysis of total sterols extracted from the cells. In 
double mutants, the free ergosterol level was approximately 80–
85% of that in the wild type, but it decreased to 50% in the crf1∆ 
lem3∆ sfk1∆ triple mutant (Figure 7A). TLC analysis also showed a 
large increase in esterified ergosterol in the crf1∆ lem3∆ sfk1∆ 
triple mutant. We confirmed that this spot was observed in the 
wild type at the stationary phase, but not in the acyl-CoA:sterol 
acyltransferase–deficient are1∆ are2∆ mutant (Supplemental 
Figure 8) (Klug and Daum, 2014). Because esterified ergosterol is 
the main component of LDs, these results suggest that LDs are 
increased in the crf1∆ lem3∆ sfk1∆ triple mutant. To confirm this, 
we stained LDs with the lipophilic dye Nile red, which stains 
neutral lipids in LDs, triacylglycerol and esterified ergosterol 

(Greenspan et al., 1985). Neither the wild type nor the double mu-
tants showed obvious staining of Nile red, whereas the crf1∆ 
lem3∆ sfk1∆ triple mutant exhibited a clear increase in the number 
of cells showing Nile red puncta (Figure 7B; Supplemental Figure 
9A). We further examined the localization of GFP-tagged LD-re-
lated proteins, Tgl1 (steryl ester lipase) (Jandrositz et  al., 2005) 
and Faa4 (long-chain fatty-acid-CoA ligase) (Kurat et  al., 2006). 
The wild type and the double mutants contained a few puncta of 
these proteins, whereas the numbers of Tgl1-GFP and Faa4-GFP 
puncta increased 2.5- and 2.8-fold, respectively, in the crf1∆ 
lem3∆ sfk1-2 triple mutant compared with those in the wild type 
(Figure 7C; Supplemental Figure 9B). We confirmed that Tgl1-
GFP and Faa4-GFP puncta were colocalized with Nile red–positive 
puncta; 85% of Tgl1-GFP (n = 377) and 88% of Faa4-GFP (n = 453) 
puncta were colocalized with Nile red in the crf1∆ lem3∆ sfk1-2 
triple mutant (Figure 7C). These results suggest that a substantial 
amount of ergosterol was esterified and accumulated in LDs in the 
crf1∆ lem3∆ sfk1 triple mutants.

TF-Chol was also detected in intracellular puncta in the crf1∆ 
lem3∆ sfk1-2 upc2-1 mutant (Figure 6B). We next examined whether 
TF-Chol colocalizes with Faa4-mCherry in the triple mutant. The 
crf1∆ lem3∆ sfk1-2 upc2-1 mutant contained approximately 9–14 
TF-Chol puncta per cell, and 88% of these puncta (n = 603) were 
colocalized with Faa4-mCherry (Figure 7D).

Taken together, these results suggest that ergosterol is not re-
tained in the PM and is transported to LDs in an esterified form, 
probably via the ER, in the crf1∆ lem3∆ sfk1 triple mutants.

The inhibition of sterol esterification partially suppresses 
growth defects and sterol retention in the PM of the crf1∆ 
lem3∆ sfk1-2 mutant
We examined whether inhibition of sterol esterification by muta-
tions in ARE1/ARE2 suppresses the phenotypes of the crf1∆ lem3∆ 
sfk1-2 triple mutant. The growth defect of the triple mutant was 
partially suppressed by the are2∆ mutation but not by the are1∆ 
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mutation (Figure 8A). Consistently, Are2 accounts for 65–75% of to-
tal cellular acyl-CoA:sterol acyltransferase activity (Yang et al., 1996; 
Yu et  al., 1996). We then examined whether the are2∆ mutation 
restored sterol retention in the PM in the crf1∆ lem3∆ sfk1-2 triple 
mutant. The are2∆ mutation increased the number of cells showing 
the PM localization of GFPenvy-D4H from 17 to 60% in the crf1∆ 
lem3∆ sfk1-2 mutant (Figure 8B). These results are consistent with 
our notion that loss of ergosterol from the PM is responsible for the 
growth defect of the crf1∆ lem3∆ sfk1-2 triple mutant.

Overexpression of Sfk1 alters the localization of 
GFPenvy-D4H
The molecular function of Sfk1 remains to be clarified, but our results 
described above may suggest that Sfk1 is functionally related to er-
gosterol in the PM. We examined whether a mutation or overexpres-
sion of SFK1 affects the localization of GFPenvy-D4H. Budding 
yeasts grow by budding, which is a polarized growth of the PM 
(Figure 9A, right panel). GFPenvy-D4H exhibited polarized localiza-
tions in many wild-type cells; it was localized to daughter cells (buds) 
or near the bud neck in medium- or large-budded cells (Figure 9A, 
yellow and pink arrows). These results suggest that the accessibility 
to ergosterol is different between bud and mother PMs because fili-
pin, which was used in fixed cells, evenly stained ergosterol in 
daughter and mother cells. Interestingly, Sfk1 was mainly localized 
to mother cells but not to daughter cells, as described previously 
(Audhya and Emr, 2002), showing a localization pattern opposite to 
that of GFPenvy-D4H (Figure 9, B and C). The GFPenvy-D4H local-
izations in large-budded cells were categorized into three patterns: 
1) localized throughout the PM (not polarized), 2) localized to the 
bud and mother cell PM near the bud neck (partially polarized), and 
3) localized only to the bud (polarized) (Figure 9A, right panel). 
These differences may be because GFPenvy-D4H was expressed 
from a low-copy centromeric plasmid, whose copy number varies 
among individual cells (Gnügge and Rudolf, 2017). The fluorescence 
intensity profiles of Sfk1-3xmCherry and GFPenvy-D4H are shown 
for the “polarized” (Figure 9C) and “partially polarized” (Supple-
mental Figure 10A) patterns. The proportion of these localization 
patterns was not changed in the sfk1∆ mutant (Figure 9, A and D).

