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Machine learning approaches to 
predict lupus disease activity from 
gene expression data
Brian Kegerreis   1, Michelle D. Catalina   1, Prathyusha Bachali   1, Nicholas S. Geraci   1, 
Adam C. Labonte   1, Chen Zeng   2, Nathaniel Stearrett   3, Keith A. Crandall   3,  
Peter E. Lipsky   1 & Amrie C. Grammer   1

The integration of gene expression data to predict systemic lupus erythematosus (SLE) disease activity 
is a significant challenge because of the high degree of heterogeneity among patients and study 
cohorts, especially those collected on different microarray platforms. Here we deployed machine 
learning approaches to integrate gene expression data from three SLE data sets and used it to classify 
patients as having active or inactive disease as characterized by standard clinical composite outcome 
measures. Both raw whole blood gene expression data and informative gene modules generated by 
Weighted Gene Co-expression Network Analysis from purified leukocyte populations were employed 
with various classification algorithms. Classifiers were evaluated by 10-fold cross-validation across three 
combined data sets or by training and testing in independent data sets, the latter of which amplified 
the effects of technical variation. A random forest classifier achieved a peak classification accuracy of 
83 percent under 10-fold cross-validation, but its performance could be severely affected by technical 
variation among data sets. The use of gene modules rather than raw gene expression was more robust, 
achieving classification accuracies of approximately 70 percent regardless of how the training and 
testing sets were formed. Fine-tuning the algorithms and parameter sets may generate sufficient 
accuracy to be informative as a standalone estimate of disease activity.

SLE is a complex, multisystem autoimmune disease that continues to be a major diagnostic as well as therapeutic 
challenge. There are no definitive, specific diagnostic tools available to determine whether a patient has SLE, and 
diagnostic approaches in SLE have not changed in decades. Physicians still rely on clinical evaluation and a few 
laboratory tests, including measurement of autoantibodies and complement levels. Despite the wealth of genetic, 
epigenetic, and gene expression data that has emerged in the past few years at both the patient and cellular levels, 
none has been integrated to produce a predictive tool that can be used to evaluate an individual SLE patient.

In SLE, defects in central and peripheral tolerance allow for activation of self-reactive B cell clones and 
differentiation into plasmablasts/plasma cells (PCs) that secrete autoantibodies, which in turn mediate tissue 
damage1,2. Genome wide association studies (GWAS) have identified numerous polymorphisms in regions 
encoding genes or regulatory regions that could influence B cell function3, suggesting that a general state of B 
cell hyper-responsiveness could contribute to SLE pathogenesis. Autoantibody-containing immune complexes 
stimulate production of type 1 interferon, a hallmark of infection that is also observed in SLE patients, regardless 
of disease activity4,5. In addition to B cells and PCs6, various T cell populations also exert differential effects on 
SLE pathogenesis. T follicular helper cell subsets contribute to B cell activation and differentiation, and abnormal 
T cell receptor signaling is also thought to lead to hyper-responsive autoreactive T cell activity7–9. Furthermore, 
defects in regulatory T cells, partially secondary to deficient IL-2 production, result in faulty modulation of 
immune activity and inflammation8,9.

Myeloid cells (MC) also play a role in SLE pathogenesis10. Factors present in the local microenvironment 
can cause macrophages (Mφ) to undergo extreme changes in transcriptional regulation in a process called 
Mφ polarization11–13. Overabundance of proinflammatory M1 Mφ and decreased expression of markers 
for anti-inflammatory M2 Mφ are detected in both lupus-prone mice and SLE patients14,15, and therapeutic 
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stimulation of M2 polarization significantly decreases disease severity in murine SLE16. Experimental interven-
tion in M2 polarization as well as microRNA array profiling suggest that abnormalities in M2 Mφ may contribute 
to SLE severity15,17. Low-density granulocytes (LDGs) are abnormal neutrophil-like cells that appear in the blood 
of lupus patients as well as in many other disease states18–23. Although their involvement in SLE has not been stud-
ied as extensively as that of other cell types, LDGs have already been linked to kidney disease, vascular disease, 
and other manifestations in lupus patients24–29.

To date, however, it has been difficult to relate gene expression profiles to SLE disease activity successfully. 
Numerous groups have attempted to characterize SLE patients by gene expression. For example, Jourde-Chiche et al.  
reported a discrete group of differentially expressed genes that might be found in subjects with SLE renal dis-
ease28, and Banchereau et al. extensively analyzed pediatric lupus samples and attempted to associate modules of 
expressed genes with disease manifestations in children30. Despite these advances, gene expression data has yet to 
provide an approach with sufficient predictive value to utilize in decision making about individual subjects with 
SLE. Furthermore, no cellular phenotype has been independently verified to be able to distinguish a patient with 
active SLE from one with inactive disease. This distinction is critical both for patient evaluation and for clinical 
trials, as most SLE trials are aimed at controlling disease activity.

