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Abstract: Iris segmentation plays an important and significant role in the iris recognition system.
The prerequisite for accurate iris recognition is the correctness of iris segmentation. However,
the efficiency and robustness of traditional iris segmentation methods are severely challenged in
a non-cooperative environment because of unfavorable factors, for instance, occlusion, blur, low
resolution, off-axis, motion, and specular reflections. All of the above factors seriously reduce the
accuracy of iris segmentation. In this paper, we present a novel iris segmentation algorithm that
localizes the outer and inner boundaries of the iris image. We propose a neural network model called
“Interleaved Residual U-Net” (IRUNet) for semantic segmentation and iris mask synthesis. The
K-means clustering is applied to select saliency points set in order to recover the outer boundary of
the iris, whereas the inner border is recovered by selecting another set of saliency points on the inner
side of the mask. Experimental results demonstrate that the proposed iris segmentation algorithm
can achieve the mean IOU value of 98.9% and 97.7% for inner and outer boundary estimation,
respectively, which outperforms the existing approaches on the challenging CASIA-Iris-Thousand
database.

Keywords: iris recognition; iris segmentation; deep convolution and deconvolution neural network;
image segmentation; biometrics

1. Introduction

Recent developments in the field of computer vision have led to renewed interest
in biometrics technologies. Iris recognition has been determined as the most accurate
and reliable biometric identification approach and thus it has been deployed in several
applications such as identification and authentication systems, intelligent key systems,
digital forensics, and border control [1–4]. An iris comprises a large amount of distinctive,
constant, and forgery-proof features such as complex textures and explicit structural
information for biometric identification [5,6]. In addition to this, iris traits are stable and
remain unchanged throughout a person’s lifetime [7]. Hence, iris texture serves a key role
in biometric practices.

Over the last few years, with the rapid advancement of technology, the use of mobile
devices like smartphones, computers, or smartwatches have exponentially increased in
our daily life. Meanwhile, the amount of user’s secret data stored in mobile devices is
constantly growing. Hence, biometric verification is needed to restrain unknown users
from gaining access and stealing personal sensitive information stored on mobile and
handheld devices. Compared with lock patterns, PIN codes, and passwords, iris patterns
not only provide stronger protection for mobile devices against digital threats, but are
also more reliable, anti-counterfeit, comfortable, and user-friendly than entering a pin
code or password to unlock the device [1,8]. In recent years, fingerprint scanning could be
recognized as the most ubiquitous biometric function embedded in mobile and handheld
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devices [9]. However, there have been spoofing cases, such as fingerprints picked up from
the touchscreen. Comparatively, the iris-based system is foolproof and quite convenient to
implement although it may require an infrared sensor and specially designed optics [1,9].
However, iris segmentation tasks are challenging because the acquisition of iris images
may suffer from non-cooperative environments including specular reflection, off-angle
iris, occlusion due to eyelash/eyelid/glasses, partially captured iris, etc., as shown in
Figure 1 [3].

Figure 1. Example of images captured under non-cooperative environments. (a) Off-angle iris; (b–c) iris with specular
reflection; (d) iris occluded by eyelids; (e) iris obstruction due to glasses; (f) rotated iris image; (g) iris obstruction due to
eyelash; (h) partially captured iris.

A common iris recognition system often consists of the following procedures: Iris
image acquisition, iris image pre-processing, iris segmentation, iris feature extraction, and
feature matching for identification or authentication [1,3,4,6,10]. In the iris recognition
system, iris segmentation is a critical and challenging task because of the unpredictable
and irregular shape of the iris [4,7]. In general, iris textures are more visible near the area
close to the pupil boundary. If the boundary of the pupil area is not correctly positioned, a
large amount of iris texture will be lost in the feature extraction stage. In other words, the
performance and robustness of the iris recognition system depend strongly on the accuracy
of iris segmentation. In most cases, the occluded iris area (e.g., eyelids or eyelashes,
eyeglasses, poor illuminations, and motion blurs) would greatly influence the overall
accuracy of iris segmentation algorithms. Previous studies have shown that the error
produced in the iris segmentation step is transmitted into all following phases of the iris
recognition, so iris boundary estimation is still a very important pre-processing stage for
achieving the high accuracy of the system [1,2,4,6].