We then examined the effect of SFK1 overexpression by using 
a multicopy plasmid carrying SFK1-mCherry. Expression from a 
multicopy plasmid generates heterogeneity in the level of gene 
expression among individual cells because of variation in plasmid 
copy number (Caunt et al., 1988). We took advantage of this ex-
pression characteristic to examine the correlation between the 
Sfk1 expression level and the D4H localization pattern. Cells were 
categorized into high- and low-expression groups based on the 
fluorescence intensity of Sfk1-mCherry. The relative expression 
level of SFK1-mCherry in highly expressing cells was more than 
threefold that in lowly expressing cells (Supplemental Figure 10B). 
In cells lowly expressing Sfk1-mCherry, the GFPenvy-D4H localiza-
tion pattern was not changed (Figure 9, E, cyan arrows, and F). The 
mother cell–specific localization pattern of Sfk1-mCherry was not 
changed in highly expressing cells (Figure 9E, yellow arrows). Inter-
estingly, in cells highly expressing Sfk1-mCherry, GFPenvy-D4H 
distribution was restricted exclusively to the daughter cells, and 
those cells that showed the “polarized” pattern were largely 
increased to 74% (Figure 9F). In these cells, the fluorescence 
intensity of GFPenvy-D4H was weak in the mother cell PM but in-
creased sharply near the bud neck (Figure 9G). These results sug-
gest that Sfk1 might maintain ergosterol in a state that is inacces-
sible to GFPenvy-D4H, although its function may be redundant 
with that of an unknown protein.

DISCUSSION
More than two decades have passed since the first report on the 
asymmetric distribution of phospholipids in the PM (Zachowski, 
1993), but our understanding of its physiological significance is still 
limited. Our genetic screening reveals that the loss of Dnf1/2-Lem3 
and Dnf3-Crf1 flippases and Sfk1 results in severe growth defects, 
probably due to loss of ergosterol from the PM. The growth defect 
could be due to increased permeability of the PM or abnormal regu-
lation or/and function of PM proteins. Dnf3 was shown to be in-
volved in some PM functions, including mating pheromone signal-
ing (Sartorel et al., 2015) and pseudohyphal growth (Frøsig et al., 
2020), but this is the first demonstration of Dnf3 involvement in es-
sential cell function in a vegetative cell. Because Dnf3 is mainly lo-
calized to the TGN, it is also possible that Dnf3 indirectly regulates 
phospholipid asymmetry in the PM through transport of TGN-de-
rived vesicles. Dnf3 might be also required for transport of an un-
known regulator of phospholipid asymmetry to the PM.

Disruption of phospholipid asymmetry is one main reason for 
the loss of ergosterol from the PM in the triple mutant. Phospholip-
ids interact with sterol via their head groups and acyl chains, which 
contributes to ordering membrane lipids and securing lipid pack-
ing (Mesmin and Maxfield, 2009). In the crf1∆ lem3∆ sfk1 triple 
mutants, PS and PE are more exposed to the extracellular leaflet 
than in the double mutants and the level of PS in the cytoplasmic 
leaflet appears to be decreased. Sterols have a higher affinity to 
phospholipids containing saturated acyl chains than to those con-
taining unsaturated acyl chains (Mesmin and Maxfield, 2009), and 
PS and PE species in the PM are more abundant in those contain-
ing saturated acyl chains than in other organelles in budding yeast 
(Schneiter et  al., 1999). In addition, according to the umbrella 
model (Mesmin and Maxfield, 2009), phospholipid head groups in 
the membrane shield nonpolar cholesterol bodies from the aque-
ous phase. PS with a large head group has a higher affinity for 
cholesterol than other phospholipids (Maekawa and Fairn, 2015; 
Nyholm et al., 2019). Therefore, ergosterol, which is also enriched 
in the cytoplasmic leaflet (Solanko et al., 2018), loses favorable in-
teracting partners in the triple mutant. This would result in a vast 
increase in “active ergosterol,” which may be actively removed 
from the PM by sterol transfer proteins (STPs) (Figure 10; see 
below).

