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A time course experiment is a widely used design in the study of cellular processes such as differentiation or response to

stimuli. In this paper, we propose time course regulatory analysis (TimeReg) as a method for the analysis of gene regulatory

networks based on paired gene expression and chromatin accessibility data from a time course. TimeReg can be used to

prioritize regulatory elements, to extract core regulatory modules at each time point, to identify key regulators driving

changes of the cellular state, and to causally connect the modules across different time points. We applied the method

to analyze paired chromatin accessibility and gene expression data from a retinoic acid (RA)–induced mouse embryonic

stem cells (mESCs) differentiation experiment. The analysis identified 57,048 novel regulatory elements regulating cerebel-

lar development, synapse assembly, and hindbrain morphogenesis, which substantially extended our knowledge of cis-reg-
ulatory elements during differentiation. Using single-cell RNA-seq data, we showed that the core regulatory modules can

reflect the properties of different subpopulations of cells. Finally, the driver regulators are shown to be important in clar-

ifying the relations between modules across adjacent time points. As a second example, our method on Ascl1-induced direct

reprogramming from fibroblast to neuron time course data identified Id1/2 as driver regulators of early stage of

reprogramming.

[Supplemental material is available for this article.]

In time course expression analysis, gene expression is measured at
multiple time points during a natural biological process such as
spontaneous differentiation of progenitor cells, or during an in-
duced biological process such as cellular response to a stimulus
or treatment (Storey et al. 2005). In the last two decades, many
methods were developed to infer gene regulatory networks
(GRNs) from time course gene expression data, for example, infor-
mation theory–basedmethods (Margolin et al. 2006; Hempel et al.
2011; Kinney and Atwal 2014), Bayesian network–based methods
(Perrin et al. 2003; Zou and Conzen 2005), ordinary differential
equation–based methods (Bansal et al. 2006; Wang et al. 2006),
and permutation-based methods (Hempel et al. 2011). Such anal-
ysis is popular because the expression data, which is inexpensive to
measure, can provide a rich description of the changes in the cel-
lular states during the time course. Conversely, because the regula-
tion of gene expression involves the interaction of transcription
factors with DNA on regions with open chromatin structure, the
measurement of gene expression alone is not sufficient for the
study of the regulation (Duren et al. 2017; Miraldi et al. 2019).
Much deeper understanding can be revealed by time course regu-
latory analysis, in which both gene expression and chromatin ac-
cessibility are measured at each time point in a time course
experiment. With the advent of cost-effective technologies (i.e.,
Assay for Transposase-Accessible Chromatin using sequencing
[ATAC-seq]) for measuring chromatin accessibility (Buenrostro
et al. 2013), paired expression and accessibility data are now be-

coming available in many time course experiments, such as FOS-
induced neuronal activities (Su et al. 2017), epidermal develop-
ment (Li et al. 2019), myeloid cell differentiation (Ramirez et al.
2017), early cardiomyocyte differentiation (Liu et al. 2017), iPSC
reprogramming (Wapinski et al. 2017; Cao et al. 2018), and in-
duced neuron reprogramming (Wapinski et al. 2017; Cao et al.
2018). Here, we present a methodology for the analysis of data
from studies with such experimental designs.

Figure 1 presents an outline of our methodology (for detail,
see Methods). First, we infer context-specific GRN from matched
ATAC-seq and RNA-seq data at each time point to output reliable
regulatory relations. Using the inferred GRN, we define two types
of scores for regulatory relations. The regulatory strength of a tran-
scription factor (TF) on a target gene (TG) is quantified by the trans-
regulation score (TRS), which is calculated by integrating informa-
tion frommultiple regulatory elements (REs) thatmaymediate the
activity of the TF to regulate the TG.Here, a prior TF-TG correlation
across external public data (Supplemental Table S1) is included in
the TRS definition to distinguish the TFs sharing the same binding
motif (i.e., TFs from the same family). The regulatory strength of an
RE on a target gene is quantified by the cis-regulation score (CRS),
which is calculated by integrating the TRS of TFs with binding po-
tential on the RE. Based on these scores, we use non-negative ma-
trix factorization to extract the core regulatory modules that
characterize different biological processes and/or subpopulations
of cells. Finally, we identify driver TFs (i.e., TFs driving expression
changes between adjacent time points) as TFs with large difference
TRS scores on up-regulated genes versus other genes. This allows us
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to causally connect ancestor–descendant regulatory modules
along with time points (Methods). Our methodology for time
course regulatory analysis is implemented in the software Time
Course Regulatory Analysis (TimeReg), which is freely available
(https://github.com/SUwonglab/TimeReg).

In this paper, we will validate the utility of TRS and CRS by
comparison with TF-TG relations and RE-TG relations defined by
data from independent gene knockdown, ChIP-seq, and HiChIP
experiments. After validating these key concepts, we will apply
our method to study a time course of retinoic acid (RA)–induced
differentiation of mouse embryonic stem cells (mESCs), in which
gene expression and chromatin accessibility are measured at base-
line (day 0) and at days 2, 4, 10, and 20 after RA treatment.Wewill
extract core regulatorymodules on each time point, map themod-
ules across time points to trace their development trajectory, and
validate the core regulatory modules by single-cell RNA-seq data.
As a second illustration, we will apply our method on Ascl1-
induced direct reprogramming from fibroblast to neuron time
course data to detect heterogeneity, explore the regulatory dynam-
ics, and identify driver regulators in the reprogramming process.
By applying our method on different biological problems, we
will illustrate that ourmethodology is capable of providing reliable
regulatory relations in time course experiments and dissecting the
dynamics at network level.