In this paper, we attempt to address this problem. To this end, we propose a multi-
stage algorithm, which consists of deep learning and saliency points selection for iris. Our
deep learning model is based on an interleaved residual U-Net (IRUNet), which is more
effective and robust in terms of locating the iris area accurately. The proposed method splits
the task of iris segmentation into two processes: (1) Finding the eye and (2) segmenting
the iris area. Our well-developed IRUNet network model is used to generate an iris mask
which is capable of estimating the boundary points correctly, whereas a K-means clustering
is used to improve the iris boundary points from non-saliency points.
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The rest of the paper is organized into the following sections. Section 2 describes the
related work. In Section 3, the proposed method is presented. Experimental results and
discussion is presented in Section 4, and Section 5 draws the conclusion.

2. Related Works

The recent algorithms for iris segmentation can be classified into the following kinds
depending on the implementation methods. Conventional iris segmentation approaches
are based on a boundary-based schema.

In these methods, the inner and outer boundaries of the iris are initially identified,
and then filtered iris masks are acquired through detecting the lower and upper eyelids
and limbic regions. This means that iris localization is performed first, and then the iris
segmentation process is performed [1–3]. The two traditional and most popular algorithms
for iris segmentation were introduced by Professor Daugman’s integrodifferential opera-
tor [11] and Wilde’s circular Hough transforms [12]. These algorithms rely on the following
idea: Find edge points in the iris image, and then use a circular or elliptical model for
fitting. Based on these benchmark algorithms, a large number of later introduced methods
achieved significant enhancements in terms of proficiency, robustness, and accuracy [3], for
instance, [13] implemented a region-based clustering namely fuzzy-clustering algorithm,
heretofore localization to decrease the parameter search range. Tan et al. [14] proposed a
combination approach of region clustering i.e., eight-neighbor connection clustering, to
cluster the entire iris image into different segments, semantic refinements to extract actual
iris area, and then integrodifferential constellation is applied to decrease the reckoning
time of the integrodifferential operator. Betancourt and Silvente [15] presented an iris
localization approach based on the analysis of gradient approximation. The aggregation
operators, quantified majority operator (QMA-OWA) [16], were used to attain iris circular
boundaries. Ghodrati et al. [17] proposed a localization algorithm and applied a set of
morphological operators, canny edge detector [18], and Hough transforms. Wang and
Xiao [19] proposed an iris segmentation approach that relies on the difference operator of
radial directions.

Some of the researchers applied region growing algorithms rather than edge-based
methods. These kinds of algorithms are related to those for identifying the real iris bound-
ary. They slowly joined the sections with high similarity in an image to acquire the iris area.
Liu et al. [20] presented a novel iris segmentation algorithm based on K-means clustering.
The proposed limbic boundary localization method utilized a K-means cluster to detect
the pupillary region. Yan et al. [21] used the watershed transform [22] and region merging
on the structured eye images. Abate et al. [23] combined the watershed transform, color
quantization, and region merging.

Furthermore, to acquire the iris mask in the above-mentioned auxiliary methods, there
are some pixel-based iris segmentation methods to detect the iris and non-iris areas directly.
They generally utilize the low-level visual information (such as intensity and color) of
each pixel to categorize the pixel of interest from the image background [3]. Principally,
favorable approaches generally practice well-known pixel-level methods, for example,
GrowCut [24], geodesic active contours (GAC), and GrabCut [25], to preprocess the image
and next implement conventional classification techniques, e.g., Support Vector Machine
(SVM) [26], to categorize iris and non-iris pixels.