Therefore, in order to advance personalized treatment of SLE patients, the use of big data analytical tech-
niques, including machine learning, can be useful to understand the relationships between cell subsets, gene 
expression, and disease activity. Machine learning describes a wide range of computational methods which allow 
researchers to harness complex data and develop self-trained strategies to predict the characteristics of new sam-
ples, such as whether a given SLE patient has active or inactive disease. Machine learning techniques have already 
been leveraged in lupus to characterize disease risk and identify new biomarkers based on genotypic data or urine 
tests31,32. When applied to high-throughput transcriptomic data, machine learning algorithms could potentially 
be used to identify the gene expression features with the most utility to identify subjects with higher degrees of 
disease activity and may also provide insights into disease pathogenesis.

To address this possibility, we used conventional bioinformatics methods in conjunction with unsupervised 
and supervised machine learning techniques to: (1) test the potential of raw gene expression data and modules of 
genes to classify subjects with active and inactive SLE, (2) determine the optimum classifier or classifiers, and (3) 
understand the combinations of variables that best facilitate classification.

Results
Gene expression and SLE disease activity.  Before employing machine learning techniques, it was nec-
essary to first assess whether conventional bioinformatics approaches could accurately separate active SLE patient 
samples from those obtained from inactive patients. First, three whole blood (WB) data sets (Table 1) were filtered 
to include only those genes which passed quality control and filtering in all three studies. Differential expression 
(DE) analysis of active versus inactive patient samples with the remaining filtered 7,848 genes revealed major 
differences among data sets and considerable heterogeneity within data sets. GSE39088 had only 176 DE genes 
with a false discovery rate (FDR) less than 0.2 and none with FDR < 0.05; GSE45291 had 5850 DE genes with 
FDR < 0.2 and 4837 with FDR < 0.05; GSE49454 had 1710 DE genes with FDR < 0.2 and 72 with FDR < 0.05 
(Supplementary Data S1). Hierarchical clustering was carried out on each study with all genes, DE genes with 
FDR < 0.2, and DE genes with FDR < 0.05 to determine whether active and inactive patients would separate into 
two clusters. The Adjusted Rand Index (ARI) was used to compare these clusterings to the known status of the 
patients. When using all genes, all three studies had ARIs near zero, indicating that clustering separated active and 
inactive patients no better than random chance (Table 2). GSE39088 and GSE49454 showed only mild improve-
ment after filtering genes, whereas GSE45291 attained an ARI of 0.94 when using genes with FDR < 0.05.

Next, the lists of genes were compared for commonalities. Out of 6,440 unique DE genes from the three 
studies, 5,170 genes were unique to one study, 1,234 were shared by two studies, and 36 were shared by all three 
studies. Of these 36 genes, only three had consistent fold changes across all studies (DNAJC13 and IRF4 upregu-
lated; RPL22 downregulated). Rank-rank Hypergeometric Overlap (RRHO) was next applied as a threshold-free 
comparison of the studies33. All genes that were tested for differential expression were sorted by FDR from most 
significantly overexpressed to most significantly underexpressed and broken into 36 groups of 218 genes each. 
Among the three studies, the ranked gene lists failed to demonstrate significant overlap of the most overexpressed 

Accession
Microarray 
Platform

N 
Active

N 
Inactive

SLEDAI 
Range

SLEDAI Mean 
(SD)

GSE39088
GPL570 
(Affymetrix  
HG-U133 + 2.0)

24 13 2–12 6.8 (2.7)

GSE45291
GPL13158 
(Affymetrix  
HG-U133 + PM)

35 35 0–11 4.3 (3.5)

GSE49454
GPL10558 
(Illumina  
HumanHT-12 v4.0)

23 26 0–26 7.7 (7.2)

Table 1.  Data sources for active (SLEDAI ≥ 6) and inactive (SLEDAI < 6) SLE WB gene expression. Data sets 
are listed by Gene Expression Omnibus (GEO) accession numbers. N Active/Inactive: number of active/inactive 
patients in data set. Range, mean, and standard deviation of SLEDAI values in each data set are provided.
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and underexpressed genes (Fig. 1). The three data sets were comprised of different patient populations and were 
collected on different microarray platforms (Table 1); still, the heterogeneity is striking. The lack of commonality 
among the genes most descriptive of active and inactive patients in each data set casts doubt on whether active 
and inactive patients from different data sets will separate cleanly.

Patients from each study were then joined to evaluate whether unsupervised techniques would separate active 
patients from inactive patients. Expression profiles from each study were first normalized to have zero mean and 
unit variance. Figure 2 shows that even these three genes (DNAJC13, IRF4, and RPL22) failed to separate active 
patients from inactive patients precisely. Hierarchical clustering on all genes had an ARI of 0.03 when compared 
to the known status of the patients, and clustering on the three consistent DE genes shared among the studies 
(DNAJC13, IRF4, and RPL22) had an ARI of 0.05 (Table 2). If gene expression has the potential to identify active 
SLE patients robustly, conventional bioinformatics techniques failed to harness that, highlighting the need for 
more advanced algorithms.