Results

Chromatin accessibility and expression dynamics of retinoic

acid–induced mESC differentiation

Mouse ESCwas induced to differentiate by treatment with retinoic
acid (RA). We harvested cells at days 0, 2, 4, 10, and 20 (mESC, D2,
D4, D10, and D20), and performed ATAC sequencing (ATAC-seq)
and RNA sequencing (RNA-seq) to measure the paired chromatin

accessibility and gene expression time course data (Fig. 2A). Regu-
latory elements (REs) at each time point are identified and quanti-
fied by its openness score in the sameway as in Duren et al. (2017).
In total, 174,059 REs are obtained across all time points. From gene
expression data, we selected 7975 genes that have at least twofold
expression change and the maximum expression level is >10.
These sets of RE and gene are used for all subsequent analyses.
From the results of principal component analysis (PCA) and Pear-
son’s correlation coefficient (PCC) on ATAC-seq data of twofold
dynamic REs (Fig. 2B,C), our genome-wide gene expression and
chromatin accessibility profiling show high-quality reproducibili-
ty among biological replicates. We also find a sharp change in the
chromatin accessibility landscape during the time course, whereas
the changes in gene expression are moremoderate (Fig. 2D,E). The
change in accessibility between day 0 and day 2 is particularly
large. This suggests that the immediate responses to RA treatment
are large changes in chromatin accessibility, which then induces
subsequent gene expression changes in the time course.

We performed Gene Ontology (GO) term enrichment analy-
sis on the 200 most specifically expressed genes (Methods) at each
time point. Because the differentiation is induced by RA, as a pos-
itive control we check whether the GO term “response to retinoic
acid” is enriched in day 2. Indeed, this term is highly enriched in
day 2 (P=3.67×10−10, fold change= 6.51). This gives us confi-
dence that the enrichment analysis on specifically expressed genes
is capable of detecting biologically relevant signals. Figure 2F pre-
sents themost significantly enrichedGO terms at each time point.
It suggests that RA-induced differentiation intomultiple cell types,
with neuronal cells arising early in the time course and glial line-
ages emerging later. The enrichment of “digestion” on day 20 sug-
gests that the differentiation also gave rise to other cell types
beyond neurons and glia (Fig. 2F).

Context-specific inference of gene regulatory relations by the

PECA2 method

We developed PECA2 as a method to infer gene regulatory rela-
tions (TF-TG relations and RE-TG relations) in a cellular context
based on gene expression and chromatin accessibility data in
that context (Methods). First, the trans-regulation score (TRS) for
a given TF-TG pair is defined by integrating information frommul-
tiple REs thatmaymediate the activity of the TF to regulate the TG
(Fig. 1B; Methods). Before applying it to analyze our time course
data, we first validate the usefulness of TRS using gene perturba-
tion experiments. On mESCs, we performed shRNA knockdown
(separately) of transcription factors Pou5f1, Sox2, Nanog, Esrrb,
and Stat3 and measured gene expression changes following the
knockdown. Regarding the most differentially expressed genes
(FDR<0.01), see Guan et al. (2019) following the knockdown as
true target genes of the TF, we calculated the area under the ROC
curve (AUC) of target prediction based on ranking by TRS. As a
comparison, we collected ChIP-seq data for these TFs on mESC
and used the potential target gene score from BETA (Wang et al.
2013) to predict the target genes. Figure 3A shows that TRS-based
prediction has substantially higher AUCs than predictions based
on ChIP-seq data. We also compared our methods with different
baseline methods (different combination of features from expres-
sion and accessibility data) (Methods) on TF-TG prediction. TRS-
based predictions get much higher accuracy then these baseline
methods (Supplemental Fig. S1). These results validated the useful-
ness of TRS in predicting TF-TG relations.
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Figure 1. Schematic overview of Time Course Regulatory Analysis
(TimeReg) based on paired gene expression and chromatin accessibility
data. (A) TimeReg proposes a three-step framework to infer a high-quality
gene regulatory network. Step 1: PECA2 infers context-specific GRN from
matched ATAC-seq and RNA-seq data at a single time point to output TF-
TG and RE-TG regulatory matrix. Step 2: NMF decomposes the regulatory
matrix and extracts the core regulatorymodules at each time point. Step 3:
Driver regulators are identified (Methods). (B) Overview of PECA2method.
(C) Schematic overview of the major results on two data sets.
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After we have the trans-regulation score, we define the cis-reg-
ulation score (CRS) for each RE-TG pairs by integrating the TRS of
TFs with binding potential on the RE (Fig. 1B; Methods).
To validate the usefulness of CRS, we downloaded the publicly
available H3K27ac HiChIP data on mESC (Mumbach et al. 2017)
and also performed H3K27ac HiChIP experiments on RA D4
(Zeng et al. 2019). The RE-TG pairs from CRS-based prediction
(Methods) have 17.72 and 15.30 HiChIP reads on average on
mESC and RA D4, respectively. As a control, we selected random
RE-TGpairs (under the constraint that they have the same distance
distribution as our predictedRE-TGpairs) fromall candidate RE-TG
pairs. The RE-TG pairs from control groups have 5.17 and 4.23 read
counts in HiChIP data on average onmESC and RA D4, respective-
ly (Fig. 3C,D). HiChIP counts are much higher in CRS-predicted
RE-TG pairs (one-tailed Wilcoxon rank-sum test, ESC: P-value =
1.4412×10−53, Fold =3.4250; RA D4: P-value =1.1025×10−56,
Fold =3.616). We also constructed two more control RE-TG sets
and compared the read counts with our predicted RE-TG pairs.
Those controls are selected from RE-TG pairs have the same TG ex-
pression distribution and have the same distribution of number of
ends covered by H3K27ac ChIP-seq peaks, respectively. Our pre-
dicted RE-TG pairs have much higher read counts than both the