Although Sfk1 is implicated in the regulation of phospholipid 
asymmetry (Figure 2) (Mioka et  al., 2018), its protein function re-
mains unknown. Our results that overexpression of Sfk1 excludes 
GFPenvy-D4H from the mother cell PM suggest that Sfk1 may be 
functionally relevant to ergosterol. GFPenvy-D4H preferentially lo-
calized to the daughter cell PM. However, the ergosterol contents in 
the cytoplasmic leaflet did not seem to be significantly different be-
tween daughter and mother cell PMs because filipin uniformly 
stained both membranes and because ergosterol is predominantly 
localized to the cytoplasmic leaflet of the PM, including in mother 
cells (Solanko et al., 2018). Thus, the differential GFPenvy-D4H lo-
calization might reflect different physical states of ergosterol. When 
sterol levels exceed the interacting capacity of phospholipids in the 
membrane, a sterol molecule is predicted to be exposed to the sur-
face of the membrane, which increases the chance of its interaction 
with sterol-sensing proteins. The model defines this behavior as the 
chemical activation of cholesterol (McConnell and Radhakrishnan, 
2003; Maxfield and Menon, 2006; Nelson et  al., 2008; Flanagan 
et al., 2009; Mesmin and Maxfield, 2009; Steck and Lange, 2010). It 
has been suggested that the D4-containing domain of perfringoly-
sin O preferentially interacts with active cholesterol (Flanagan et al., 
2009). Thus, we propose that the chemical activity of ergosterol is 
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An arrowhead indicates GFPenvy-D4H. A lower band appears to be an incomplete fragment. The amount of protein 
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higher in the PM of daughter cells than in that of mother cells. The 
PM of daughter cells is mainly made from newly synthesized lipids 
by polarized vesicle transport (Pruyne et  al., 2004). In this mem-
brane, PE and PS would be exposed to the extracellular leaflet of 
PM when vesicles are fused with the PM, but they are rapidly flipped 
to the cytoplasmic leaflet by the action of Dnf1/2-Lem3 flippases, 

which is localized to the bud PM (Kato et al., 2002; Pomorski et al., 
2003). Given the high affinity of PS with ergosterol, PS flipped to the 
cytoplasmic leaflet may effectively inhibit sterol activation. However, 
this ongoing process would not ensure that ergosterol molecules 
are fully kept in an inactive state. In addition, it is possible that er-
gosterol is also transported to the bud PM by STPs. Therefore, even 
with such a flippase action, lipids in the bud PM are somewhat agi-
tated during membrane biogenesis, suggesting that sterol activa-
tion would not be fully controlled. On the other hand, Sfk1, but not 
Dnf1/2-Lem3 flippases, is localized to the mother cell PM. Our pre-
vious results suggest that Sfk1 represses spontaneous transbilayer 
movement of phospholipids (Mioka et al., 2018). An interesting pos-
sibility is that Sfk1 enhances interactions between ergosterol and 
phospholipids, which promotes lipid packing in the PM. In such a 
membrane, lipid movements, including transbilayer movement, 
would be less active, and sterols would be kept in an inactive state. 
Because exocytotic vesicle transport and membrane biogenesis do 
not actively occur in the mother cell PM, phospholipid asymmetry 
seems to be more established in this membrane. Sfk1 may maintain 
the established phospholipid asymmetry in a mechanism different 
from that of flippases and suppress the sterol activation.

The main localization sites were different between Dnf1/2-Lem3 
and Sfk1, and the localization of Dnf3-Crf1 in the PM has not been 
clearly shown in the wild type. However, simultaneous loss of these 
proteins leads to severe disorganization of the PM, in which active 
ergosterol would be highly increased due to a reduced shielding 
effect by phospholipids and reduced lipid packing. The ergosterol 
in the triple mutant appears to be highly accessible and easily ex-
tracted by STPs, resulting in the loss of ergosterol from the PM 
(Figure 10). Some STPs, including those yet to be identified, seem 
to be involved in sterol transfer from the PM. These include oxys-
terol-binding protein homologues (Osh) and lipid transfer proteins 
anchored at a membrane contact site (LAMs) with StARkin domains 
(Antonny et al., 2018; Menon, 2018).

Our finding that ergosterol lost from the PM accumulated in LDs 
as esterified ergosterol is consistent with studies using exogenously 
added ergosterols (Li and Prinz, 2004; Georgiev et al., 2011). The 
PM has a much higher ergosterol concentration than the ER, but 
ergosterol transport by STPs between these membranes is kept in 
equilibrium because the active ergosterol concentrations seem to 
be similar in these membranes; the ER membrane contains fewer 
saturated phospholipids, and thus ergosterol in the ER is not 
shielded by surrounding phospholipids (Menon, 2018). In the crf1∆ 
lem3∆ sfk1 triple mutants, a vast increase in active ergosterol occurs 
in the PM, and STPs transport these ergosterols to the ER, in which 
ergosterol is esterified by Are1/Are2 to form LDs, until the active 
ergosterol concentration in the PM is balanced with that in the ER. 
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FIGURE 6:  Exogenously added ergosterol appears to not be retained 
in the PM of the crf1∆ lem3∆ sfk1-2 upc2-1 mutant. (A) Exogenous 
ergosterol did not suppress ts growth in the crf1∆ lem3∆ sfk1-2 upc2-1 
mutant. The crf1∆ lem3∆ sfk1-2 mutant with or without the upc2-1 
mutation was transformed with pRS315-SFK1 (pSFK1), YEplac181 
(pCon), or YEplac181-KES1 (pKES1). After cells were cultured in 
SD-Ura-Leu medium at 30°C overnight, 10-fold serial dilutions were 
spotted onto a YPDA plate containing 0.5% Tween-80 and 0.5% 
ethanol with or without 50 µg/ml ergosterol, followed by incubation for 
1.5 d at 30 or 37°C. (B) TF-Chol is not retained in the PM of the crf1∆ 
lem3∆ sfk1-2 upc2-1 mutant. Left panel: cells were cultured and labeled 
with TF-Chol as described in Materials and Methods. Bar, 5 µm. Right 
panel: the percentage of cells with TF-Chol at the PM was determined 
and is expressed as the mean ± SD of three independent experiments 
(n > 290 cells in total for each strain). An asterisk indicates a significant 
difference, as determined by the Tukey–Kramer test (p < 0.05).

