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ABSTRACT Electronic cigarettes (e-cigs) have become prevalent as an alternative
to conventional cigarette smoking, particularly in youth. E-cig aerosols contain
unique chemicals which alter the oral microbiome and promote dysbiosis in ways
we are just beginning to investigate. We conducted a 6-month longitudinal study
involving 84 subjects who were either e-cig users, conventional smokers, or non-
smokers. Periodontal condition, cytokine levels, and subgingival microbial com-
munity composition were assessed, with periodontal, clinical, and cytokine meas-
ures reflecting cohort habit and positively correlating with pathogenic taxa (e.g.,
Treponema, Saccharibacteria, and Porphyromonas). a-Diversity increased similarly
across cohorts longitudinally, yet each cohort maintained a unique microbiome.
The e-cig microbiome shared many characteristics with the microbiome of con-
ventional smokers and some with nonsmokers, yet it maintained a unique subgin-
gival microbial community enriched in Fusobacterium and Bacteroidales (G-2). Our
data suggest that e-cig use promotes a unique periodontal microbiome, existing
as a stable heterogeneous state between those of conventional smokers and non-
smokers and presenting unique oral health challenges.

IMPORTANCE Electronic cigarette (e-cig) use is gaining in popularity and is often per-
ceived as a healthier alternative to conventional smoking. Yet there is little evidence
of the effects of long-term use of e-cigs on oral health. Conventional cigarette smok-
ing is a prominent risk factor for the development of periodontitis, an oral disease
affecting nearly half of adults over 30 years of age in the United States. Periodontitis
is initiated through a disturbance in the microbial biofilm communities inhabiting
the unique space between teeth and gingival tissues. This disturbance instigates
host inflammatory and immune responses and, if left untreated, leads to tooth and
bone loss and systemic diseases. We found that the e-cig user’s periodontal micro-
biome is unique, eliciting unique host responses. Yet some similarities to the micro-
biomes of both conventional smokers and nonsmokers exist, with strikingly more in
common with that of cigarette smokers, suggesting that there is a unique periodon-
tal risk associated with e-cig use.
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The use of electronic cigarettes (e-cigs) is on the rise in adults and young people (1–
7). The use of e-cigs is often perceived and promoted as a safer alternative to ciga-

rette smoking due to the absence or reduction of harmful combustion products (4, 8–
10). Yet e-cigs produce some toxic compounds shared with cigarettes in addition to
unique products (11–16). E-cigs work by aerosolizing a liquid that contains nicotine,
propylene glycol, and glycerol (flavoring chemicals are common) that is then inhaled
by the user (17, 18), whereby the mouth and oral microbial community are the first
exposed. As personal perception of the safety of e-cigs is a major determiner of use (4,
19, 20), continued research on the impact of e-cig use on oral and human health is
warranted (17, 21).

The periodontium components include gingival tissues and alveolar bone, which sup-
port the teeth and create a unique subgingival physicochemical habitat that harbors a
diverse microbial community in direct contact with tissue and tooth, the diversity of
which can be diagnostic of oral health (22, 23). This habitat is impacted by the myriad
molecules entering the human oral cavity (24, 25). Periodontitis arises from imbalances of
the microbial community (dysbiosis) inhabiting the periodontal pocket and subsequent
host immune and inflammatory responses, leading to the destruction of tissues and nec-
essary medical intervention to avoid tooth loss and systemic disease (25–30).

Conventional cigarette smoking is a risk factor for periodontitis, causing detrimental
changes in the composition of the oral microbiome, promoting an inflammatory
response, inhibiting the immune system, and promoting bone loss (31–34). Unlike for
conventional cigarette use, the effects of e-cig use on subgingival microbial commu-
nity composition and diseases are underinvestigated (5, 6, 35–37). Previously we have
shown in a cross-sectional study using saliva samples that e-cig aerosol can alter the
salivary microbiome and host inflammatory response (6). Epithelial cells exposed to e-
cig aerosols are more prone to infection, with in vitro infection models using oral
pathogens in the presence of e-cig aerosols stimulating the inflammatory response (6).
Other studies have also suggested that e-cig aerosols can alter the balance of the oral
microbial community, with effects on epigingival tissue (18, 38, 39). Yet there is no
clear consensus on what a dysbiotic, chronically e-cig-exposed, periodontal microbial
community looks like and if it bears similarities to that of at-risk conventional smokers.

Here, we report on a longitudinal clinical study evaluating the adverse effects of e-cig
use on periodontal health. We investigated the effects of e-cig use on the composition of
the human subgingival plaque (SGP) microbial community of 84 subjects over a 6-month
interval, integrating microbiome data with clinical measures and SGP cytokine concentra-
tions. All subjects presented with at least mild periodontitis and did not receive prophylac-
tic cleaning during the study period, providing an opportunity to compare alterations of a
dysbiotic subgingival microbial community due to habit and monitor disease progression.
We compared conventional cigarette smokers (CS; n = 27), e-cig-only users (ES; n = 28),
and nonsmokers (NS; n = 29) to assess the degree to which the e-cig subgingival micro-
biome resembles those of conventional smokers and nonsmokers. Our data suggest that
e-cig use promotes a stable periodontal microbiome that is between those of the conven-
tional cigarette smoker and nonsmoker and has unique features that may impact host oral
health in a manner different than conventional cigarette use.