Recently, in the field of computer vision, deep learning (DL) has gained considerable
research attention. Among all DL models, convolutional neural networks (CNNs) have
achieved state-of-the-art performance and accuracy in object detection and classification
tasks. The two traditional CNN-based models for iris segmentation were introduced by
Liu et al. [27], i.e., hierarchical convolutional neural networks (HCNNs) and multi-stage
fully convolutional networks (MFCNs). Both of these models find iris pixels automatically
without manually designed (handcrafted) rules or features. They are end-to-end predic-
tion models where classifiers and features are jointly optimized and need no more pre-
and post-processing. Thereafter, scholars have implemented pre-designed (off-the-shelf,
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existing) [28–31] or custom-built [1,32,33] fully connected networks (FCN) models for iris
segmentation and achieved good segmentation accuracy on various iris databases. In
Lian et al. [31], Lozej et al. [34], Wu and Zhao [35], and Zhang et al. [36], scholars employed
alternatives of U-Net [37] for iris segmentation. Despite the success of U-Net, these schemes
still have some shortcomings [38], as described below: (1) The skip connection unreason-
ably forces the aggregation of the same scale feature maps of the encoder and decoder; (2)
the optimal depth of the model is not yet known, so immense architecture searches are
required, which sometimes leads to invalid collections of models with different depths.
The authors in Wang et al. [39] proposed a method for accurate scleral segmentation by
advancing a U-Net model called ScleraSegNet. They performed a comparison of various
attention modules and obtained a high-performance by using channel-based attention.

To overcome the weaknesses of previous approaches, a robust, effective, and well-
designed iris segmentation method is desirable in the research community. In this research,
we propose a novel iris segmentation method based on an interleaved residual U-Net
(IRUNet). The main contributions of this paper are (1) a novel architecture utilizing
interleaved residual U-net for highly accurate iris mask estimation; (2) a novel method
called Scan-and-Cluster Strategy, which is able to locate the inner and outer boundary
given an iris mask. The detail of the proposed method is illustrated in Section 3.

3. Proposed Method

The proposed method consists of three steps: Iris mask estimation, outer boundary
estimation, and inner boundary estimation. For the iris segmentation step, we designed an
IRUNet model to do semantic segmentation and generate masks. Then, the outer boundary
was found by using K-means clustering for the saliency points and the inner boundary was
found by saliency points selection from the outer boundary.

3.1. Iris Mask Estimation

The final goal of iris segmentation is to estimate the location of the inner and the
outer boundaries. In this work, we assume that the inner and the outer boundary can be
approximated using the circular parameter. However, it can be easily adapted to ellipse
by fitting the recovered saliency points with the elliptical equation. There are many ways
to achieve such a goal. One of the best practices is to estimate the iris region and derive
an accurate iris mask. An iris mask is a binary image of the same size of the input image,
with pixel value zero indicating all locations, which does not belong to iris textures. In
this work, we designed an IRUNet based on U-Net [37] to achieve this goal. Compared to
the original U-Net, the self-designed IRUNet consists of two parts: Encoder and decoder.
In the encoder part, it performs downsampling operations and extracts useful features
from images. The decoder part consists of multiple upsampling operations and transpose
convolution layers. The IRUNet model changes the structures of conventional CNNs,
which only consist of an encoder layer. The network architecture is shown in Figure 2.

As shown in Figure 2, the left part of IRUNet is the encoder part and the right part
of IRUNet is the decoder part. First, the convolutional layer 1 × 1 is used to convolve the
input images which has 64 kernels with a 3 × 3 size and stride 1. The network has three IR
blocks followed by pooling layers and an Atrous Spatial Pyramid Pooling (ASPP) inspired
by Deeplabv3 [40] to extract multi-scale features yet keeping the resolution unchanged. The
interleaved residual block is adopted in this architecture to prevent the gradient vanishing
and overfitting effectively due to the limitation of deep CNNs. This block consists of three
convolutional layers, each followed by batch normalization (BN) layers and rectified linear
unit (ReLU) activation layers. The connection is applied to connect the first convolutional
layers to the later convolutional layers in order to integrate the small feature value with
the larger feature value. The detail illustration of interleaved residual block is shown
in Figure 3.
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Figure 2. The architecture of self-designed IRUNet. The abbreviation ‘IRB’, ‘Pool’, ‘Convt’, ‘Pro_L’, ‘Conv’, and Attention
stands for interleaved residual block layers, pooling layers, transpose convolutional layers, process layers, convolutional
layers, and attention module, respectively.