We hypothesized that patterns of enrichment of Weighted Gene Co-expression Network Analysis (WGCNA) 
modules derived from isolated cell populations that are correlated to the SLEDAI SLE disease activity index might 
be more useful than gene expression across studies to identify active versus inactive lupus patients. To character-
ize the relationships between SLE gene signatures from various peripheral cellular subsets and disease activity, 
WGCNA was used to generate co-expression gene modules from purified populations of cells from subjects with 
active SLE, which could subsequently be tested for enrichment in whole blood of other SLE subjects. WGCNA 
analysis of leukocyte subsets resulted in several gene modules with significant Pearson correlations to SLEDAI 
(all |r| > 0.47, p < 0.05). CD4, CD14, CD19, and CD33 cells yielded 3, 6, 8, and 4 modules significantly correlated 
to disease activity, respectively (Table 3). Two low-density granulocyte (LDG) modules were created by perform-
ing WGCNA analysis of LDGs along with either SLE neutrophils or HC neutrophils and merging the modules 
most strongly expressed by LDGs. Two plasma cell (PC) modules were created by using the most increased and 
decreased transcripts of isolated SLE plasma cells compared to SLE naïve and memory B cells2.

Gene Ontology (GO) analysis of the genes within each module showed that some processes, such as those 
related to interferon signaling, RNA transcription, and protein translation, were shared among cell types, whereas 
other processes were unique to certain cell types (Table 3) and might be used to classify patients more effectively. 
The genes in each module are available in (Supplementary Data S2).

To characterize the relationships between SLE gene modules from cell subsets and disease activity in greater 
detail, Gene Set Variation Analysis (GSVA) enrichment was carried out using the 25 cell-specific gene mod-
ules (Fig. 3). Of the 25 cell-specific modules, 12 had enrichment scores with significant Spearman correlations 
to SLEDAI (p < 0.05), and 14 had enrichment scores with significant differences between active and inactive 
patients (Welch’s t-test, p < 0.05) (Table 4). Notably, each cell type produced at least one module with a significant 
correlation to SLEDAI in WB and at least one module with a significant difference in enrichment scores between 
active and inactive patients, demonstrating a relationship between disease activity in specific cellular subsets and 
overall disease activity in WB. However, the Spearman’s rho values ranged from −0.40 to +0.36, suggesting that 
no one module had substantial predictive value. Furthermore, the effect sizes as measured by Cohen’s d when test-
ing active versus inactive enrichment scores ranged from −0.85 to +0.79. The CD4 Floralwhite and Orangered4 
modules, which had the largest positive and negative effect sizes, respectively, showed a high degree of overlap in 
the enrichment scores of active and inactive patients (Fig. 4).

Analysis of individual disease activity-associated peripheral cellular subset gene modules was not sufficient to 
predict disease activity in unrelated WB data sets, since no single module from any cell type was able to separate 
active from inactive SLE patients (Fig. 3). The results emphasized the need for more advanced analysis to employ 
gene expression analysis to predict disease activity.

Machine learning and disease activity.  To assess the effectiveness of either raw gene expression or 
module-based enrichment techniques, SLE patients were classified as active or inactive using generalized linear 
models (GLM), k-nearest neighbors (KNN), and random forest (RF) classifiers. Classifiers were validated using 

Adjusted Rand Index

GSE39088 −0.04

GSE39088; FDR < 0.2 0.19

GSE39088; FDR < 0.05 N/A

GSE45291 0.03

GSE45291; FDR < 0.2 −0.01

GSE45291; FDR < 0.05 0.94

GSE49454 0.04

GSE49454; FDR < 0.2 0.14

GSE49454; FDR < 0.05 0.14

All Studies 0.03

All Studies; Three Consistent DE Genes 0.05

Table 2.  Adjusted Rand Index of Unsupervised Hierarchical Clustering Compared to Known Disease 
Activity. Data sets are listed by GEO accession numbers. GSE39088 had no genes with FDR < 0.05. The “Three 
Consistent DE Genes” are DNAJC13, IRF4, and RPL22.

https://doi.org/10.1038/s41598-019-45989-0


4Scientific Reports |          (2019) 9:9617  | https://doi.org/10.1038/s41598-019-45989-0

www.nature.com/scientificreportswww.nature.com/scientificreports/

two different methodologies: (1) 10-fold cross-validation or (2) study-based cross-validation, in which classifiers 
were trained on each data set independently and tested in the other two data sets. When evaluating the perfor-
mance of classifiers on the data set on which they were trained, GLM accuracy was defined as one minus the 
cross-validated classification error from the cv.glmnet() function, and RF accuracy was determined based on 
out-of-bag predictions. The accuracy of each classifier trained with either gene expression or module enrichment 
is shown in Fig. 5, and receiver operating characteristic (ROC) curves are plotted in Fig. 6. Classification metrics 
for each classifier are shown in Table 5.

When performing 10-fold cross-validation, the use of gene expression values resulted in better performance 
from all three classifiers compared to module enrichment scores. The random forest classifier was the strong-
est performer with 83 percent accuracy, and its corresponding ROC curve demonstrated an excellent tradeoff 
between recall and fall-out (AUC 0.89). This high accuracy can likely be attributed to the presence of data from 
all three studies in both the training and test sets. In this case, the classifiers have the opportunity to learn pat-
terns inherent to each data set, which proves useful during testing. To ensure that the classifiers were not dispro-
portionately learning patterns from certain data sets at the expense of others, the classification results from the 
10-fold cross-validation approach were subdivided by data set. All classifiers exhibited good performance with 
small differences between their highest and lowest accuracies in individual data sets, with the exception of the 
WGCNA-based KNN classifier (Supplementary Table S1).