control groups have (Supplemental Fig.
S2). Finally, when we examined the se-
quences of the RE in the RE-TG pairs,
the CRS-predicted REs have significantly
higher sequence conservation than
those from the control group (one-tailed
Wilcoxon rank-sum test, P-value=
1.3801×10−33 Fold change=1.4425)
(Fig. 3B). These results validated the use-
fulness of CRS in predicting RE-TG rela-
tions. Taken together, PECA2 provides
high-quality, genome-wide, and con-
text-specific inference of gene regulatory
relations for each single time point with
paired gene expression and chromatin
accessibility data. PECA2 is available at
https://github.com/SUwonglab/PECA.

Identification and annotation of novel

regulatory elements by CRS

To identify important REs, we analyzed
REs and their target genes. First, we
annotated the REs into three groups:
(1) promoters, (2) known enhancers
(from the mouse ENCODE Project, in-
cluding developmental stage enhancers),
and (3) novel enhancers (Supplemental
Table S2). We found that 7% of REs are
promoters, 60% are known enhancers,
and the remaining 33% are novel en-
hancers (Fig. 4A). About 69%of the genes
are regulated by both known and novel
enhancers. To understand the functions
of the known and novel enhancers, we
divided the genes into two groups (tar-
gets of known enhancers, and targets of
novel enhancers) depending on whether
the associated RE with the maximum
CRS score is a known enhancer or a novel

enhancer. On average over different time points, known enhanc-
ers have 4604.80 target genes and novel enhancers have 3370.20
target genes (Fig. 4B). We found the novel enhancers with maxi-
mum CRS scores are highly conserved with a mean conservation
score of 0.2034. The conservation score of those enhancers is
about twofold higher than random regions, which is higher than
the mean conservation of known enhancers (conservation score
= 0.1753) and comparable to open promoter regions (conservation
score = 0.2368) (Fig. 4C). On each time point, we chose the top 500
specifically expressed genes (based on gene specificity score)
(Methods) of known enhancers and novel enhancers, respectively.
Figure 4D shows the GO enrichment score (defined as the geomet-
ric mean of fold change and−log10[P-value]) of known versus nov-
el enhancers’ targets on RA D10. GO terms such as cerebellar
granular layer development, synapse assembly, regulation of
AMPA receptor activity, and hindbrain morphogenesis are only
enriched in novel enhancers’ targets, but not enriched in known
enhancers’ targets. These results suggest that enhancer annotation
from the ENCODE Project on those GO terms associated genes is
still incomplete. The reason is that the mouse ENCODE Project
contains brain tissue but does not contain specific neuron cellular
context. By combining experimental and computational analysis,
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Figure 2. Genome-wide profiling of gene expression and chromatin accessibility during RA induction
reveals landscape for RA-driven lineage transition. (A) Schematic outline of study design. (B,C) PCA and
heat map of the Pearson’s correlation matrix on ATAC-seq data. (D,E) PCA and heatmap of the Pearson’s
correlation matrix on RNA-seq data. (F) Enriched GO terms in the top 200 specific genes at each time
point. The horizontal axis is −log10(P-value) and the number behind the bar represents fold enrichment.
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we identified new enhancers whose inclusionwill greatly enhance
the interpretation of data from the time course.

Core regulatory modules of TFs and TGs reveal subpopulation

characteristics

To better understand the regulatory network inferred by PECA2,
we divided the TF-TG networks, which is represented by a TRSma-
trix (rows represent TF and columns represent TG), into several
modules (dense subnetworks) by non-negative matrix factoriza-
tion (NMF) (Brunet et al. 2004; Wang et al. 2008) based module
detectionmethod (Methods; Fig. 5A).We used RA D4 data to illus-
trate and validate this approach.