bound to liposomes is expressed as a relative value (percentage) of that bound to 60% ergosterol liposomes. Values 
represent the mean ± SD of three independent experiments. “S” and “P” indicate supernatant and pellet fractions, 
respectively. Asterisks and “n.s.” indicate significant and no significant differences as determined by the Tukey–Kramer 
test (*p < 0.05), respectively. (E) The PM localization of GFPenvy-D4H was dependent on ergosterol. ERG11 was 
expressed under the control of the glucose-repressible PGAL1 promoter. Cells were grown in SGA-Ura medium to mid–
log phase at 30°C and then inoculated into fresh galactose (SGA-Ura) or glucose (SDA-Ura) medium, followed by 
incubation for 12 h at 30°C. Right panel: the percentage of cells with GFPenvy-D4H at the PM was determined and is 
expressed as the mean ± SD of three independent experiments (n > 108 cells in total for each condition). An asterisk 
indicates a significant difference, as determined by a two-tailed Student’s t test (p < 0.05). (F) GFPenvy-D4H was not 
localized to the PM in the crf1∆ lem3∆ sfk1-2 triple mutant. Cells were cultured as in Figure 2E, except that SDA-Ura 
medium was used. Right panel: the percentage of cells with GFPenvy-D4H at the PM was determined and is expressed 
as the mean ± SD of three independent experiments (n > 253 cells in total for each strain). An asterisk indicates a 
significant difference, as determined by the Tukey–Kramer test (p < 0.05). Bars, 5 µm.
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mid–log phase at 30°C, followed by Nile red staining. Nile red staining was performed as described in Materials and 
Methods. Right panel: the percentage of cells with more than three Nile red puncta was determined and is expressed as 
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Nile red staining. Right panel: the Tgl1-GFP or Faa4-GFP puncta were counted in a single focal plane of each cell and 
are expressed with boxplots (whiskers: maximum and minimum values; box: first quartile, median, and third quartile; 
circle: average). The numbers of cells analyzed were 51 and 50 (wild type) and 53 and 51 (triple mutant) for Tgl1-GFP 
and Faa4-GFP, respectively. Asterisks indicate a significant difference, as determined by a two-tailed Student’s t test 
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cultured as in Figure 2E, except that YPDA medium containing TF-Chol was used. Bars, 5 µm.
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The are2∆ mutation increases active ergosterol in the ER due to 
defective esterification, and this ergosterol would be transferred to 
the PM, resulting in the partial suppression of growth defects in the 
triple mutant.

How sterols are maintained at a high concentration in the PM has 
been a long-standing question in membrane biology. Phospholipid 
asymmetry, a conserved feature in the PM, has been implicated in 
this role (Panatala et al., 2015), but genetic analyses of flippases did 
not clearly demonstrate that they function in the retention of sterols 
in the PM. Our results have revealed that flippases actually play an 
essential role in retaining ergosterol in the PM, but the identification 
of an additional factor, Sfk1, which is totally different from flippases, 
was essential. It seems that yeast cells have acquired a robust sys-
tem to retain an important molecule, ergosterol, in the PM. Our 
work indicates that unbiased genetic screening is a powerful ap-
proach to understanding cellular mechanisms that are regulated by 
a different set of proteins. Because Sfk1 is conserved as TMEM150A 
in mammalian cells (Chung et al., 2015), cholesterol might be re-
tained in the PM via a similar mechanism.

MATERIALS AND METHODS
Request a protocol through Bio-protocol.

Media and chemicals
General chemicals were purchased from Wako Pure Chemicals 
Industry (Osaka, Japan) unless otherwise stated. Papuamide B 
was from the collection of R. Andersen (University of British Co-
lumbia, Canada). Duramycin was purchased from Sigma-Aldrich 
(St. Louis, MO). Yeast strains were grown in YPDA-rich medium 
(1% yeast extract [Difco Laboratories, Detroit, MI], 2% Bacto-
peptone [Difco], 2% glucose, and 0.01% adenine). Strains carry-
ing plasmids were grown in SD synthetic medium (0.67% yeast 
nitrogen base without amino acids [Difco] and 2% glucose) that 
contained the required nutritional supplements (Rose, 1990). The 
SDA medium was SD medium that contained 0.5% casamino 
acid (Difco). For the induction of the GAL1 promoter, 3% galac-
tose and 0.2% sucrose were used as carbon sources (YPGA and 
SGA-Ura media).