When performing study-based cross-validation, classifiers trained on expression data performed better on 
their respective training sets than those trained on module enrichment scores in nearly all cases (Fig. 5). However, 
the accuracy of classifiers trained on expression values in the test sets was approximately 50 percent. This is in line 
with the findings of our initial bioinformatic analysis (Table 2), namely, that gene expression values have little to 
no utility when attempting to classify unfamiliar samples. When the training and test data come from different 
data sets, the classifiers learn patterns that are unhelpful for classifying test samples. Although classifiers trained 
on module enrichment scores did not achieve high accuracies in their training sets, they did not experience as 
sharp a drop in accuracy when tested on unfamiliar data sets. Remarkably, the use of module enrichment scores 
improved RF test accuracy to approximately 65 percent and improved KNN test accuracy to approximately 70 
percent.

Figure 1.  Heatmaps of −log10(overlap p values) from RRHO. Strongest overlaps near the center of each plot 
indicate weak agreement among the most significantly upregulated and downregulated genes from each data 
set. Strong agreement between data sets should form a diagonal from the bottom-left corner to the top-right 
corner.

Figure 2.  Clustering all three studies on three consistent DE genes. DNAJC13, IRF4, and RPL22 were 
consistently differentially expressed in each study yet fail to fully separate active from inactive patients. Orange 
bars denote active patients; black bars denote inactive patients. Blue, yellow, and red bars denote patients from 
GSE39088, GSE45291, and GSE49454, respectively.
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Overall, gene expression values provide high accuracy when performing 10-fold cross-validation but are ren-
dered nearly useless when performing study-based cross-validation. These results indicate that disease activity 
classification based on raw gene expression, while more accurate, is sensitive to technical variability, whereas 
classification based on module enrichment better copes with variation among data sets.

Random forest consistently achieved high performance, and we hypothesized that its assessments of variable 
importance could be used to gain insight into directors of the identification of SLE activity. To this end, random 
forest classifiers were trained on all patients from all data sets in order to identify the most important genes and 
modules as determined by mean decrease in the Gini impurity, a measure of misclassification error. The classifier 
trained with gene expression data achieved an out-of-bag accuracy of 81 percent, with a sensitivity of 83 percent 
and a specificity of 78 percent. The classifier trained with module enrichment scores achieved an out-of-bag accu-
racy of 73 percent, with a sensitivity of 78 percent and a specificity of 68 percent.

The most important genes and modules identified a wide array of cell types and biological functions (Fig. 7). 
The most important genes encompass such diverse functions as interferon signaling, pattern recognition receptor 
signaling, and control of survival and proliferation (Fig. 7a). Notably, the most influential modules skewed away 
from B cell-derived modules and towards T cell- and myeloid cell-derived modules (Fig. 7b). As some of these 
modules had overlapping genes, the variable importance experiment was repeated with modules that were first 
scrubbed of any genes that appeared in more than one module before GSVA enrichment scoring (Supplementary 
Data S3). The relative variable importance scores of the deduplicated modules correlated strongly with those of 
the original modules (Spearman’s rho = 0.69, p = 1.94E-4), indicating that module behavior was partly driven by 
the overlapping genes but strongly driven by unique genes (Fig. 7c).

CD4_Floralwhite and CD14_Yellow, two interferon-related modules which maintained high importance after 
deduplication, were further analyzed to study the effect of unique genes on module importance. Gene lists were 
tested for statistical overrepresentation of Gene Ontology biological process terms with FDR correction on pan-
therdb.org. CD4_Floralwhite did not show any significant enrichment, but CD14_Yellow, which had the highest 

Cell Type Module Name
Module 
Size

Correlation 
with SLEDAI Top GO Biological Process Top BIG-C Category

CD4

Floralwhite 237 0.81 type I interferon signaling pathway Interferon-Stimulated-Genes

Turquoise 805 0.50 positive reg of ubiquitin-protein ligase Proteasome

Orangered4 237 −0.77 translational initiation mRNA-Translation

CD14

Plum1 247 0.47 ubiquitin-dependent protein catabolic 
process mRNA-Translation

Yellow 356 0.65 type I interferon signaling pathway Interferon-Stimulated-Genes

Greenyellow 89 −0.49 transcription from RNA polymerase II 
promoter General-Transcription

Pink 261 −0.77 protein phosphorylation Endosome-and-Vesicles

Purple 124 −0.66 inositol phosphate metabolic process Fatty-Acid-Biosynthesis

Sienna3 222 −0.64 translational initiation mRNA-Translation

CD19

Darkolivegreen 591 0.78 cell division Proteasome

Greenyellow 251 0.66 Notch signaling pathway mRNA-Translation

Steelblue 146 0.65 gluconeogenesis Glycolysis-Gluconeogenesis

Turquoise 572 0.50 ER to Golgi vesicle-mediated transport Unfolded-Protein-and-Stress