NMF analysis of the TRS matrix at D4 yielded three modules,
in which the TRS scores between TFs and TGs within the same
module are much higher than those between different modules.
It means we have divided the TF-TG networks into three groups
of nodes with dense connections internally and sparser connec-
tions between groups. Figure 5B shows this pattern for selected
TFs and TGs. We found genes from different modules have differ-
ent expression patterns on mouse tissue development data
(Gorkin et al. 2017) as well as the RA induction data (Fig. 5C,D).
Module 1 contains TFs such as Ascl1, Ebf1, Nr2f1, and Lhx1.
They were previously reported to be relevant to neuronal develop-
ment. Using data from Gorkin et al. (2017), we also found that
Module 1 associated TGs have a high and increasing expression
pattern in embryonic brain development (Fig. 5C, top). Module
2 contains mesodermal and endodermal related regulators such

as Sox17, Gata4, Gata6, Foxa2, and
Hnf4a. Consistently, target genes in
Module 2 are highly expressed in the liv-
er, lung, heart, kidney, intestine, and
stomach, but lowly expressed in the
brain (Fig. 5C, middle). Module 3 associ-
ated TFs such as Pou2f1, Hmga1 (Nishino
et al. 2008), Sox2 (Graham et al. 2003),
and Pax6 (Sansom et al. 2009) are known
to be involved in the maintenance
of neural stem and progenitor cells.
Consistently, we found that the expres-
sion of Module 3 associated TGs has de-
creasing patterns during embryonic
development in all tissues (Fig. 5C, bot-
tom). These pieces of evidence show
that the biological function of module-
specific regulators is well-matched to
the cellular context suggested by the ex-
pression pattern of the corresponding
target genes.

Because the cell population after 4 d
of differentiation is expected to be a mix-
ture of subpopulations of cells represent-
ing different developmental lineages, it
is likely that the modules identified
above may reveal the regulatory charac-
teristics of these subpopulations. We
used single-cell RNA-seq data to test this
hypothesis. In a previous study (Duren
et al. 2018), we performed scRNA-seq ex-
periments on day 4 of the RA-induced
time course and found that there are
three distinct subpopulations of cells

(Duren et al. 2018).We selected the top 500module-specific genes
(Methods) in each module and assigned each gene to one of the
three subpopulations (the one with the maximum expression).
We found that 76.20% of Module 1–specific genes are matched
to the subpopulation 1, 75.00% of Module 2–specific genes are
matched to the subpopulation 2, and 79.40%ofModule 3–specific
genes are matched to the subpopulation 3 (Fig. 5E). This result
shows that the modules are well-matched to the subpopulations
and therefore can help us to elucidate the regulatory relations
within the subpopulations. In other words, our analysis of bulk ex-
pression and accessibility data provided useful information on
subpopulation-specific gene regulatory networks.

Finally, we applied the same analysis for each time point and
found that there are three modules in D2, three modules in D4,
four modules in D10, and four modules in D20 (Fig. 5A;
Supplemental Figs. S3–S5).

Associations of regulatory modules across time points

With these functionally meaningful regulatory modules indicat-
ing subpopulation at each time point, we next investigated the re-
lationships among them across time points. Figure 6A shows the
similarities between modules in adjacent time points. It is seen
that the three modules in D2 are well-matched to the three mod-
ules in D4 (Jaccard similarities are 0.77, 0.82, and 0.85), the four
modules in day 10 are well-matched to the four modules in D20
(Jaccard similarities are 0.69, 0.74, 0.88, and 0.66). This suggests
that the analysis of a set of matched modules across time points
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Figure 3. PECA2 infers accurate gene regulation supported by ChIP-seq, shRNA knockdown, and
HiChIP experiments. (A) Comparison of PECA2 TRS with ChIP-seq experiment on five important regula-
tors in mESC by taking the knockdown data as ground truth. Shapes represent different transcription fac-
tors and colors represent different methods. Red represents results from PECA2 and black represents
results fromChIP-seq experiment. (B) Conservation score distribution comparison between REs predicted
to regulate at least one gene and randomly selected REs. (C,D) Validation of PECA2 predicted RE-TG pairs
by the HiChIP experiment on mESC and RA D4. Background RE-TG pairs are randomly selected to have
the same distance distribution as the predicted RE-TG pairs. “Fold” represents fold change of average
read count of predicted RE-TG pairs versus background RE-TG pairs.
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may reveal useful biological insight. There are fourmodules inD10
but only three in D4.Modules 2 and 3 inD4 are similar toModules
2 and 3 inD10 (Jaccard similarities are 0.74 and 0.88, respectively).
However, it is not obvious howModules 1 and 4 in D10 are related
to the D4 modules.

To explore the function of the modules, we extracted the
top 100 most specifically expressed genes from each module
(Methods) in each of the time points and performed GO enrich-
ment analysis (Fig. 6B). Epithelium development and cardiovascu-
lar system development are enriched in Module 2 of earlier time
points. In D20 of Module 2, digestion is enriched, but the enrich-
ment levels of epitheliumdevelopment and the cardiovascular sys-
tem development are decreased. Those enriched GO terms suggest
Module 2 involves endoderm andmesoderm development, which
is consistent with the function of subpopulation 2 from the
scRNA-seq data (Duren et al. 2018). Stem cell population mainte-
nance is enriched in Module 3 and has a downward trend along
with time, which is consistent with the expression pattern of
Module 3–specific genes in RA induction and tissue development
data (Fig. 5C,D), indicating that the stem cell population is becom-
ing smaller.Module 3 also enriches neural tube closure, which sug-
gests Module 3 contains neural stem cells.