RESULTS
Clinical data demonstrate periodontitis severity and delineate cohorts. As

expected, patient breath carbon monoxide and saliva cotinine levels were significantly
lower in the NS than in the ES or CS cohort, with those for the CS also significantly higher
than for ES (Fig. 1A). Pocket depth, a measure of disease severity (7), was significantly
higher in the CS than in the NS. Periodontal conditions were classified into distinct cate-
gories based on clinical measures (Fig. 1B; see also Text S1 in the supplemental material)
(7). The CS cohort predominately consisted of subjects with severe periodontitis for both
visits, containing no patients with mild periodontitis at either visit. The ES cohort had a
higher percentage of severe periodontitis at both visits than did the NS cohort. Despite
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not smoking, the NS cohort consisted predominately of patients with moderate perio-
dontitis at both visits. The ES cohort had three subjects progress from mild to moderate
periodontitis, and one subject progressed from moderate to severe. Four patients each
from the CS and the NS progressed from moderate to severe periodontitis. Table 1
shows patient demographics for each cohort.

E-cig users harbor a unique subgingival microbiome. We evaluated changes in
a-diversity both within and across cohorts. Observed and predicted richnesses significantly
increased in all cohorts between visit 1 (v1) and visit 2 (v2) (Fig. 2A), while Shannon and

FIG 1 Clinical measures validate patient inclusion and demonstrate disease status and progression in specific cohorts.
(A) Patient breath carbon monoxide levels in parts per million, saliva cotinine concentration, and the average distance
from the free gingival margin to the depth of the pocket (pocket depth); sample number is given below cohort
designation. Kruskal-Wallis H with post hoc Dunn’s test was performed, with multiplicity-adjusted P values reported. **,
P , 0.01; ***, P , 0.001; ****, P , 0.0001. On each visit, patients were evaluated for the degree of periodontitis, as
described by Xu et al. (7) (B). CS, conventional cigarette smokers; ES, e-cigarette users; NS, nonsmokers. Number of
subjects is given below each cohort.

TABLE 1 Patient demographics

Characteristic

Value for:

Cigarette smokers E-cigarette users Nonsmokers
No. 27 28 29
Sex (% male) 81.48 78.57 55.17

Age (yrs), mean (SD)
Female 51 (10.3) 39.7 (11.3) 38.9 (14.9)
Male 48.2 (9.51) 35.8 (10.3) 28.6 (7.05)

Ethnicity (% Hispanic) 7.41 17.86 24.14

Race (%)
White 33.33 57.14 27.59
Black 59.26 35.71 31.03
Asian 3.70 7.14 37.93
Other 3.70 0.00 3.45
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FIG 2 Periodontal microbiome a-diversity remains similar among cohorts, yet community structure is unique. a- and b-diversities
of periodontal microbial communities for conventional cigarette smokers, e-cigarette users, and nonsmokers are shown. Sample

(Continued on next page)
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Faith's phylogenetic diversity measures significantly increased only in the CS. When evaluat-
ing a-diversity measures across cohorts for either v1 or v2, no significant differences were
observed between cohorts (Fig. S1). We then observed the magnitude of change between
v2 and v1 based on per-patient differences (v2 2 v1), with no significant differences in the
change of a-diversity measure observed between any of the cohorts (Fig. 2B) (Wilcoxon
rank-sum). Therefore, we combined visits for further analysis to increase our sample size and
statistical power (40). When both visits were accounted for within a cohort, no significant dif-
ferences were found in a-diversity across cohorts (Fig. 2C), indicating that similar numbers
of taxa were found in the cohorts.

To compare community structure between cohorts and visits, we examined differ-
ences in b-diversity. When visits were grouped within a cohort, significant differences
were found between cohorts (Fig. 2D). All cohorts exhibited distinct microbial com-
munities from one another, as demonstrated by significance in all possible pairwise
comparisons (Fig. 2D). No significant differences were found between visits for any
cohort (Fig. S2), further justifying grouping of visits within a cohort. All cohorts were
found to be significantly different when evaluating b-diversity across cohorts on a per-
visit basis, except when comparing v2 between the ES and CS (P = 0.065 [Fig. S2]).
These results demonstrate that microbiome structure did not significantly differ within
a cohort, despite changes in a-diversity. Additionally, each cohort was found to host a
unique microbiome, whether visits were grouped within a cohort or evaluated on a
per-visit basis, except for the ES and the CS after prolonged cigarette use (v2).

A total of 3,279 amplicon sequence variants (ASVs) were observed across all
cohorts, with ;19.4% (60.5%) of them unique to a particular cohort (Fig. 2E). Core
ASVs found in all three cohorts accounted for 21.7% of total ASVs. Notably, while the
percentages of ASVs shared between the CS and ES or the NS and ES were similar (7.3
and 7.6%, respectively), the percentage shared between the CS and NS was lower
(5.0%). These results demonstrate that while there is a core periodontal microbiome
between cohorts, each cohort has unique features, with the CS sharing more in com-
mon with the ES than the NS.