Yeast strain manipulations and plasmid construction
The yeast strains and plasmids used in this study are listed in 
Supplemental Tables 1 and 2, respectively. Standard genetic 
manipulations of yeast strains were performed according to 
previously described methods (Guthrie and Fink, 1991). The PCR-
based procedure was used to construct yeast strains carrying a 
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FIGURE 8:  The are2∆ mutation partially restores ergosterol in the PM of the crf1∆ lem3∆ sfk1-2 triple mutant. 
(A) Suppression of the growth defect. Tenfold serial dilutions were spotted onto a YPDA plate, followed by incubation 
for 1.5 d at 30 or 37°C. (B) Restoration of GFPenvy-D4H localization to the PM. Cells were cultured as in Figure 2E 
except that SDA-Ura medium was used. Bar, 5 µm. Right panel: the percentage of cells with GFPenvy-D4H at the PM 
was determined and is expressed as the mean ± SD of three independent experiments (n > 219 cells in total for each 
strain). Asterisks and “n.s.” indicate significant and not significant differences as determined by the Tukey–Kramer test 
(*p < 0.05), respectively.

https://en.bio-protocol.org/cjrap.aspx?eid=10.1091/mbc.e20-11-0699
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FIGURE 9:  Overexpression of Sfk1 excludes GFPenvy-D4H from the mother cell PM. (A) The polarized distribution of 
GFPenvy-D4H. Wild-type or sfk1∆ cells carrying pRS316-GFPenvy-D4H were grown in SD-Ura medium to mid–log phase 
at 30°C. “Polarized,” “partially polarized,” and “not polarized” localizations of GFPenvy-D4H are indicated with pink, 
yellow, and green arrows, respectively. Right panel illustrates the budding yeast cell cycle. Three patterns of the 
GFPenvy-D4H localization are shown. (B) Complementary localization of GFPenvy-D4H and Sfk1-3xmCherry to daughter 
(bud) and mother cells, respectively. Wild-type cells expressing these proteins were grown at 30°C. To show 
endogenously expressed Sfk1-3xmCherry clearly, the brightness was adjusted to make it brighter. (C) Fluorescence 
intensity profile of a cell showing the “polarized” pattern of GFPenvy-D4H. Fluorescence signals were quantified along 
the dotted line from the mother cell to the bud. The brightness of Sfk1-3xmCherry was adjusted as in B. 
(D) Quantification of three GFPenvy-D4H localization patterns. The cells in A were examined. The percentage of cells 
showing “polarized,” “partially polarized,” and “not polarized” localizations of GFPenvy-D4H was determined as 
described in Materials and Methods and is expressed as the mean ± SD of three independent experiments (n > 150 cells 
in total for each strain). “n.s.” indicates no significant difference between all combinations as determined by a two-tailed 
Student’s t test. (E) Heterogeneous (high and low) expression of Sfk1-mCherry by a multicopy plasmid. Wild-type cells 
carrying pRS316-GFPenvy-D4H and YEplac181-SFK1-mCherry were grown in SD-Leu-Ura medium to mid–log phase at 
30°C. The brightness was not adjusted after background subtraction. Arrows indicate cells highly (yellow) and lowly 
(cyan) expressing Sfk1-mCherry. (F) High expression of Sfk1-mCherry significantly increased the “polarized” pattern of 
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complete gene deletion or a gene fusion with either GFP or 
mCherry (Longtine et al., 1998; Shaner et al., 2004). The amplified 
DNA fragments were introduced into the appropriate strains, and 
transformants were selected on appropriate plate media. Yeast 
transformations were performed using the lithium acetate method 
(Gietz and Woods, 2002; Gietz and Schiestl, 2007). All constructs 
that were produced by the PCR-based procedure were verified by 
colony PCR to confirm that the replacement or insertion occurred 
at the expected locus.

When the cell growth phenotype was examined by spot assay, 
cells were cultured in the appropriate medium overnight and ad-
justed to OD600 = 0.64, and then 10-fold serial dilutions were spot-
ted onto the indicated plates. The dose-response growth curve ex-
periment for sensitivity to duramycin was performed essentially as 
described previously (Takar et al., 2016). The sigmoidal curve fitting 
was analyzed by using an analysis tool in ImageJ.

Strains carrying 3xGFP or 3xmCherry at genomic loci were con-
structed as follows. pBluescript SK+ (pBSK)-3xGFP-Candida albi-
cans URA3 (CaURA3) was constructed by subcloning 3xGFP from 
pBSK-SJL2-3xGFP (Lee et al., 2003; Sun et al., 2007) (a gift from D. 
G. Drubin), ADH1 terminator, and CaURA3 into pBSK. Then, a DNA 
fragment of VPH1 or DNF3, which encodes the C-terminal region, 
was inserted upstream of 3xGFP in pBSK-3xGFP-CaURA3. The re-
sulting plasmids were linearized by cutting at a unique restriction 
enzyme site in the target gene, followed by transformation into 
yeast strains. Stable URA+ transformants were selected and screened 

FIGURE 10:  Model for the coordinated actions of flippases and Sfk1 in the control of PM sterol. 
PS and PE are retained in the cytoplasmic leaflet of the PM by flippases. PS has a high affinity for 
ergosterol because of its large head, which may shield sterol molecules from sterol transfer 
proteins (STPs). Sfk1 might decrease active ergosterol by unknown mechanisms. Thus, flippases 
and Sfk1 coordinately hold sterols within the membrane interior to limit the accessibility of 
sterols to the cytoplasm. In the crf1∆ lem3∆ sfk1 triple mutant, the simultaneous loss of these 
proteins results in reduced shielding by phospholipids, leading to a vast increase of active 
ergosterol, which is likely highly accessible to and easily extracted by STPs, resulting in the loss 
of ergosterol from the PM.