To see the difference betweenModule 1 andModule 4 inD10,
we checked the expression pattern of those genes onmouse devel-
opmental stage data and RA time course data (Fig. 6C,D). In the
developmental stage, genes from Module 1 are always highly ex-
pressed in forebrain, but genes from Module 4 have an upward
trend. These results suggest that both Module 1 and Module 4
are brain-related cell populations, but Module 1 is much earlier

thanModule 4 in development. In RA in-
duction time course data, we also see a
similar pattern (Fig. 6D). From the results
of GO enrichment analysis, we find they
are enriched in different functions.
Module 4 in D10 and D20 are enriched
in glial cell differentiation which is not
enriched in any of the modules in previ-
ous time points. Module 1 in all the time
points are enriched in axon guidance
(Supplemental Fig. S6). GO enrichment
analysis showModule 1 is neuron related
and Module 4 is glial related.

Next, we checked the specific trans-
regulators of these two modules (Fig.
6F).We find genes fromModule 1 are reg-
ulated by Ebf1, Ascl1, Nr2f1, and Lhx1,
whereas genes fromModule 4 are regulat-
ed by Olig1, Sox10, and Sox8. From the
similarity of regulators and enriched
GO terms on target genes, Module 1 in
D10 is very similar to Module 1 in D4.
Therefore, Module 1 would correspond
to neuron subpopulation. The GO en-
richment analysis and module-specific
regulators indicate that the newly gener-
ated module in D10 (Module 4) is the gli-
al population. If it were true, the glial
marker genes should be highly expressed
in D10 but low expressed in D4. We ex-
amined the expression pattern of the as-
trocyte marker gene Gfap, which is
specific to Module 4. Indeed, Gfap is

very highly expressed in D10 but almost not expressed in D4
(Fig. 6E). From these results, we conclude that Module 4 corre-
sponds to the glial population and has emerged between D4 and
D10. To clarify the origin of Module 4 further, we need to identify
the regulators that drive the expression and accessibility changes.
We will return to this question subsequently.

Driver regulators shed light on cell lineage transition

Under RA treatment, mESCs differentiated (or transitioned) into
three different subpopulations after 2 d. To explore the regulatory
mechanism behind the transition, we identified driver regulators
in each module. Driver regulators are defined as TFs that (1) are
up-regulated during the transition from day 0 to day 2 by at least
1.5-fold, and (2) with TRS score on up-regulated genes being signif-
icantly higher than that on non-up-regulated genes (one-tailed
rank-sum test, FDR<0.05). Figure 7A gives the driver regulators
of the threemodules in RA day 2. InModule 2, driver regulators in-
clude Gata4, Gata6, Rxra, Sox17, Foxa2, and Hnf4a. Sox17, Foxa2,
and Hnf4a are involved in endoderm development. Gata4 and
Gata6 are known to be involved in mesoderm development. We
find Rxra, an important cofactor of retinoic acid receptors, is in-
volved in endoderm and mesoderm development. The expression
level of retinoic acid receptor cofactor Rxra is not very high on day
2 (FPKM 14.47, ranked 3897 in 7975 dynamic expressed genes,
top 48.87%), but it is identified as a driver regulator. We find
that the expression of Rxra is correlated with up-regulated genes
(on ENCODE data, rank-sum test, P=6.44×10−104) (Fig. 7B).
Furthermore, we find the motif of RXRA is enriched in REs
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Figure 4. Identification and annotation of novel enhancers. (A) Pie charts of the promoter, known en-
hancers, and novel enhancers in REs. (B) Bar plot of numbers of known enhancers and novel enhancers at
different time points. (C) Conservation score distribution of different sets of REs. (D) Comparison of GO
enrichment on known enhancers’ targets and novel enhancers’ targets on D10. Top 500 specifically ex-
pressed genes in each group are chosen to perform GO analysis. The x-axis represents enrichment score
on known enhancers’ targets, and the y-axis represents that on novel enhancers’ targets. Each dot rep-
resents one GO term. The enrichment score is defined as the geometric mean of fold change and −log10
P-value.
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associatedwith up-regulated genes (rank-sum test, P=1.98×10−26)
(Fig. 7C). Previous literature indicated that knocking out of Rxra
leads to an abnormal phenotype in the cardiovascular system
(Sucov et al. 1994; Chen et al. 1998; Mascrez et al. 2009). Even
though the expression level is not very high, Rxra is likely to be
an important driver of the transition from stem cell state to meso-
derm and endoderm state. In Module 1, the driver regulators are
neuron-related factors like Ascl1, Nr2f1, Pou3f2-4, Hox family,
Meis family, Pbx family, Rarb, and other factors. InModule 3, driver
regulators are Pax6, Dbx1, Gli1, Gli3, and other factors. Pax6 is
known to be important in neural stem cell development. We
also find that developing brain homeobox factor Dbx1 is one of
the important drivers.