Patterns in relative abundance expose uniqueness and commonalities in e-cig
microbiomes. There were 19 classes above 0.1% (mean) relative abundance in at least one
cohort and visit (Fig. 3A). The Negativicutes, Bacilli, Actinomycetia (41), Fusobacteria,
Bacteroidia, and Betaproteobacteria all had greater than 10% relative abundance in at least
one cohort and visit and, taken together, accounted for greater than 78% of relative abun-
dance in any cohort and visit. The classes Synergistia, Coriobacteriia, Bacteroidetes (C-1),
Erysipelotrichia, Absconditabacteria (SR1, C-1), Mollicutes, and Gracilibacteria (GN02, C-1) all
had less than 1.0% relative abundance across all cohorts and visits.

Within these 19 classes, 59 genera were above 0.1% relative abundance in at least
one cohort. Streptococcus, Veillonella, Fusobacterium, Prevotella, Rothia, Selenomonas,
Leptotrichia, and Neisseria all had greater than 5% relative abundance in at least one of
the cohorts, with the genus Streptococcus having greater than 10% in all cohorts.

Genera abundance patterns fell into seven general categories when cohort visits
were merged and analyzed for significant differences in relative abundance between
cohorts. A genus was either significantly enriched or depleted in a given cohort
(Fig. 3B), or no significant difference was found (genera not shown). A total of 29 gen-
era were significantly differentially abundant between cohorts (Fig. 3B). All significant
differences were additionally supported by linear discriminant analysis effect size
(LEfSe) analysis.

FIG 2 Legend (Continued)
numbers are provided in Materials and Methods. a-Diversity between visits tended to increase within a cohort (A) (paired-sample
Wilcoxon). The degree of change in a-diversity measures between visits (v2 – v1) for a given cohort was not significantly different
between the cohorts (B) (Mann-Whitney U test). When visits were merged within a cohort, no significant differences in a-diversity
were observed (C). Mean and SEM are shown for panels A to C; box indicates the interquartile range of the data. b-Diversity of
periodontal microbial communities was significantly different between cohorts (PERMANOVA) (D). *, P , 0.05; **, P , 0.01; ***,
P , 0.001; ****, P , 0.0001. A Venn diagram depicts shared and unique amplicon sequence variants (ASVs) among the
cohorts; percentages of total ASVs are in parentheses (E).

E-Cig Use Promotes a Unique Oral Microbiome ®

January/February 2022 Volume 13 Issue 1 e00075-22 mbio.asm.org 5

https://mbio.asm.org


FIG 3 Cohorts displayed distinct patterns in taxa mean relative abundance. Periodontal microbial community composition at the
class level and genera-based differential relative abundance are shown for CS, ES, and NS. (A) Per-visit bar plots for relatively

(Continued on next page)
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The genera Lautropia, Cardiobacterium, Ottowia, and Pseudopropionibacterium
were significantly depleted in the CS compared to the ES and NS and, apart from
Pseudopropionibacterium, showed a pattern of enrichment from the ES to the NS
(Fig. 3B). Lautropia consisted of 10 ASVs, all of which were classified as Lautropia mirabilis.
Cardiobacterium contained 45 ASVs, with only ASVs classified as Cardiobacterium hominis
or C. valvarum significantly different between cohorts. Ottowia consisted of 11 ASVs, all
classified as unclassified human microbial taxon (HMT) 894. Pseudopropionibacterium con-
tained 7 ASVs, classified as P. propionicum and unclassified species HMT 194.

In contrast, Veillonella, Megasphaera, and Stomatobaculum were significantly enriched
in the CS compared to ES and NS, with Anaeroglobus and Mitsuokella also being signifi-
cantly enriched compared to the NS. Veillonella consisted of 99 ASVs, with 12 ASVs
belonging to Veillonella parvula, V. atypica, V. dispar, or unclassified being significantly
different between cohorts. Megasphaera consisted of 23 ASVs, predominately composed
of Megasphaera micronuciformis and an unclassified species HMT 123. Stomatobaculum
consisted of 13 ASVs, consisting predominately of Stomatobaculum longum and an
unclassified species HMT 910. Anaeroglobus consisted of 14 ASVs, all of which were clas-
sified as A. geminatus. Mitsuokella consisted of 11 ASVs composed of unclassified species
HMT 131 and HMT 521.

The genera Streptococcus, Kingella, and Scardovia were significantly depleted in the
ES compared to CS or NS, with Aggregatibacter, Granulicatella, and Fretibacterium also
being significantly depleted compared to NS. Streptococcus consisted of 73 ASVs, with
8 ASVs belonging to Streptococcus parasanguinis (clade 411), S. sanguinis, S. gordonii, S.
anginosus, and unclassified species being significantly different between cohorts.
Kingella consisted of 17 ASVs, predominantly composed of Kingella denitrificans, K. ora-
lis, and an unclassified species HMT 012. Scardovia consisted of 3 ASVs belonging to
Scardovia wiggsiae and S. inopinata. Aggregatibacter consisted of 44 ASVs, with a single
unclassified ASV significantly enriched in the NS than ES. Granulicatella consisted of 11
ASVs classified as G. adiacens or G. elegans. Fretibacterium consisted of 19 ASVs classi-
fied as Fretibacterium fastidiosum as well as unclassified species (including HMT 362
and HMT 361).