Violet 566 0.61 mitochondrial respiratory chain 
complex I Interferon-Stimulated-Genes

Brown 620 −0.62 regulation of transcription, DNA-
templated Chromatin-Remodeling

Green 541 −0.49 transcription, DNA-templated Transcription-Factors

Skyblue 756 −0.74 viral transcription mRNA-Translation

CD33

Royalblue 94 0.60 positive reg of cytosolic calcium ions Transposon-Control

Sienna3 133 0.76 type I interferon signaling pathway Interferon-Stimulated-Genes

Violet 177 0.79 defense response to virus Interferon-Stimulated-Genes

Darkmagenta 273 −0.49 ubiquinone biosynthetic process MHC-Class-TWO

LDG+

LDG_A 334 0.79 platelet degranulation Cytoskeleton

LDG_B 92 0.81 regulation of transcription Secreted-Immune

LDG_C 82 −0.39 viral process Nucleus-and-Nucleolus

PC*
PC_Up 423 N/A protein N-linked glycosylation Endoplasmic-Reticulum

PC_Down 183 N/A antigen processing and presentation 
MHC II MHC-Class-TWO

Table 3.  Cell module correlations to disease activity and functional analysis. Information on cell modules 
including number of genes, Pearson correlation coefficient to SLEDAI, and functional analysis. +LDG modules 
were generated by WGCNA meta-analysis, and r values indicate separation from control and SLE neutrophils 
as SLEDAI was unavailable. *PC modules are based solely on differential expression. LDG: low-density 
granulocyte; PC: plasma cell.
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Figure 3.  Cellular gene modules provide the basis for machine learning predictions of SLE activity. GSVA was 
performed on three SLE WB datasets using 25 WGCNA modules made from purified SLE cells with correlation 
or published relationship to SLEDAI (See Table 2). Orange: active patient; black: inactive patient. LDG: low-
density granulocyte; PC: plasma cell.

Spearman correlation to SLEDAI Active vs. Inactive t-test

rho p value t statistic p value d

CD4_Floralwhite 0.360 3.90E-06 4.90 2.40E-06 0.788

CD4_Turquoise −0.044 0.587 −0.93 0.352 −0.149

CD4_Orangered4 −0.400 2.21E-07 −5.29 4.35E-07 −0.853

CD14_Plum1 0.010 0.904 −0.35 0.729 −0.054

CD14_Yellow 0.356 4.93E-06 4.76 4.44E-06 0.761

CD14_Greenyellow −0.132 0.100 −2.10 0.037 −0.339

CD14_Pink −0.026 0.751 0.13 0.894 0.021

CD14_Purple −0.149 0.064 −1.65 0.101 −0.263

CD14_Sienna3 −0.368 2.27E-06 −4.99 1.62E-06 −0.799

CD19_Darkolivegreen 0.020 0.809 −0.06 0.953 −0.010

CD19_Greenyellow 0.192 0.016 2.55 0.012 0.403

CD19_Steelblue 0.016 0.838 0.55 0.580 0.089

CD19_Turquoise −0.069 0.393 −0.84 0.403 −0.132

CD19_Violet −0.087 0.282 −1.48 0.141 −0.236

CD19_Brown −0.050 0.537 −1.04 0.301 −0.164

CD19_Green −0.150 0.062 −2.07 0.040 −0.330

CD19_Skyblue −0.205 0.010 −2.35 0.020 −0.378

CD33_Royalblue 0.308 8.99E-05 3.99 1.03E-04 0.637

CD33_Sienna3 0.362 3.41E-06 4.69 6.15E-06 0.753

CD33_Violet 0.322 4.15E-05 4.35 2.46E-05 0.696

CD33_Darkmagenta −0.216 6.74E-03 −2.34 0.021 −0.369

LDG_A −0.044 0.588 −0.25 0.802 −0.040

LDG_B 0.220 5.71E-03 2.37 0.019 0.377

PC_Up 0.262 9.75E-04 3.21 1.61E-03 0.508

PC_Down 0.022 0.781 0.80 0.426 0.129

Table 4.  Assessment of WGCNA module relationships with SLE disease activity in WB. Statistics on WGCNA 
module relationships with SLEDAI and active disease. Correlation to SLEDAI was done by Spearman rank 
correlation, and the relationship with active versus inactive disease was assessed by Welch’s unequal variances  
t-test and Cohen’s d. Significant results are bolded (p < 0.05). LDG: low-density granulocyte; PC: plasma cell.
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Figure 4.  Individual WGCNA modules are ineffective at separating active and inactive SLE subjects. GSVA 
enrichment scores for (a) CD4_Floralwhite and (b) CD4_Orangered4 in SLE WB are unable to fully separate 
active patients from inactive patients. Asterisks denote significant differences by Welch’s t-test. Error bars 
indicate mean ± standard deviation.