To determine the origin (ancestor) of the new population in
D10, we checked the expression of driver regulators of D10_
Module4 (Sox8, Nfix, Olig1, Nfib, Hoxc8, Nkx2-2, Foxo6, Cpeb1,
Lbx1, Hoxa6, Pou6f1, and Rfx4) in D4. We find 11 of 12 driver reg-
ulators have not been expressed (greater than the median expres-
sion level of all genes, noted as ≥50%) (Fig. 7D) in D4 yet.
However, 118 of 174 (67.82%) REs of those driver TFs are already
open in D4 (Fig. 7D). So although driver TFs are not expressed

yet, it is still possible to determine the an-
cestor of Module 4 by comparing the TRS
score of module-specific TFs targeting on
those driver TFs. Figure 7E shows the dis-
tribution of normalized TRS score (Z-
score) of the top 50 module-specific TFs
of each module targeting on the
Module 4 driver TFs. The results show
that TFs fromModule 3 inD4have signif-
icantly higher TRS scores than those
fromModule 1 andModule 2 (one-tailed
rank-sum test, P-values are 0.0014 and
1.97×10−6, respectively), which indi-
cates that the newmodule in D10 is like-
ly to have arisen fromModule 3 inD4. To
test this hypothesis, we compared the ex-
pression of these driver TFs in scRNA-seq
from D4. It is seen that the driver regula-
tors are more highly expressed in subpo-
pulation 3 than subpopulations 1 and 2
(Fig. 7F), which is consistent with our hy-
pothesis, because Module 3 has been
matched to subpopulation 3 in our previ-
ous analysis (Fig. 5E). As further valida-
tion, we compared the expression of
neural stem cell markers (Sox2 and Nes)
in the three subpopulations in D4
(Supplemental Fig. S7B,C). In most of
the subpopulation 3 cells, Sox2 and Nes
are expressed, which indicates that sub-
population 3 is enriched for neural stem
cells from which the glial cells in D10
emerged.

Based on driver regulators, it is pos-
sible to construct the developmental
path of the subpopulations. We define a
transition score between the modules in
adjacent time points to construct the an-
cestor–descendant map for the subpopu-
lations in the time course (Methods). The
ancestor–descendantmapping results are

topologically similar to the mapping based on module similarities
(Fig. 6A) except for the TFs driving the transition Module 4 in D10
(Fig. 8). After RA induction, three subpopulations—neuron, meso-
derm and endoderm, and neural stem cell—are generated between
mESC to D2. Glia subpopulation is generated from neural stem
cells between D4 and D10.

TimeReg identifies novel driver regulators of direct

reprogramming from fibroblasts to neurons

In addition to mESC differentiation, we applied TimeReg to study
the regulatory network for direct lineage reprogramming, which
can convert mouse embryonic fibroblasts (MEFs) to induced neu-
ronal (iN) cells, and its underlying mechanism to overcome epige-
netic barriers is fundamental for differentiation and development.
A previous study (Wapinski et al. 2013) found that Ascl1 is
sufficient to induce neuron from fibroblast and generated time
course gene expression data for MEF to iN reprogramming.
Follow-up study generated time course chromatin accessibility
data (Wapinski et al. 2017), observed rapid chromatin changes in
response to Ascl1 at day 5, and identified Zbtb18, Sox8, and Dlx3
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Figure 5. Core regulatory modules extracted from gene regulatory networks are supported by subpo-
pulation from single-cell RNA-seq data. (A) Heatmap of reordered normalized TRS scores at D2 to D20.
The black line represents the detected modules fromNMF. (B) Heatmap of D4 normalized TRS on select-
ed specific genes and TFs. (C) Mean expression pattern of genes from three different modules of RA D4
on the developmental stage of seven tissues. (D) Mean expression pattern of genes from three different
modules of RAD4 on RA time course. (E) Distribution of RA D4 top 500module-specific genes’maximum
expressed subpopulations from single-cell RNA-seq data.
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as key TFs downstream fromAscl1 formajor transition at day 5.We
collected gene expression data and chromatin accessibility data of
Ascl1-induced reprogramming from these two previous studies.
Two levels of time course data can be paired on day 0, day 2, and
day 5. This allows us to run TimeReg integrative analysis on this
iN reprogramming data. We asked how the cell triggers the fol-
low-up signals, remodeling the chromatin structure in a genome-
wide way, and turns on and off lineage-specific gene expression
within 48 h at early stage.

Core regulatory modules are consistent with single-cell data

We find two well-separated modules in the day 2 network (Fig.
9A). Module 1 contains TFs like Ascl1, Id2, Sox4, Sox8, Sox11,
Dlx3, and Zbtb18, and contains TG like Cplx2, Dner, Nkain1, and
Eda2r. Module 2 contains TFs like Klf4, Tead3, AP1 complex fac-
tors, Egr1, Prrx1, and contains TG like Myof, Emp1, Actn1, and
Bst2. In reprogramming time course data, Module 1–specific genes
have an increasing pattern, butModule 2–specific genes have a de-
creasing pattern (Supplemental Fig. S8A). Furthermore in public