GFPenvy-D4H. Cells were examined and categorized as in D. Low or high expression of Sfk1-mCherry was determined 
as described in the legend of Supplemental Figure 10B. Bars: No, control plasmid; Endo, endogenous expression of 
Sfk1-3xmCherry; Low, multicopy plasmid of SFK1-mCherry but low expression of Sfk1-mCherry; High, multicopy 
plasmid of SFK1-mCherry and high expression of Sfk1-mCherry. The percentage of cells showing the indicated patterns 
is expressed as the mean ± SD of three independent experiments (n > 103 cells in total for each strain). An asterisk 
indicates a significant difference, as determined by the Tukey–Kramer test (p < 0.05), in the “polarized” and “not 
polarized” patterns. (G) GFPenvy-D4H was exclusively distributed to the bud in a cell highly expressing Sfk1-mCherry. 
The brightness is not adjusted after background subtraction. The right panel represents the fluorescence intensity 
profile quantified as in C. Bars, 3 µm.

for proper targeting by colony PCR. pBSK-
SFK1-3xmCherry-CaURA3 was constructed 
by replacing DNF3 and 3xGFP with SFK1 
and 3xmCherry, respectively. After stable 
SFK1-3xmCherry::CaURA3 transformants 
were obtained, CaURA3 was replaced with 
the KanMX6 cassette by marker fragment 
transformation. The functionality of  DNF3-
3xGFP/CRF1-GFP and SFK1-3xmCherry 
was confirmed by normal growth in the 
lem3∆ sfk1∆ and lem3∆ crf1∆ mutants con-
taining these genes, respectively.

GFP-evt-2PH and upc2-1 were cloned 
into pRS306-based vectors and expressed 
at the URA3 locus as follows. pRS306-PTPI1-
GFP-evt-2PH-TADH1 was constructed by re-
placing mCherry of pRS306-PTPI1-mCherry-
evt-2PH-TADH1 (Miyasaka et  al., 2020) with 
GFP. The upc2-1 (G888D) mutant fragment 
(–800 to +380 base pairs of the UPC2 gene) 
was generated by the standard two-step 
PCR mutagenesis technique and inserted 
into pRS306. These plasmids were linear-
ized by cutting at a unique restriction en-
zyme site in URA3 and inserted into the 
URA3 locus.

To express OSH genes on a multicopy plasmid, DNA sequences 
encoding OSH genes were amplified by PCR and subcloned into 
either YEplac195, YEplac195-KanMX6, or YEplac181 plasmids. Ste-
rol binding–deficient KES1 mutants (Im et al., 2005) were generated 
by the standard two-step PCR mutagenesis technique and sub-
cloned into YEplac195. To express the SFK1-mCherry fusion gene 
on a multicopy plasmid, the SFK1-mCherry fragment was generated 
by overlap extension PCR and subcloned into YEplac181.

To express GFP-D4H and GFPenvy-D4H in Escherichia coli, the 
D4H (D4D434S) mutant fragment was generated by the standard two-
step PCR mutagenesis technique using pColdI-mCherry-D4 as a 
template (Kishimoto et al., 2020). The GFP and D4H fragments were 
inserted into pColdI (Takara Bio, Shiga, Japan) to construct pColdI-
GFP-D4H. To construct pColdI-GFPenvy-D4H, GFPenvy DNA 
(Slubowski et al., 2015) was newly synthesized with codon optimiza-
tion for Saccharomyces cerevisiae (GeneArt Strings; Thermo Scien-
tific, Carlsbad, CA) and amplified by PCR. pColdI-GFPenvy-D4H was 
constructed by replacing GFP in pColdI-GFP-D4H with this GFPenvy 
fragment. To express GFP-D4H and GFPenvy-D4H in yeast, the cor-
responding DNA fragments were inserted into pRS316-PTPI1-TADH1.

Schemes detailing the construction of plasmids are available on 
request.

Isolation of ts mutations of SFK1
The ts sfk1-2 strain was constructed by PCR-based random muta-
genesis as follows. The approximately 1.2 kbp SFK1 DNA fragment, 
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which corresponds to the region between the 40-base-pair up-
stream and 197-base-pair downstream sequences of the SFK1 
gene, was PCR-amplified under a mutagenic condition (Toi et al., 
2003) using the genomic DNA of the wild type (YKT38) as a 
template. On the other hand, the Kluyveromyces lactis LEU2 
(KlLEU2) cassette DNA fragment was PCR-amplified under standard 
conditions using pUG73 (Euroscarf) as a template. In these PCRs, 
the primers contained additional sequences, so the SFK1 and 
KlLEU2 fragments had overlapping sequences at their 3′ and 5′ re-
gions, respectively. Then, these fragments were used for overlap 
extension PCR with 5′ (SFK1) and 3′ (KlLEU2) primers to generate 
the SFK1-KILEU2 fragment. This fragment was introduced into 
YKT2386 (MATa crf1∆::HphMX4 lem3∆::TRP1 SFK1-GFP::KanMX6), 
and the transformants were selected at 30°C for LEU+ first and then 
for G418-sensitive phenotypes. Of these transformants, 265 clones 
were screened for those that showed growth defects at 37°C. Eight 
clones were isolated and back-crossed with YKT2332 (MATα 
crf1∆::HphMX4 lem3∆::TRP1) three times. The crf1∆::HphMX4 
lem3∆::TRP1 sfk1-2::KlLEU2, which exhibited the tightest ts pheno-
type, was chosen for further analyses. Sequences of PCR primers 
used are available on request.