Figure 3. Interleaved residual block with 3 convolutional layers.

The attention module implemented a dilated convolution with dilation rate equal to 6,
12, and 18 for every convolution layer. The details of ASPP attention module is illustrated in
Figure 4. Transpose convolutional layers adopted on the decoder part perform upsampling
operations followed by process layers to fuse the output of transpose convolution with
pooling layers from the encoder part. The prediction layers obtained prediction masks
with the pixel values zero or one, where zero denotes the non-iris pixels and one denotes
the iris pixels. The padding is zero for all convolutional kernels.

3.2. Scan-and-Cluster Strategy for Saliency Points Estimation for Outer Boundary

After we obtain the iris mask from the IRUNet model, we need to estimate saliency
points on the outer boundary of the iris. There are many points that can be extracted from
the edge map of the estimated iris mask. However, not all of the points are usable for fitting
the elliptical of the boundary. For example, in the non-cooperative environment, the user
may wear eye glasses when the iris image is captured. The specular reflection caused by
the glass lens may occupy partial iris region. Therefore, parts of the edge that appears on
the estimated iris mask may come from the specular reflection (or upper and lower eyelid),
instead of authentic iris boundary. That is why it is important to select saliency points from
the edge map and ignore the non-saliency points. In this work, we apply a strategy called
“Scan-and-Cluster” to discover the saliency points of the iris outer boundary. First, we
search for the iris region in order to determine the scanning points area. Because the upper
and lower eyelid might occlude the upper and lower part of the iris, the scanning area is
defined to only include the range from 0.25× to 0.75× height of the region of interest (ROI)
for the iris region. Second, we search from all the points within the range located at the
right and left side of iris mask. Third, we form pairs of points by grouping two points, one
from the left side and the other from the right side. The distance between the paired points
are used to provide robust estimations of the diameter for the circle of the outer boundary.
Therefore, the principle for pair selection is to select the paired points that have the longest
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distance with each other. The procedure of “scan” starts at making the first line segment
connecting the uppermost point of the left edge with the lowermost point of the right edge.
Then, the second line segment is made by connecting the second uppermost point of the
left edge with the second lowermost point of the right edge. This procedure continues in
such fashion until all possible pairs of points between the left and right edge are grouped
with lines. Assuming

→
u (u1, u2) and

→
v (v1, v2) denote coordinates of the two points on the

left edge and right edge of a line segment, the Euclidean distance d
(→

u ,
→
v
)

between them
can be computed using Equation (1):

d
(→

u ,
→
v
)
=

√
(u1 − v1)

2 + (u2 − v2)
2 (1)

Figure 4. Illustration of Atrous Spatial Pyramid Pooling (ASPP) attention module.

This procedure is applied to all line segments. Figure 5a shows an example of the
candidate points on the left and right side of an exemplar iris mask. Figure 5b shows all
the line segments connecting the possible pairs in the procedure of scan. After we compute
the distance for all possible pairs, we perform K-means clustering [41] with the distance
values. Figure 5c shows the histogram distribution of the distance value computed from
Figure 5b. It can be observed that there indeed exist two distributions. The group of line
segments corresponding to the higher and lower values are drawn with red color and blue
color, respectively, in Figure 5d. In Figure 5d, we can see that the end points of the red
line segments are points located on the iris boundary, but for the end points of blue line
segments, some of them are located on the edge of specular reflection. Therefore, the end
point of the red line segments are the saliency points that we look for. Figure 5e shows the
recovered saliency point with blue color. More examples before and after the algorithm
“Scan-and-Cluster” are shown in Figure 6. The detailed procedure for “Scan-and-Cluster”
is described in Algorithm 1. After the saliency points are found, to recover the parameter
of the outer boundary circle, we solve the optimization problem defined in Equation (2):

(x, y, r) = argminx,y,r

N

∑
i=1

(xi − x)2 + (yi − y)2 − r2, (2)
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where (xi, yi) denotes the coordinates of the ith recovered saliency point, and N denotes
the number of all recovered saliency points.