In contrast, Fusobacterium was significantly enriched in ES compared to CS and NS.
Tannerella, Oribacterium, and Bacteroidales (G-2) were significantly enriched in ES with
respect to NS. Fusobacterium consisted of 182 ASVs, with 13 ASVs belonging to
Fusobacterium nucleatum (Fusobacterium nucleatum subsp. vincentii and Fusobacterium
nucleatum subsp. animalis) and unclassified species (including HMT 203) being signifi-
cantly different between cohorts. Tannerella consisted of 44 ASVs consisting of
Tannerella forsythia and unclassified species (including HMT 286, HMT 808, and HMT
916). Oribacterium consisted of 9 ASVs, composed of Oribacterium asaccharolyticum
and unclassified species (including HMT 078 and HMT 102). Bacteroidales (G-2) con-
sisted of 7 ASVs, all belonging to an unclassified species HMT 274.

The genera Leptotrichia and Lactobacillus were significantly depleted in NS com-
pared to CS and ES, with Lachnoanaerobaculum and Saccharibacteria (TM7) (G-2) signif-
icantly depleted compared to CS. Leptotrichia consisted of 182 ASVs, with 13 ASVs
belonging to L. hongkongensis, L. goodfellowii, L. wadei, L. shahii, and unclassified spe-
cies (HMT 225, HMT 392, and HMT 212) significantly different between cohorts.
Lactobacillus consisted of 18 ASVs, with an ASV for L. gasseri and an unclassified ASV
significantly different between cohorts. Lachnoanaerobaculum consisted of 39 ASVs
classified as Lachnoanaerobaculum orale, L. saburreum, L. umeaense, or unclassified spe-
cies (including HMT 083, HMT 089, and HMT 496). Saccharibacteria (TM7) (G-2) con-
sisted of a single ASV identified as unclassified HMT 350.

In contrast, the Neisseria, Porphyromonas, Haemophilus, Gemella, Abiotrophia, and

FIG 3 Legend (Continued)
abundant classes in the different cohorts. (B) Statistically significant differentially relatively abundant genera grouped based on
abundance patterns in the three cohorts (visits merged within a cohort) (Mann-Whitney U test; *, P , 0.05; **, P , 0.01; ***,
P , 0.001). Rel. Abd., relative abundance.
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Gracilibacteria (GN02) (G-1) were significantly enriched in NS compared to CS and ES,
with CS and ES displaying similar relative abundances. Neisseria consisted of 72 ASVs,
with 13 ASVs belonging to Neisseria bacilliformis, N. oralis, N. elongata, N. subflava, and
unclassified species significantly different between cohorts. Porphyromonas consisted
of 87 ASVs, with 3 ASVs belonging to Porphyromonas catoniae, P. pasteri, and unclassi-
fied species HMT 278 significantly different between cohorts. Haemophilus consisted of
29 ASVs, with 3 ASVs belonging to Haemophilus parainfluenzae and an unclassified spe-
cies significantly different between cohorts. Gemella consisted of 16 ASVs predomi-
nated by Gemella morbillorum, with 2 ASV belonging to G. morbillorum and an unclassi-
fied species significantly different between cohorts. Abiotrophia consisted of 4 ASVs, all
belonging to Abiotrophia defectiva. Gracilibacteria (GN02) (G-1) consisted of 7 ASVs,
with 6 belonging to HMT 872 and 1 to HMT 871.

Hierarchical clustering of the 20 most relatively abundant genera displayed clear parti-
tioning of taxa based on their relative abundance in NS or ES and CS (Fig. 4). The genera
Streptococcus, Alloprevotella, Lautropia, Treponema, Haemophilus, Porphyromonas, Dialister,
and Neisseria clustered together with a higher-than-mean relative abundance in NS than
in CS and ES. In contrast, Fusobacterium, Rothia, Leptotrichia, Saccharibacteria (TM7) (G-1
and G-5), Selenomonas, Campylobacter, Prevotella, Actinomyces, and Corynebacterium all
clustered together with a higher-than-mean relative abundance in ES than in NS, with
mixed-abundance patterns for these genera in CS. The genera Capnocytophaga and
Veillonella formed a high-level cluster with a higher mean relative abundance in CS than
in ES or NS.

E-cig users share similar ASV relative-abundance patterns with conventional
smokers. We used supervised machine learning to evaluate the uniqueness of cohort
microbiomes (Fig. 5). The resulting model was the most successful at predicting inclu-
sion in the CS cohort (90.9% accuracy), with findings for the NS cohort being slightly

FIG 4 Mean-relative-abundance patterns for genera distinguish nonsmokers from e-cig users and
conventional smokers. A hierarchical-clustering relative-abundance heat map of the 20 most relatively
abundant genera in the three cohorts with row z-score is displayed.
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less accurate (83.3%) (Fig. 5A). In contrast, the ability of the model to correctly predict
inclusion in the ES cohort was relatively low (45.5%), incorrectly assigning samples to
the CS and NS cohorts 36.4% and 18.2% of the time (respectively), resulting in an over-
all model accuracy of 73.5%. The per-class areas under the curve for receiver operating
characteristic graphs were 0.94, 0.88, and 0.88 for CS, ES, and NS, respectively (Fig. 5B).