Isolation of mutants synthetically lethal with the lem3∆ 
sfk1∆ mutations
Mutants synthetically lethal with lem3∆ sfk1∆ were isolated accord-
ing to the procedures described previously (Kishimoto et al., 2005). 
From 1 × 104 mutagenized cells screened, three single recessive 
mutations were identified by genetic analyses, and the correspond-
ing wild-type genes were cloned. These genes encode CRF1, 
DNF3, and ANY1/CFS1 (van Leeuwen et al., 2016; Yamamoto et al., 
2017). Null mutations of these genes were confirmed to be syntheti-
cally sick or lethal with lem3∆ sfk1∆.

Isolation of multicopy suppressors of the crf1Δ lem3Δ sfk1-2 
mutant
The crf1∆ lem3∆ sfk1-2 mutant (YKT2340) was transformed with a 
yeast genomic DNA library constructed in the multicopy plasmid 
YEp24 (Botstein et al., 1979). Transformants were selected on SDA-
Ura plates. The plates were incubated at 25°C for 2 d and then 
shifted to 37°C, followed by incubation for 3 d. Approximately 1 × 
106 transformants were screened, and 186 clones were isolated. To 
exclude clones that carried LEM3 or SFK1, the sensitivity of the 
clones to duramycin and cycloheximide was examined (Mioka et al., 
2018). Plasmids were recovered from yeast and reintroduced into 
the original mutant to confirm the suppression of growth defects. As 
a result, 10 different genomic regions were found to be responsible 
for suppression by DNA sequencing. The clones that contained a 
gene relevant to phospholipid asymmetry or lipid metabolism were 
further analyzed, and KES1, CHO1, and CFS1 were identified as 
suppressors.

Microscopic observations
For observation of proteins fused to a fluorescent protein in living 
cells, cells were grown under the indicated conditions to mid–log 
phase (OD600 of 0.8–1.2), collected, mounted on a microslide glass, 
and immediately observed. Cells were observed under a Nikon 
ECRIPS E800 microscope (Nikon Instech, Tokyo, Japan) as described 
previously (Saito et al., 2004).

Staining of PE exposed to the extracellular leaflet of the PM was 
performed using the Bio-Ro as described previously (Mioka et al., 
2018). Immunofluorescence staining of Pma1 was performed as de-
scribed previously (Martinez-Munoz and Kane, 2008). For staining 

with filipin, cells were grown in YPDA to mid–log phase and fixed 
with 3.8% formaldehyde for 10 min at room temperature. The fixed 
cells were washed twice with phosphate-buffered saline (PBS) 
and resuspended in PBS containing 2.5 mg/ml filipin complex 
(Sigma-Aldrich). After incubation at room temperature for 15 min in 
the dark, cells were washed with PBS once and observed with a UV 
filter set. For TF-Chol labeling, the cells harboring the upc2-1 muta-
tion were precultured overnight in YPDA and diluted into YPDA 
containing 0.5% Tween-80, 0.5% ethanol, and 10 µg/ml TF-Chol 
(Avanti Polar Lipids, Alabaster, AL). The cells were incubated at 30°C 
for 3 h and then shifted to 37°C, followed by 6 h of incubation. Cells 
were collected, washed twice with fresh SD medium, resuspended 
in SD medium, and observed with a GFP filter set. Nile red staining 
of LDs was performed as described previously with minor modifica-
tions (Verstrepen et al., 2004). Five OD600 units of cell culture were 
collected and resuspended in 100 µl PBS containing 50 µg/ml Nile 
red (Sigma-Aldrich). After brief mixing, the cell suspension was incu-
bated for 15 min at room temperature in the dark. Cells were 
collected, washed five times with PBS, resuspended in PBS, and 
observed with a G-2A filter set.

Endocytosis was examined by internalization of FM4-64 as de-
scribed previously with minor modifications (Kishimoto et al., 2005). 
Cells were incubated in YPDA at 30°C for 3 h and then shifted to 
37°C, followed by 6 h of incubation. Four OD600 units of the cells 
were labeled with 32 µM FM4-64 (Invitrogen, Madison, WI) in YPDA 
on ice for 30 min and then washed once with ice-cold YPDA. Inter-
nalization of FM4-64 was initiated by the addition of prewarmed 
YPDA, and the cells were incubated at 37°C for 30 min, followed by 
microscopic observation.

Image analysis
When the PM localization of lipid biosensors (GFP-evt-2PH and TF-
Chol) was examined, cells that exhibited the mean fluorescence in-
tensity in the PM larger than 120% of the mean fluorescence inten-
sity of cytoplasmic space were classified as showing the PM 
localization. In the case of GFPenvy-D4H, which exhibited the polar-
ized distribution, the PM of the polarized region was selected and 
examined as described above. The PM fluorescence intensity (fili-
pin, Bio-Ro, and Sfk1-mCherry) was analyzed using programmed 
macros in ImageJ as follows. 1) The background was subtracted, 2) 
a cell was selected and its mean fluorescence intensity was quanti-
fied (Fwhole cell), 3) the cell periphery (0.2 µm width, two pixels) was 
selected as the PM and its mean fluorescence intensity was quanti-
fied (Fpm), and 4) the signal ratio of the mean Fpm/Fwhole cell was 
calculated.