ENCODE data, Module 1–specific genes
have a high and increasing expression
pattern in embryonic brain development
and low and decreasing patterns on
heart, kidney, liver, and lung tissue de-
velopment, whereas Module 2–specific
genes have the opposite trend (Supple-
mental Fig. S8B). GO enrichment analy-
sis shows that Module 1–specific genes
are enriched in neuron-related functions,
and Module 2–specific genes are en-
riched in muscle and epithelial related
functions, which are consistent with
the expression pattern in developmental
stages (Supplemental Fig. S8C). Collec-
tively, TimeReg reveals two functional
modules, which are consistent with our
expectation that the neuron subpopula-
tion is induced to become larger, and
other populations are repressed to be-
come smaller. This finding is supported
by the single-cell RNA-seq data (Treutlein
et al. 2016) of this Ascl1 reprogramming,
which shows two well-separated subpop-
ulations (Fig. 9B).We find that 90.40%of
Module 1–specific genes are matched to
the subpopulation 1 (Fig. 9C), and
88.80% of Module 2–specific genes are
matched to the subpopulation 2
(mapped to the subpopulation with the
maximum expression). In single-cell
RNA-seq data, the neuron-specific gene
Ascl1 is specifically expressed in subpo-
pulation 1 and the muscle-specific gene
Myof is specifically expressed in subpopu-
lation 2 (Fig. 9D,E). These results show
that the modules identified by TimeReg
indeed capture subpopulation character-
istics and therefore can help us to eluci-
date the regulatory relations within the
subpopulations.

Neuron-related module-specific genes are enriched in Ascl1 ChIP-seq targets

As the reprogramming is induced by pioneer factor Ascl1, Module
1–specific regulators and target genes should contain Ascl1 target
genes. To validate the module-specific regulators and module-spe-
cific genes, we compared them with the Ascl1 target genes from
ChIP-seq data at day 2. The results show both Module 1–specific
TFs and Module 1–specific target genes are significantly over-
lapped with the Ascl1 target genes (Fisher’s exact test, P-values
3.22×10−7 and 9.35×10−62, odd ratios 4.90 and5.02, respectively)
(Fig. 9F,G).

Discovery of novel driver regulators

The TimeReg analysis identified eight driver regulators for the neu-
ron-relatedModule 1 at day 2 (Fig. 9H).Ascl1 ranked the first in the
list, whichmeans our method successfully detected this super-reg-
ulator. Among the other seven driver regulators, six of seven regu-
lators containAscl1ChIP-seq peaks in their regulatory region.Dlx3
and Sox8 ranked second and third, respectively. This is consistent
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Figure 6. Core regulatory modules decompose the mixture populations consistently across time
points. (A) Jaccard similarity of modules between neighboring time points. Line width represents the
Jaccard similarity, and the similarity value is labeled on the line if it is >0.1. (B) GO analysis on modules
at each time points. Top 100 specifically expressed genes of eachmodule at each time point are selected
for GO enrichment analysis. The x-axis represents time points, and the y-axis represents fold enrichment.
The size of circles represents the enrichment P-value. (C) Mean expression pattern of genes from
D10_Module1 and D10_Module4 on developmental stage of seven tissues. (D) Mean expression pattern
of genes from D10_Module1 and D10_Module4 on RA time course. (E) Expression pattern of the glial
marker gene Gfap on RA time course. (F ) Heatmap of D10 normalized TRS on selected specific genes
and TFs.
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with the fact that they were also previously reported to be impor-
tant regulators of reprogramming at day 5 (Wapinski et al. 2017).
Except for these known regulators, our method detected some
novel driver regulators. The forth-ranking regulator is Id2, which
is not reported in the two separate studies from gene expression
level and chromatin accessibility level, respectively. Id1, one im-
portant paralog of Id2, is also identified as a driver regulator.
Previous research shows that dimerization of ID1/2 with bHLH
family factor MYOD would prevent MYOD from binding to DNA
and inhibits muscle differentiation (Sun et al. 1991; Jen et al.

1992). Therefore, activation of Id1/2 by Ascl1 will inhibit muscle
differentiation and drive the cell into the neural state. Id1 and
Id2 would be important driver regulators of the reprogramming
process. Another interesting driver regulator is Tcf12, which is
known to be involved in the initiation of neuronal differentiation
(Rebhan et al. 1997). Our computational model TimeReg
successfully identified these driver regulators by integrating gene
expression and chromatin accessibility data, which may play an
important role in reprogramming within 48 h and gain new in-
sights for early regulation.
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Figure 7. Identification of driver regulators reveals ancestor–descendant fates for regulatory modules. (A) Driver regulators of D2_Module1,
D2_Module2, and D2_Module3. The x-axis is log2 fold change; the y-axis is −log10(P-value). (B) Distribution comparison of Rxra’s PCC with up-regulated
genes and randomly selected genes. (C) Distribution comparison of RXRA’s motif enrichment on REs of up-regulated genes and randomly selected genes.
(D) Distribution of D10_Module4 driver TF expression (blue bar) and their RE openness (red bar) onD4. Expression or openness greater than themedian are
labeled as “Expressed,” less than decile are labeled as “Not exp,” and the remaining are labeled as “Lowexp.” (E) Distribution of Z-score of TRS between top
50 module-specific TFs and driver TFs of D10_Module4. (F ) Expression distribution of the Module4’s driver regulators on D4 scRNA-seq data. Columns
represent subpopulations identified from scRNA-seq data.
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Discussion

In this paper, we proposed a time course regulatory analysis tool
TimeReg from paired gene expression and chromatin accessibility
data. To reduce dimensionality, TimeReg integrates expression and
chromatin accessibility levels, aggregates the REs and TFs to quan-
titatively infer TF-TG and RE-TG regulatory strength, and narrows
down to regulatory module level by highlighting the important
role of driver TFs. The GRN is validated by experimental

data, and the core regulatory modules
characterize different subpopulations of
cells. Based on the driver regulators’
sequential expression and binding on
chromatin accessible regions, we causally
connect the modules (subpopulations)
in adjacent time points and reveal the
developmental trajectory for RA induced
differentiation.