Figure 5. The illustration of the algorithm “Scan-and-Cluster” to find the saliency points of outer
boundary. (a) Red dots denote all boundary points on the left and right side of region of interest
(ROI) (within the range between 0.25× and 0.75× height of iris mask region); (b) paired iris points
used to compute the distance; (c) histogram distribution of the length of lines; (d) the paired points
of two cluster (red lines denote cluster one and blue lines denote cluster two); (e) blue dots denote all
recovered saliency points after applying Scan-and-Cluster.

Algorithm 1. The algorithm of Scan-and-Cluster for saliency points estimation of iris outer boundary.

(1) Define the scanning area from 0.25× to 0.75× height of the ROI of estimated iris mask.
(2) Search all the points within the range for the right and left side of ROI.
(3) Repeatedly do following step for all points:

(a) Compute all possible paired distance of two points using Equation (1).
(b) Find the maximum value of distance.
(c) Form a set Ω consisting of all distance values computed from (b).

(4) Apply K-means algorithm with the value of k = 2 on set Ω. Suppose the subset Θ denotes the cluster that has higher value.
(5) Saliency points are recovered as all the end points corresponding to all lines that belonged to Θ.
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Figure 6. Examples of saliency points estimation result before and after applying “Scan-and-Cluster”.
(a) Red dots denote all candidate points before Scan-and-Cluster; (b) blue dots denote recovered
saliency points after Scan-and-Cluster.

3.3. Saliency Points Estimation for Inner Boundary

The procedure for selecting the saliency points for inner boundary was initialized by
finding the left-most, right-most, top-most, and bottom-most endpoints of ROI. It is likely
that eyelids might obscure the iris image around the upper and lower region of the pupil
area, hence we ignore the top-most and bottom-most endpoint and replace them with other
candidates. To search for good saliency candidates, we insert a new scan line in the middle
between the upper-most endpoint and horizontal line that passes through the left-most
endpoints. The recovered saliency point is the point where the scan line intersects with the
iris mask. This procedure is implemented to both the left and right parts of the iris mask to
discover two saliency points, one for each side. The same procedure is repeated for the
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bottom-most endpoint. In the end, we recover six saliency points and ignore the top-most
and bottom-most points. A pictorial example of this algorithm is shown in Figure 7.

Figure 7. A pictorial example to show how to recover six saliency points for estimating inner
boundary. (a) The iris image whose upper part is occluded by the eyelid; (b) the iris mask ROI
(derived from the proposed IRUNet) and the left-most, right-most, top-most, and bottom-most
endpoints of ROI; (c) the two saliency points on the upper part of ROI is derived by finding the
intersection between the ROI and the scan line, which has equal distance to the top-most and left-most
endpoint; (d) the six saliency points recovered by the proposed method.

After that, all the points will be connected to other corresponding points so that several
line segments, which go across the pupil can be formed. We perform a diagonal connection
between two saliency points in order to make sure that the line passes through the pupil
region, rather than goes horizontally. From those lines, we can get the saliency points for
inner boundary by looking for the intersection between the diagonal lines and the pupil
mask. To locate the circle of inner boundary accurately, we did the same thing as outer
boundary estimation by recovering the pupillary circle parameter using Equation (2). The
whole procedure is shown in Figure 8.
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Figure 8. A pictorial example to show how to recover the inner boundary from the six saliency
points derived from Figure 7. (a) The iris image whose upper part is occluded by eyelid; (b) the iris
mask ROI and the six saliency points recovered by the proposed method; (c) a diagonal connection
to connect each saliency points so that the line segments pass over the pupil region; (d) estimated
pupillary boundary (shown in red color) recovered from the intersection of the line and inner part
of the mask; (e) the pupillary boundary estimated by proposed method perfectly fits the pupil on
iris ROI.