Hierarchical clustering of the top 50 ASVs for predicting sample inclusion in a
cohort contained several known pathogens and commensals, including clusters with
highly enriched and depleted taxa (Fig. 5C). Lautropia mirabilis, Neisseria elongata, and

FIG 5 The e-cig user periodontal microbiome resembles those of both conventional smokers and nonsmokers. Supervised learning sample classification
can accurately predict sample inclusion in the CS and NS but struggles with the ES cohort (A). The model accuracy was tested on 34 samples that were
excluded from the training data set (n = 134). All cohorts had areas under the curve (AUC) well above what would be expected by chance (B). A
hierarchical-clustering mean-relative-abundance heat map of the 50 most important features (ASVs) shows important clusters with distinct abundance
patterns and pathological relevance (C).
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Leptotrichia goodfellowii formed a high-level cluster found at relatively moderate abun-
dance in NS and ES yet nearly absent in CS. An unclassified Streptococcus sp. clustered
alone and was depleted in the CS and ES cohorts yet enriched in NS. Another high-
level cluster contained enriched ASVs classified as an unclassified Streptococcus sp., S.
gordonii, Veillonella dispar, and Rothia dentocariosa. Parvimonas micra, Campylobacter
gracilis, and F. nucleatum subsp. vincentii formed a lower-level cluster where relative
abundance in ES was greater than in NS or CS. Leptotrichia wadei, Corynebacterium
matruchotii, and Leptotrichia hongkongensis also formed a lower-level cluster where NS
tended to be depleted compared to the case with cigarette user cohorts. Both com-
mensals and pathogens and low- and high-relative-abundance organisms contribute
to the uniqueness of a cohort’s microbiome, yet accurately classifying e-cig users was
problematic, with them often being classified as conventional smokers.

Genera correlate with cytokine and clinical measures. We performed a Pearson
correlation analysis to evaluate how cytokines and clinical measures correlated with
prominent genera. Multiple cytokines were found to significantly differ in concentration
among the three cohorts (Fig. 6A). Interleukin 1b (IL-1b) was significantly higher in CS

FIG 6 Cytokine abundance patterns differ among cohorts, and cytokines positively correlate with known pathogens. (A) Cytokine concentrations (picograms
per milliliter) for the three cohorts; sample numbers are displayed below cohort designation. Kruskal-Wallis H with post hoc Dunn’s test was performed, with
multiplicity-adjusted P values reported. *, P , 0.05; **, P , 0.01; ***, P , 0.001. (B) Hierarchical-clustering correlation heat map with cytokines and the 20 most
relatively abundant genera. *, P , 0.05.
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than in ES or NS. Gamma interferon (IFN-g), IL-2, and IL-10 were significantly higher in ES
than NS, with CS having a higher average than NS. Tumor necrosis factor alpha (TNF-a)
was significantly higher in ES than CS or NS. IL-4 was significantly higher in CS than ES,
where CS had a higher average than NS. There were no significant differences in cytokine
concentrations between cohorts for IL-6, IL-8, IL-12p70, or IL-13.

Hierarchical clustering of correlation analyses between proinflammatory cytokines
and the top 20 most abundant genera indicated a cluster of three genera with rela-
tively high positive correlations between Treponema, Selenomonas, and Leptotrichia
and all cytokines except IFN-g and, in the case of Leptotrichia, IL-8 (Fig. 6B). These three
genera showed robust positive correlations with IL-1b and, to a slightly lower degree,
TNF-a. Porphyromonas and Capnocytophaga clustered together with positive correla-
tions with IL-13, IL-1b , IL-2, IL-4, IL-6, IL-8, and TNF-a. Prevotella and Saccharibacteria
(TM7) (G-1) formed a cluster that was positively correlated with IFN-g, IL-10, IL-12p70,
IL-13, IL-1b , IL-2, IL-4, and TNF-a. Streptococcus, Haemophilus, Actinomyces, and Rothia
formed a cluster that was noticeably negatively correlated with IL-1b .

Correlations between the top 20 most relatively abundant genera, cytokine concen-
trations, and clinical measures showed patterns of pathogenic genera being positively
correlated with cytokines and clinical measures (Fig. 7 and Table S1). The genera
Treponema, Selenomonas, Leptotrichia, Porphyromonas, and Saccharibacteria (G-5 and
G-1) had numerous and fair positive correlations between clinical and cytokine meas-
ures (42). Treponema positively correlated primarily with TNF-a, IL-1b , and IL-6 and
with all other cytokines except IFN-g. Additionally, Treponema significantly correlated
with the clinical measures of bleeding on probing rate and pocket depth, both of
which are strong indicators of periodontitis. Selenomonas correlated with numerous
measures, especially with pocket depth, bleeding on probing, and IL-1b . Leptotrichia
correlated with IL-1 and, to a lesser degree, numerous other measures. Porphyromonas
correlated with pocket depth, saliva rate, and bleeding on probing, as well as numer-
ous cytokines to a lesser degree. Saccharibacteria G-5 significantly correlated with
bleeding on probing and pocket depth, while G-1 correlated to a lesser degree with
more measures.

Some commensal genera showed negative correlations (Fig. 7) with cytokines and
clinical measures. The genera Actinomyces, Rothia, Streptococcus, and Lautropia had
numerous and fair negative correlations. Actinomyces and Rothia significantly nega-
tively correlated with the clinical measures of bleeding on probing rate and pocket
depth and the cytokine IL-1b and to a lesser degree with numerous other measures.
Streptococcus primarily negatively correlated with bleeding on probing rate, IL-2, IL-4,
and TNF-a. Lautropia primarily negatively correlated with the clinical measures of
exhaled carbon monoxide concentration, bleeding on probing rate, cotinine level, and
pocket depth.