To analyze the intensity profile of GFPenvy-D4H, the cell periph-
ery was traced with a two-pixel-wide freehand line tool along the PM 
of the bud and mother cell. Then, the fluorescence intensity was 
measured and plotted. The GFPenvy-D4H localization pattern was 
categorized into three patterns as follows. The PM of budded cells 
was divided into three regions, the bud PM (bud), the mother cell PM 
proximal to the bud neck (proximal to bud), and the mother cell PM 
distal to the bud neck (distal to bud), and the mean fluorescence in-
tensity of each region was calculated as Fbud, Fproximal to bud, and 
Fdistal to bud, respectively. Then, the cells were categorized as “polar-
ized” (Fproximal to bud is smaller than 20% of Fbud), “partially polarized” 
(Fproximal to bud is larger than, but Fdistal to bud is smaller than, 20% of 
Fbud), or “not polarized” (Fdistal to bud is larger than 20% of Fbud).

Rhodamine uptake assay
The rhodamine uptake assay was performed essentially as de-
scribed previously (Mioka et al., 2018).
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Sucrose density gradient fractionation
Sucrose density gradient fractionation was performed as de-
scribed previously (Furuta et al., 2007; Georgiev et al., 2011) with 
minor modifications. Cells were grown at 30°C to mid–log phase 
in 200 ml YPDA medium and collected. Cells were converted to 
spheroplasts with zymolyase (Nacalai Tesque, Kyoto, Japan) and 
broken using a multibead shocker (Yasui-Kikai, Osaka, Japan) in 
break buffer (0.8 M sorbitol, 20 mM HEPES at pH 7.5, 1 mM EDTA, 
and protease inhibitor cocktail [Nacalai Tesque]). The step gradi-
ent of sucrose was prepared with the following concentrations: 
0.5 ml 60%, 2.5 ml 44%, 2 ml 40%, 1.5 ml 37%, 2 ml 34%, 2 ml 
32%, 0.5 ml 29%, and 0.5 ml 22% (wt/wt) sucrose in the break buf-
fer. The pellet was resuspended in 0.5 ml of the break buffer and 
loaded on top of the gradient and then centrifuged at 200,000 × 
g in the P40ST rotor (Hitachi, Tokyo, Japan) for 16 h at 4°C. Frac-
tions (0.9 ml) were manually collected from the top of the sam-
ples. Pdr5-GFP, Pma1, and Kex2 were detected in each fraction 
by Western blotting with anti-GFP (Nacalai Tesque), anti-Pma1 (a 
gift from R. Serrano), and anti-Kex2 (a gift from S. Nothwehr) anti-
bodies, respectively.

Lipid analysis
Cells were grown at 30°C to mid–log phase in 250 ml YPDA me-
dium and collected. Total lipids were extracted by the Bligh and 
Dyer method (Bligh and Dyer, 1959). Phospholipid amounts were 
determined by phosphorus assay (Rouser et  al., 1970). For the 
phospholipid analysis, samples containing 200 nmol phosphates 
were subjected to TLC plates (Merck, Darmstadt, Germany), and 
phospholipids were detected as described previously (Mioka 
et  al., 2018). To detect free and esterified ergosterol, lipid ex-
tracts containing 20 nmol phosphates were subjected to high-
performance TLC (Merck) separation with hexane/diethyl ether/
formic acid (40:10:2, vol:vol:vol). Ergosterols were stained with a 
mixture of ferric chloride/sulfuric acid/acetic acid by heating 
(Lowry, 1968), and the spots were scanned by an image analyzer. 
The ergosterol content was determined by TLC-densitometric 
analysis using ImageJ.

Liposome sedimentation assay
Recombinant GFP-D4H and GFPenvy-D4H proteins were prepared 
from E. coli as described previously (Kishimoto et al., 2020). The pro-
tein concentrations were determined by bicinchoninic acid assay. 
Multilamellar liposomes were prepared by combining DOPC (NOF 
Corporation, Tokyo, Japan) with cholesterol or ergosterol from chlo-
roform stocks. The lipid mixture was evaporated under a stream of 
nitrogen gas. Then, liposome buffer (0.1 M sucrose, 20 mM HEPES 
at pH 7.5, 100 mM KCl, and 1 mM EDTA) was added to the dry lipids, 
and the suspension was vortexed to produce liposomes. D4H bind-
ing to liposomes was analyzed as described previously (Ishitsuka 
et  al., 2011) with minor modifications. Recombinant GFP- or 
GFPenvy-D4H protein (200 nmol) was incubated with liposomes 
(final total lipid concentration is 100 μM) in HEPES-buffered saline 
(pH 7.5) for 30 min at room temperature. Then, the mixtures were 
centrifuged at 21,600 × g for 10 min at 25°C. The pellets were 
washed with HEPES-buffered saline twice. The pellets were sub-
jected to SDS–PAGE followed by Coomassie Brilliant Blue staining. 
For the quantification of the protein, the stained gel was scanned 
and analyzed by ImageJ.

Statistical analysis
Statistical comparisons of means from two samples were performed 
using a two-tailed Student’s t test. To compare the means of multi-

ple groups, statistical analyses were performed using one-way anal-
ysis of variance followed by Tukey–Kramer multiple comparisons. A 
p value <0.05 was regarded as significant.
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