4. Experimental Results and Discussion
4.1. Database and Protocol

The database used in this experiment is CASIA-Iris-Thousands database [42]. It was
established by the Institute of Automation, Chinese Academy of Science. It contains a
total of 20,000 images from 1000 different subjects. The image resolution of this database is
640 × 480 pixels and each subject has the same number of the left eye and right eye images.
All images in this database were captured with a close-up iris camera under near-infrared
illumination (NIR). For training the model, we randomly split the data into training,
validation, and testing with the ratio 80:10:10, respectively. The ground-truth masks of
the CASIA-Iris-Thousands and UBIRIS.V2 are manually labeled using Labelme [43]. The
proposed method was implemented in Matlab 2019b and for the iris mask estimation work,
we follow the same training protocol as in Chen et al. [6]. The output of the IRUNet model
has an image size 300 × 400. To equate the original images, we resized the iris mask to
640 × 480. Since the iris mask was not generated perfectly without any noises, we first
converted the iris mask into binary images and did the morphological operation for the
preprocessing step to eliminate the noises. We performed our experiments on a machine
with Intel(R) Xeon(R) CPU E5–2620 and an NVIDIA 1080ti GPU with 11GB memory.

4.2. Performance Evaluation

To assess the performance of iris segmentation, we employ a common evaluation
metric called intersection over union (IoU) [44,45]. The values of IoU are restricted to [0,1]
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interval, and 1 represents the perfect results (100% accuracy), while 0 is the worst results.
The successful segmentation is defined when the value of IoU is higher than a predefined
threshold. On the other hand, if the value of IoU is smaller than it, then the segmentation
results are defined as inaccurate. In the experiment, we set the threshold to 0.8 to make
the condition stricter. We compared the experimental results with some related works,
which use the same database, including the conventional and CNN based methods to
reflect the effectiveness of our algorithm, as shown in Table 1. In particular, Li et al. [4]
proposed a new approach for doing iris segmentation by applying Faster RCNN to do the
object detection and generates a bounding box followed by a Gaussian Mixture Model
(GMM) to fit the potential inner region and then recovered five key points to locate the
inner boundary. We also compared our results to the original U-Net [37] to measure the
performance of proposed IR architecture.

Table 1. Comparison of segmentation accuracy with other works (intersection over union (IOU) threshold is defined as 0.8).

Methods Outer Boundary Inner Boundary Execution Time Per Image

Circular Hough transform [46] 90.80% 93.70% 0.024

MIGREP [8] 43.3% 69.50% 0.011

Faster-RCNN [4] 67.84% 43.25% 0.05

U-Net [37] 7.6 % 0 % 0.007

Proposed method 98.9% 97.7% 0.007

A combination of enhanced MIGREP [8] and boundary point selection algorithm
are also adopted to locate the outer boundary. MIGREP [8] proposed a new method to
select boundary points for accurate localization on smart glasses device. This method
designs a path that emitting rays radially outward from the inner center to locate the outer
boundary. The starting points of emitting ray should be greater than the inner center and
the endpoints should pass over the sclera region. Along with the emitting rays, the authors
record the pixel intensity that has the maximal variation. Finally, the location corresponds
to the edge of the outer boundary. A conventional method, the well-known circular Hough
transform [46], is also used to compare with the performance of our algorithm. This method
votes the circle candidates given the radius and then selects the local maxima value in the
accumulator matrix. Circular Hough transform is often used to detect any curve shape in
some imperfect images.