DISCUSSION

It is apparent from this study that e-cig use promotes a unique periodontal micro-
biome, one that contains distinctive features yet shares similarities with those of both
conventional cigarette users and nonsmokers. The duration of e-cig use is a strong
driver of subgingival microbiome composition over flavoring additions or nicotine con-
centration, indicating that basal e-cig components exert specific selection pressures on
the SGP microbial community (36). Indeed, while this longitudinal study of chronic e-
cig users demonstrated an increase in a-diversity with ongoing use, a unique e-cig
user microbial community was maintained compared to those of conventional smok-
ers and nonsmokers.

The observed increase over time in a-diversity for all cohorts may indicate a pro-
gression in periodontitis due to rare taxa becoming more abundant and thus more
likely to be captured in sequencing efforts (22, 23). Accordingly, all cohorts contained
individuals that progressed in periodontitis, with several ES patients progressing from
a mild to moderate diagnosis. The large representation of initial disease severity and

E-Cig Use Promotes a Unique Oral Microbiome ®

January/February 2022 Volume 13 Issue 1 e00075-22 mbio.asm.org 11

https://mbio.asm.org


FIG 7 Pathogens and commensals correlate with clinical measures and cytokines. Positive and negative
correlation cord diagrams demonstrate correlations between matched samples for the 20 most abundant genera,
clinical measures of periodontal disease, and cytokines. BoP, bleeding on probing; CO, carbon monoxide.
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progressed disease states in patients from every cohort provided a rare opportunity to
investigate changes in a dysbiotic microbiome due to habit. Xu et al. compared only
clinical measures and demographics between these patients and found that the pro-
gression of periodontal severity between visits was significantly worse for the CS and
ES cohorts than for the NS cohort (7).

Interestingly, all cohorts showed similar magnitudes of increase in a-diversity. Yet
notably, significant differences in microbial community structure were observed between
all cohorts. This observation may be due to most participants presenting some level of
periodontitis and a likely habit-specific dysbiosis at the onset of the study, leaving little
room for significant changes in microbial community structure between visits within a
cohort. These results demonstrate that although richness increased between visits, habit
use impacted microbiome structure differentially and resulted in a unique microbiome
for each cohort.

Commonalities existed in the abundances of specific taxa between e-cig users and
conventional smokers and e-cig users and nonsmokers. Interestingly, while all cohorts
shared about a fifth of total ASVs, the ES cohort shared ;1.5 times as many ASVs with
smokers or nonsmokers as were shared between smokers and nonsmokers. Out of 59
genera above 0.1% relative abundance in at least one cohort, a quarter of them dem-
onstrated significant differences between one cohort and the other two, thus serving
as a unique feature of the given cohort (e.g., Cardiobacterium, Veillonella, Streptococcus,
Fusobacterium, Leptotrichia, and Neisseria). These results suggest that habit drives
unique abundance patterns, yet e-cig use influences the growth of some microbial
taxa in a manner akin to cigarette smoking.

Similarities between smokers and e-cig users included the enrichment of the genera
Selenomonas and Leptotrichia with respect to the NS cohort, with Leptotrichia signifi-
cantly enriched. These genera were also positively correlated with clinical measures
and cytokines, clustering together based on correlation patterns with cytokines, partic-
ularly IL-1b . L. wadei and L. hongkongensis clustered with Corynebacterium matruchotii
as important features for model accuracy and were generally enriched in the CS and ES
cohorts compared to the NS cohort. In contrast, the genus Corynebacterium was
uniquely enriched in the ES cohort. L. wadei and L. hongkongensis are associated with
caries, gingivitis, periodontitis, and smoking (43–45). Corynebacterium taxa, including
C. matruchotii, are considered a cornerstone of dental biofilm formation, enabling close
associations with other organisms (46, 47). Indeed, e-cig aerosols can promote a micro-
environment on enamel that is favorable to microbial adhesion and biofilm formation
(48). Selenomonas species, including Selenomonas sputigena, can also contribute to bio-
film formation by coaggregating with multiple species and can be associated with gen-
eralized aggressive periodontitis (49–51).

The epibiotic disease-associated Saccharibacteria (G-1, G-2, and G-5) were enriched
in the CS and ES cohorts with respect to nonsmokers. Additionally, these genera posi-
tively correlated with proinflammatory cytokines and clinical measures. There is evi-
dence that taxa closely related to L. wadei can serve as hosts for the disease-associated
Saccharibacteria (52). Interestingly, P. propionicum (numerous ASVs found in this study)
is also a host for Saccharibacteria species (52, 53). Uniquely, Actinomyces bacteria, also
known hosts for Saccharibacteria (52), were most abundant in ES and relatively
depleted in CS and NS. Perhaps e-cig use promotes a habit-specific shift in the balance
between Saccharibacteria and their bacterial hosts in a manner that promotes the
enrichment of Saccharibacteria and drives dysbiosis. These results suggest that these
taxa may play important roles in structuring the periodontal microbiome of e-cig and
cigarette users and potentially benefiting from eliciting host inflammatory responses,
with e-cig use providing unique opportunities for dysbiosis.