Figure 5.  Performance of machine learning classifiers across three independent data sets. Classifiers were 
trained on the data sets listed across the top and evaluated in the data sets listed across the bottom. Data sets 
are listed by their GEO accession numbers. Expression (black): gene expression data. WGCNA (blue): module 
enrichment scores.

Figure 6.  Area under the ROC curve of machine learning classifiers across three independent data sets. 
Classifiers were trained on the data sets listed across the top and tested in the other two data sets. Data sets are 
listed by their GEO accession numbers. Expression (black): gene expression data. WGCNA (blue): module 
enrichment scores.
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importance after deduplication, was highly enriched for genes with the “Immune Effector Process” designation 
(26/77 genes, FDR = 9.38E-11 by Fisher’s exact test). This suggests that CD14+ monocytes express unique genes 
that may play important roles in the initiation of SLE activity.

Discussion
Several important findings related to SLE gene expression heterogeneity within and across data sets have been 
elucidated by this study. First, we demonstrated that DE analysis of active versus inactive patients is insufficient 
for proper classification of SLE disease activity, as systematic differences between data sets render conventional 
bioinformatics techniques largely non-generalizable.

Next, we hypothesized that WGCNA modules created from the cellular components of WB and correlated to 
SLEDAI disease activity might improve classification of disease activity in SLE patients. The use of cell-specific 
gene modules based on a priori knowledge about their relevance to disease fared slightly better than raw gene 
expression, as it generated informative enrichment patterns, and many of the modules maintained significant cor-
relations with SLEDAI in WB. However, these enrichment scores failed to separate active patients from inactive 
patients completely by hierarchical clustering.

We then compared raw expression data alongside the WGCNA generated modules of genes in machine 
learning applications. We used a supervised classification approach using elastic generalized linear modeling, 
k-nearest neighbors, and random forest classifiers. The trends in performance when cross-validating by study 
or cross-validating 10-fold speak to the potential advantages and disadvantages of diagnostic tests incorporat-
ing gene expression data or module enrichment. Cross-validating by study serves as a kind of “worst-case” sce-
nario, whereas 10-fold cross-validation serves as a “best-case.” Attempting to classify active and inactive SLE 
patients from different data sets and different microarray platforms during cross-validation by study proved 
difficult, but module enrichment was able to smooth out much of the technical variation between data sets. 
10-fold cross-validation simulated a more standardized diagnostic test. Although the data was sourced from 
three different microarray platforms, each cohort in the test set had many similar patients in the training set to 
facilitate classification by gene expression. If such a test could be reliably free from technical noise, it is likely that 
raw gene expression would perform very well. RNA-Seq platforms, which produce transcript counts rather than 
probe intensity values, may display less technical variation across data sets because they are not dependent on 
the binding characteristics of pre-defined probes that differ among arrays34. On the other hand, comparison of 
RNA-Seq and microarray samples has shown that the two methods can deliver highly consistent results35–37, so a 
microarray-based test could be feasible if it was only conducted on one platform. Further study to construct an 
optimal panel of genes similar to that identified by the random forest classifier could result in a simple, focused 
test to determine disease activity by gene expression data alone. Interestingly, module enrichment scores, which 
show little variation across platforms, could be used to develop diagnostic tests that leverage existing data sets, 
even if they are sourced from different platforms.