The experimental results of the outer boundary, inner boundary estimation, and both
boundary estimation plotted on original images are shown in Figures 9–11, respectively. In
order to evaluate the performance of the proposed method, we compared the experimental
results in estimating the outer and inner boundary on very challenging images with other
works as shown in Figure 12. Our proposed method outperforms the conventional and
CNN based method by successfully recovering the accurate inner and outer boundary. The
distribution of the mean IoU of the proposed method compared with other works is shown
in Figure 13. However, during the experiments, due to the existence of images captured in
non-cooperative environment, our proposed method cannot recover the inner and outer
boundary accurately. The failed case can be caused by either the imperfect predicted mask
from the output of the network, or because of the existence of very strong occlusion. It is
very hard to locate enough number of saliency points in such cases, which might cause the
segmentation to fail.
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Figure 9. Example results of outer boundary estimation.

Figure 10. Example results of inner boundary estimation.

Figure 11. Example results of outer and inner boundary estimation.
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Figure 12. Outer and inner boundary estimation comparison of the proposed method with other works on challenging
image. (a) Proposed method; (b) Li et al. [4]; (c) Li and Huang [8]; (d) Duda and Hart [46], respectively.

Figure 13. IoU cumulative distribution of proposed method on CASIA-Iris-Thousands database compare with other works.
(a) Outer boundary distribution; (b) inner boundary distribution

The example cases on challenging images caused by the incorrect iris masks are shown
in Figure 14. Meanwhile, the failure cases due to the very strong occlusion are shown in
Figure 15. The failure cases to recover the inner and outer boundary compare with other
works are shown in Figures 16 and 17, respectively. Nonetheless, Figure 18 shows the
effectiveness of our proposed method to recover the boundary in various shapes of iris.
The four columns of Figure 19 present an input iris image, the corresponding ground-truth
mask, the corresponding prediction mask, and the plotted prediction mask on the input
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image. The red circle marks the non-iris area, which is labeled as iris pixels in the ground-
truth mask, yet in the prediction masks, it is labeled as non-iris pixels. Thus, the example
demonstrates the robustness of our proposed method since the generated mask fits closer
to the true iris texture than the ground-truth mask.

Figure 14. Failure cases because of the imperfect predicted masks. (a) Input images; (b) ground-truth masks; (c) predicted
masks; (d) recover inner and outer boundary. The dashed lines denote the ground-truth and the solid lines denote the
prediction. Row 1 and 2 show the result for inner boundaries and row 3 and 4 show the result for outer boundaries.
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Figure 15. Failure cases because of the strong occlusion. (a) Input images; (b) ground-truth masks; (c) predicted masks; (d)
estimated inner and outer boundary. The dashed lines denote the ground-truth and the solid lines denote the prediction.
Blue dots denote the recovered saliency points of the iris, and green dots denote the recovered saliency points of the pupil.
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Figure 16. Failure cases on challenging images compare with other works to recover the inner boundary. (a) Proposed
method; (b) Li et al. [4]; (c) Li and Huang [8]; (d) Ronneberger et al. [37]; (e) Duda and Hart [46]. The dashed line denotes
the ground-truth and the blue line denotes the prediction of the inner boundary.
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Figure 17. Failure cases on challenging images compare with other works to recover the outer boundary. (a) Proposed
method; (b) Li et al. [4]; (c) Li and Huang [8]; (d) Ronneberger et al. [37]; (e) Duda and Hart [46]. The dashed line denotes
the ground-truth, the red line denotes the prediction of the outer boundary.

Figure 18. Visualization of predicted results on different iris shape.
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Figure 19. A pictorial example to show the robustness of the proposed method on the challenging images. (a) The input
image; (b) the ground-truth masks; (c) the predicted masks; (d) the segmentation result plotted on the input images.

5. Conclusions

Iris segmentation plays a crucial role in the whole process of iris recognition and
directly affects the performance of the system. In this paper, we introduced a new algorithm
to locate the outer and inner boundary of iris images accurately. By adopting the IRUNet
model, we successfully generated an iris mask, which helps to estimate the boundary points
more easily and more accurately. The experimental results suggested that the proposed iris
segmentation algorithm outperforms other algorithms with the mean IoU value of outer
boundary and inner boundary 98.9% and 97.7%, respectively. As for future work, we plan
to explore the strategies to make the model more lightweight while keeping accuracy and
efficiency as high as possible.
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