Two uniquely dominant taxa in e-cig users, Fusobacterium and Bacteroidales (G-2),
are anaerobic and known to be associated with periodontitis, with Bacteroidales (G-2)
more associated than Porphyromonas gingivalis (24, 54, 55). Fusobacterium positively
correlated with IFN-g, IL-12p70, and IL-2 and is known to be enriched in periodontitis
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as an important component of periodontal biofilms (47, 54–57). The significant enrich-
ment of these organisms provides evidence that e-cig use may promote an SGP com-
munity enriched in pathogens but in a uniquely dysbiotic manner compared to chronic
conventional cigarette use. A previous study looking at the salivary microbiome and e-
cig use found that the phylum Fusobacteria is significantly depleted in conventional
smokers, with similar relative abundances between e-cig users and nonsmokers (6),
suggesting that habitual use may have habitat-specific effects.

Further, we used supervised machine learning to examine the uniqueness of the
microbiome of each cohort (58–60). Samples from the ES cohort were much less predict-
able, being incorrectly classified as being from CS or NS over half the time, with a propen-
sity for being classified as from CS. Previous classifiers have had difficulty distinguishing
e-cig users, dual users, and former smokers (36), further demonstrating the similarity of
the different users’ microbiomes. In support of this, Lautropia, Cardiobacterium, Ottowia,
Anaeroglobus, Stomatobaculum, and Mitsuokella all had patterns of relative abundance
that suggest that in some ways, the ES microbiome exists as an intermediary state
between those of the conventional smoker and nonsmoker. This further suggests that
the ES SGP microbiome resembles a mixture of the CS and NS states, with more similar-
ities to the CS state.

IL-4 and IL-1b were significantly decreased in the ES cohort (compared to CS), but
TNF-a was uniquely significantly elevated in the ES cohort. IL-4 tends to be reduced in
periodontitis and increases after nonsurgical intervention (61), suggesting that taxa pres-
ent in the dysbiotic periodontal microbiome actively suppress host immune responses
(e.g., Saccharibacteria discussed above). IFN-g, IL-1b , and TNF-a are elevated in chronic
periodontitis compared to healthy controls (61). In a previous study, IFN-g and IL-2 were
elevated in e-cig users with respect to nonsmokers (62). TNF-a has been shown to be ele-
vated in e-cig users with respect to nonsmokers (63), even when asthmatic smokers tem-
porarily use e-cigs (64). IL-10 can also be elevated by e-cig use (64). A quick proinflamma-
tory response after device use is observed in periodontally healthy e-cig users, one that is
on par with the response of patients with severe periodontitis (36). Interestingly, several
ASVs classified as Rothia or Actinomyces were important features for classifying samples:
these genera clustered together based on correlation patterns with cytokines, and they
were most relatively abundant in the ES cohort, suggesting that chronic e-cig use may
uniquely impact these genera. These results suggest a unique host response to e-cig use
and/or to an e-cig use-promoted microbial community.

Our results demonstrate that the e-cig user’s subgingival microbiome is a unique
amalgamation of microbiota, containing similarities to those of both conventional
smokers and nonsmokers. Due to many shared features with the conventional smok-
er’s microbiome and considering the widespread promotion of e-cigarettes as a
“healthier” alternative to or replacement for conventional cigarettes (21, 65–67), our
results show that e-cigarette use may promote a healthier SGP microbiome with
respect to that of smokers but not compared to that found with never smoking in the
first place. The uniqueness of the e-cigarette periodontal microbiome indicates a need
for further research into this relatively novel microbial consortium, obtained through
the adoption of a newly acquired human habit, and how biotic and abiotic compo-
nents synergistically impact oral health and disease.

MATERIALS ANDMETHODS
Human subject recruitment and sample collection. Ethical approval for the study was obtained

from the Institutional Review Board of New York University Langone Medical Center. Details of subject
enrollment, recruitment, and eligibility criteria were previously published (7) and can be found in Text
S1. All subjects underwent clinical assessment for periodontitis at both study visits (6 months apart). A
6-month time frame was chosen to allow for periodontal disease progression (68, 69). Periodontitis state
(mild/moderate/severe) was determined based on the definition given by the CDC in collaboration with
the American Academy of Periodontology (7, 70). Only subjects with at least mild periodontitis at enroll-
ment were recruited (Text S1). Subgingival plaque (SGP) samples were collected as explained in Text S1
and stored at 280°C until further processing. Cohorts were assigned based on single habit use, duration,
frequency, and carbon monoxide levels (Text S1). Nonsmokers stated that they never smoked or used
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an e-cig in their lifetime and were excluded from the study if found to have $7 ppm breath carbon
monoxide levels. Clinical measurements were obtained as described by Xu et al. (7) and in Text S1.

Multiplex immunoassay cytokine measurements. SGP cytokine and chemokine levels were quan-
tified using the V-Plex human proinflammatory panel 1 kit (10-Plex) from Meso Scale Discovery (MSD;
Rockville, MD) according to the manufacturer’s instructions and as described previously (6). Standards,
the control pack, and 168 SGP samples from visit 1 and visit 2 were quantified. Samples falling outside
the detectable range of the assay were removed from further analysis.