10-fold CV Trained on GSE39088 Trained on GSE45291 Trained on GSE49454

Expression WGCNA Expression WGCNA Expression WGCNA Expression WGCNA

GLM

Accuracy 0.80 0.72 0.51 0.56 0.57 0.56 0.63 0.63

Sensitivity 0.78 0.73 0.86 0.79 0.51 0.60 0.54 0.59

Specificity 0.82 0.70 0.18 0.34 0.64 0.51 0.73 0.67

AUC 0.84 0.73 0.62 0.65 0.68 0.55 0.63 0.69

Kappa 0.60 0.43 0.04 0.14 0.15 0.11 0.26 0.26

PPV 0.83 0.73 0.50 0.53 0.63 0.60 0.71 0.69

NPV 0.77 0.70 0.58 0.64 0.52 0.51 0.56 0.57

KNN

Accuracy 0.75 0.70 0.50 0.70 0.49 0.70 0.51 0.72

Sensitivity 0.66 0.72 0.59 0.83 0.23 0.68 0.31 0.68

Specificity 0.85 0.68 0.41 0.57 0.79 0.72 0.77 0.77

AUC 0.82 0.74 0.54 0.71 0.58 0.75 0.63 0.70

Kappa 0.50 0.40 0.00 0.40 0.03 0.40 0.07 0.44

PPV 0.83 0.71 0.49 0.65 0.58 0.74 0.62 0.78

NPV 0.69 0.68 0.51 0.78 0.46 0.65 0.47 0.66

RF

Accuracy 0.83 0.72 0.45 0.63 0.47 0.63 0.61 0.66

Sensitivity 0.83 0.77 0.86 0.91 0.53 0.62 0.54 0.61

Specificity 0.82 0.68 0.07 0.36 0.38 0.64 0.69 0.73

AUC 0.89 0.77 0.69 0.73 0.58 0.68 0.65 0.74

Kappa 0.65 0.45 −0.07 0.27 −0.08 0.26 0.22 0.33

PPV 0.84 0.72 0.47 0.58 0.51 0.67 0.68 0.73

NPV 0.81 0.72 0.33 0.81 0.41 0.58 0.55 0.60

Table 5.  Classification metrics of machine learning classifiers. Training sets are listed by their GEO accession 
numbers. Test accuracy was determined by testing the classifiers on the other two data sets. Expression: gene 
expression data. WGCNA: module enrichment scores. AUC: area under the receiver operating characteristic 
curve. Kappa: Cohen’s kappa coefficient. PPV: positive predictive value. NPV: negative predictive value.
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The strong performance of the random forest classifier indicates that nonlinear, decision tree-based methods 
of classification may be best suited to SLE diagnostics. This may be because decision trees ask questions about 
new samples sequentially and adaptively in contrast to other methods that approach variables from new samples 
all at once. Random forest is able to “understand” to an extent that different types of patients exist and that a 
one-size-fits-all approach will tend to misclassify those patients whose expression patterns make them a minority 
within their phenotype. To put it more simply, active patients that do not resemble the majority of active patients 
still have a strong chance of being properly classified by random forest.

We used the random forest classifier to assess the importance of each gene and module in patient classifica-
tion. The most important genes were involved in a number of functions other than interferon signaling, such RNA 
processing, ubiquitylation, and mitochondrial processes. These pathways may play important roles in directing, 
or at least be indicative of, SLE disease activity. CD4 T cells originally contributed the most important modules, 
but when the modules were deduplicated, CD14 monocyte-derived modules gained importance. This suggests 
that unique genes expressed by CD14 monocytes in tandem with interferon genes may prove to be informative in 
the study of cell-specific methods of SLE pathogenesis. Futhermore, it is important to note that modules that were 

Figure 7.  Random forest classifier reveals variable importance of genes and modules. (a) Variable importance 
of top 25 individual genes as determined by mean decrease in Gini impurity. (b) Variable importance of cell 
modules. (c) As many modules shared genes, modules were deduplicated to determine the effects on the 
random forest classifier. The relative importance of the full modules and deduplicated modules was strongly 
correlated (Spearman’s rho = 0.69, p = 1.94E-4). LDG: low-density granulocyte; PC: plasma cell.
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negatively associated with disease activity were just as important in classification as positively associated modules. 
Further study of underrepresented categories of transcripts should enhance our understanding of SLE activity.

One limitation of this study was the relatively small amount of data used to train and test the classifiers. 
Creating dedicated training and test sets is preferable to cross-validation, but it requires many samples. Although 
there are large numbers of publicly available gene expression profiles of SLE patients, many of these profiles are 
not annotated with SLEDAI data. Furthermore, some data sets which include SLEDAI data show heavy class 
imbalance, which impedes classification. Further work to integrate cross-platform expression data will be crucial 
to expanding our ability to classify active and inactive SLE patients.

The machine learning models tested here provide the basis of personalized medicine for SLE patients. 
Integration of our approaches with emerging high-throughput patient sampling technologies could unlock the 
potential to develop a simple blood test to predict SLE disease activity. Our approaches could also be generalized 
to predict other SLE manifestations, such as organ involvement. A better understanding of the cellular processes 
that drive SLE pathogenesis may eventually lead to customized therapeutic strategies based on patients’ unique 
patterns of cellular activation.

Methods
Compilation of gene expression data from SLE patients.  Publicly available gene expression data 
and corresponding phenotypic data were mined from the Gene Expression Omnibus. Raw data sources for puri-
fied cell populations are as follows: GSE10325 (CD4: 8 SLE, 9 HC; CD19: 10 SLE, 8 HC; CD33: 9 SLE, 9 HC); 
GSE26975 (10 SLE LDG, 10 SLE Neutrophil, 9 HC Neutrophil); GSE38351 (CD14: 8 SLE, 12 HC). Raw data 
sources for SLE whole blood gene expression are as follows: GSE39088 (24 active, 13 inactive); GSE45291 (35 
active, 257 inactive); GSE49454 (23 active, 26 inactive). 35 randomly sampled inactive patients were taken from 
GSE45291 to avoid a major imbalance between active and inactive SLE patients. Active SLE was defined as having 
an SLE Disease Activity Index (SLEDAI) of 6 or greater.

Quality control and normalization of raw data files.  Statistical analysis was conducted using R and 
relevant Bioconductor packages. Non-normalized arrays were inspected for visual artifacts or poor hybridization 
using Affy QC plots. PCA plots were used to inspect the raw data files for outliers. Data sets culled of outliers 
were cleaned of background noise and normalized using RMA, GCRMA, or NEQC where appropriate. Data sets 
were then filtered to remove probes with low intensity values and probes without gene annotation data. WB gene 
expression data sets were filtered to only include genes that passed quality control in all data sets. At this juncture, 
differential expression (DE) analysis and Weighted Gene Co-expression Network Analysis (WGCNA) were car-
ried out on data sets. WB gene expression data sets were then further processed before machine learning analysis. 
WB gene expression values were centered and scaled to have zero-mean and unit-variance within each data set, 
and the standardized expression values from each data set were joined for classification.

Differential expression analysis.  Normalized expression values were variance corrected using local 
empirical Bayesian shrinkage, and DE was assessed using the LIMMA R package38. Resulting p-values were 
adjusted for multiple hypothesis testing using the Benjamini-Hochberg correction39, which resulted in a false 
discovery rate (FDR). Significant genes within each study were filtered to retain DE genes with an FDR < 0.2, 
which were considered statistically significant. The FDR was selected a priori to diminish the number of genes 
that might be excluded as false negatives. Rank-rank hypergeometric overlap between data sets was assessed using 
the RRHO R package40. Additional analyses examined differentially expressed genes with an FDR < 0.05.

Weighted gene co-expression network analysis (WGCNA) of purified cell populations.  
Log2-normalized microarray expression values from purified CD4, CD14, CD19, CD33, and low density granulo-
cyte (LDG) populations were used as input to WGCNA to conduct an unsupervised clustering analysis, resulting 
in co-expression “modules,” or groups of densely interconnected genes which could correspond to comparably 
regulated biologic pathways41. For each experiment, an approximately scale-free topology matrix (TOM) was first 
calculated to encode the network strength between probes. Probes were clustered into WGCNA modules based 
on TOM distances. Resultant dendrograms of correlation networks were trimmed to isolate individual modular 
groups of probes by partitioning around medoids and labeled using color assignments based on module size. 
Expression profiles of genes within modules were summarized by a module eigengene (ME), which is analogous 
to the module’s first principal component. MEs act as characteristic expression values for their respective modules 
and can be correlated with sample traits such as SLEDAI or cell type. This was done by Pearson correlation for 
continuous or semi-continuous traits and by point-biserial correlation for dichotomous traits.

WGCNA modules from CD4, CD14, CD19, and CD33 cells were tested for correlation to SLEDAI. SLEDAI 
information was not available for the LDG modules, so the two modules provided are descriptive of LDGs com-
pared to SLE neutrophils and HC neutrophils.

Plasma cell modules were generated by differential expression analysis and not WGCNA, but were included 
because of the established importance of plasma cells in SLE pathogenesis and their increase in active disease2.

Gene set variation analysis (GSVA)-based enrichment of expression data.  The GSVA R pack-
age42 was used as a non-parametric method for estimating the variation of pre-defined gene sets in SLE WB 
gene expression data sets. Standardized expression values from WB data sets were used to test for enrichment of 
cell-specific WGCNA gene modules using the Single-sample Gene Set Enrichment Analysis (ssGSEA) method, 
which scores single samples in isolation and is thus shielded from technical variation within and among data sets. 
Statistical analysis of GSVA enrichment scores was done bv Spearman correlation or Welch’s unequal variances 
t-test, where appropriate. Effect sizes were assessed by Cohen’s d43.
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Machine learning algorithms and parameters.  We employed three distinct machine learning algo-
rithms to test biased and unbiased approaches to microarray data analysis. The biased approach involved GSVA 
enrichment of disease-associated, cell-specific modules, and the unbiased approach employed all available gene 
expression data in the WB. An elastic generalized linear model (GLM), k-nearest neighbors classifier (KNN), and 
random forest (RF) classifier were deployed to classify active and inactive SLE patients and determine whether 
gene expression could serve as a general predictor of disease activity. GLM, KNN, and RF were deployed using 
the glmnet, caret, and randomForest R packages, respectively44–46.

GLM carries out logistic regression with a tunable elastic penalty term to find a balance between the L1 (lasso) 
and L2 (ridge) penalties and thereby facilitate variable selection. For our predictions, the elastic penalty was set 
to 0.9, specifying a penalty that is 90% lasso and 10% ridge in order to generate sparse solutions. KNN classifies 
unknown samples based on their proximity to a set number k of known samples. K was set to 5% of the size of the 
training set. If the initial value of k was even, 1 was added in order to avoid ties. RF generates 500 decision trees 
which vote on the class of each sample. The Gini impurity index, a measure of misclassification error, was used to 
evaluate the importance of variables47.

Validation approaches.  The performance of each machine learning algorithm was evaluated by 2 differ-
ent forms of cross-validation. First, a random 10-fold cross-validation was carried out by randomly assigning 
each patient to one of 10 groups. For each pass of cross-validation, one group was held out as a test set, and the 
classifiers were trained on the remaining data. Next, as the data came from three separate studies, study-based 
cross-validation was also done to determine the effects of systematic technical differences among data sets on 
classification performance. In this circumstance, the classifiers were trained on one data set and tested in the 
other two data sets. Accuracy was assessed as the proportion of patients correctly classified across all testing folds. 
Performance metrics such as sensitivity and specificity were assessed after cross-validation by agglomerating class 
probabilities and assignments from each fold or study. Receiver Operating Characteristic (ROC) curves were 
generated using the pROC R package48.

Data Availability
All data sets used in these analyses may be downloaded from GEO using the accession numbers provided in the 
methods.
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