Microbiome DNA extraction and sequencing. Genomic DNA from SGP samples was extracted as
explained previously using the MoBio Power fecal kit (MoBio Laboratories Inc., Carlsbad, CA) and quanti-
fied (6, 71). For 16S rRNA gene library preparation, the V3-V4 region of the 16S rRNA gene was amplified
from 10 ng/mL of microbial SGP genomic DNA as described previously (6, 71). Libraries were pooled in
equimolar amounts, and pooled amplicon libraries were denatured, diluted, and sequenced on an
Illumina MiSeq platform using the MiSeq reagent kit v3 (600 cycles) following the 2 � 300-bp paired-
end sequencing protocol. Negative controls were handled exactly as samples and included for all
sequencing runs. Negative-control sequence data are deposited with sample data.

16S rRNA gene sequence data analysis. Demultiplexed FASTQs from Illumina were imported into
QIIME2 (v2020.2) (72). DADA2 (73) was used to denoise reads and generate the amplicon sequence vari-
ant (ASV) table with the following parameters: --p-trim-left-f 17 --p-trim-left-r 21 --p-trunc-len-f 300 --p-
trunc-len-r 196. A phylogenetic tree was constructed via the qiime phylogeny align-to-tree-mafft-fasttree
command. A naive Bayes machine learning classifier against the Human Oral Microbiome Database
(v15.2) 16S rRNA gene RefSeq database was trained via q2-feature-classifier with fit-classifier-naive-bayes.
Taxonomic assignment was done by using the classify-sklearn in q2-feature-classifier. Approximately 10%
of samples were removed due to low read depth, resulting in samples below 1,001 reads and the
patient-matched corresponding-visit sample being culled from further analysis to avoid biases due to
sampling depth (74). A rarefied ASV feature table was generated using the qiime-feature-table rarefy
command with --p-sampling-depth 1001 and outputted in BIOM format (v2.1) (75). We filtered out 34
samples from 17 subjects who were missing a sample from one of the study visits in the rarefied table,
resulting in 168 samples from 84 subjects retained for the downstream analysis, with a total of 3,279
ASVs. The BIOM table, taxonomy file, and phylogenetic tree file were exported for statistical analyses
and generation of plots performed in an R environment (v4.0.3), using phyloseq (v1.34.0) (76) and
ggplot2 (v3.3.5) (77).

Using the rarefied ASV tables, we utilized the Qiime2 plugin q2-sample-classifier (58, 78) to facilitate
supervised machine learning to identify patterns in the relative abundances of ASVs in each cohort and to
determine if those patterns were strong enough to predict sample inclusion in a cohort accurately. We
trained and tested the classifier using sample-classifier classify-samples with the following parameters: --p-n-
estimators 1000 --p-estimator RandomForestClassifier; otherwise, the default settings were applied.

Statistical methods. Significant differences in cytokine and clinical measures between cohorts were
assessed using Kruskal-Wallis H test followed by a post hoc Dunn’s test, with multiplicity-adjusted P val-
ues reported using Prism (v9.0.0). A P value of ,0.05 was considered significant for all statistical tests
performed in this study.

a-Diversity was evaluated using picante (v1.8.2) (79). A paired-sample Wilcoxon signed-rank test was
used to compare means to test for significant differences in a-diversity within a cohort over time. To test for
significant differences in a-diversity between cohorts, a Mann-Whitney U test was used to compare means.

To test for significant differences in relative abundances of taxa across cohorts, samples from both
visits were grouped within a cohort, and pairwise comparisons were made using a Mann-Whitney U test.
Linear discriminant analysis effect size (LEfSe) was also used to identify taxa that significantly differed in
relative abundance across cohorts (80). Relative-abundance hierarchical heat maps were generated by
pheatmap (v1.0.12). For evaluating changes in b-diversity, a principal-coordinate analysis (PCoA) was
performed on Bray-Curtis dissimilarity metrics, and one-way permutational multivariate analysis of var-
iance (PERMANOVA) was used to test for significance using the Vegan r package (v2.5-7).

Pearson correlation coefficient was calculated to assess the relationships among the relative abun-
dance of the top 20 genera, inflammatory cytokine levels, and clinical measures using the Hmisc r pack-
age (v4.5.0). A correlation heat map was generated using the pheatmap r package (v1.0.12), and the cor-
relation chord diagram was plotted using the circlize r package (v0.4.13). In addition, correlation plots
were visually assessed for relationships between clinical measures, cytokine concentration, and taxon
relative abundance.

Data and material availability. All data needed to evaluate the conclusions in this paper are pres-
ent in the paper and the supplemental material or are provided elsewhere. All data underlying this study
will be made available upon publication. Raw sequence FASTQ files will be made available on the NCBI
database under BioProject number PRJNA771337. The BIOM table, taxonomy file, and phylogenetic tree
files generated with QIIME2 and scripts used to produce figures are available on GitHub (https://github
.com/Fangxi-Xu/E-cigarettes_SGP_Microbiome). Any additional data or material transfer agreements can
be provided by Deepak Saxena pending scientific review and a completed material transfer agreement.
Requests for the data should be submitted to Deepak Saxena.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
TEXT S1, DOCX file, 0.02 MB.
FIG S1, EPS file, 1.1 MB.
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FIG S2, TIF file, 0.9 MB.
TABLE S1, XLSX file, 0.02 MB.
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