Inferring ancestor–descendant fates
from developmental time courses is a
challenging problem, especially in the
presence of large gaps (≥48 h) between
time points (Schiebinger et al. 2019). In
this study, we found a newly generated
population at D10 that was absent in
the previous time point D4. It is chal-
lenging to infer ancestor–descendant in

this 6-d gap development stage even if one has single-cell data
on each time point. From scRNA-seq data on D4, we see ∼72% of
the D10Module 4–specific genes are highly expressed in subpopu-
lation 1 (only 15% are highly expressed in subpopulation 3)
(Supplemental Fig. S7A), but driver regulators are more highly ex-
pressed in subpopulation 3 (Fig. 7F). There are two reasons why
Module 4 specific genes are more highly expressed in subpopula-
tion 1 than subpopulation 3: (1) Many expressed genes are shared
in neuron and glial, and (2) glial-specific genes have not been

Figure 8. TimeReg suggests the developmental trajectory of the subpopulations for RA-driven lineage
transition. Schematic overview of the subpopulations at each stage. The gray line represents the similarity
of neighboring regulatory modules. The orange line represents the ancestor–descendant mapping
among regulatory modules. TFs on the orange lines represent the important driver regulators causally
connecting the modules.
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Figure 9. TimeReg analysis on direct reprogramming from fibroblast to neuron. (A) Heatmap of reordered normalized TRS scores at day 2. The black line
represents the detected modules from NMF. (B) t-SNE plot of single-cell RNA-seq data. Color represents clustering label. (C ) Distribution of day 2 top 500
module-specific genes’maximum-expressed subpopulations from single-cell RNA-seq data. (D,E) Expression of module-specific genes on t-SNE plot. (F,G)
Module 1–specific genes are enriched in ASCL1 ChIP-seq target genes. (H) List of driver regulators of Module 1 in day 2.
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expressed inD4 yet. Because of these reasons, the expression-based
analysis will not be able tomap the ancestor ofModule 4 correctly.
By exploiting paired expression and accessibility data in the time
course, our method is capable of inferring such mappings reliably.

We note that because knockdown of a TF may result in sec-
ondary changes in addition to those caused by the knocked
down TF, TF ChIP-seq data would not be expected to predict all
the transcriptional changes. Conversely, ATAC-seq data before
and after the knockdown could reveal changes related to the
knocked down TF as well as secondary effects caused by changes
in other TFs. Therefore, time course experiments to collect paired
RNA-seq and ATAC-seq data before and after knockdown of key
TFs will be a powerful approach to gene regulatory analysis.

Finally, we discuss the limitation of ourmethod. The incorpo-
ration of prior knowledge from external data into our model has
allowed us to greatly reduce the complexity of the model.
The caveat is that the cellular context used in the prior calculation
is currently incomplete and thismay causemodeling bias. The val-
idation results reported above show that in spite of this, our meth-
od is already useful for many types of inferences and predictions.
We expect that the bias associated with the use of external data
will be further minimized as these data become more complete
in the future. One possible extension of this paper is to identify
the union of all modules across multiple time points simultane-
ously, which would describe the module dynamics more clearly.

Methods

Gene regulatory network inference from a single time point

by PECA2

Our previousmethod PECA takes paired expression and chromatin
accessibility data across diverse cellular contexts as input, models
how trans- and cis-regulatory elements work together to affect
gene expression in a context-specific manner, and outputs the
transcriptional regulatory network with TF-RE-TG as the building
block (Duren et al. 2017). PECA2 aims to infer the regulatory net-
work in a newcellular context different from those used in training
the model by selecting active REs, specifically expressed TFs, and
expressed TGs in this context. Unlike PECA,which requires diverse
cellular context data as input, PECA2 only requires one paired data
(i.e., one sample) as input and infers the gene regulatory network.
PECA2 first improves the TF-TG accuracy by taking the combinato-
rial regulation among cis-regulatory elements into account and ag-
gregating the REs used by the same TF to regulate a given TG. An
upstream TF regulating a TG should satisfy three conditions: (1)
The TF should be expressed, (2)motifs of the TF should be enriched
in the REs of this TG, and (3) the TF should be coexpressed with
this TG across diverse cellular contexts. By combining this infor-
mation, we define the trans-regulation score (TRS) between given
ith TF and jth TG as follows:

TRSij =
∑

k

BikR̃EkIkj

( )
× 2|Rij | ×

����������
TFAiT̃Gj

√
,

where Bik is motif binding strength of ith TF on kth RE, which is
defined as the sum of binding strength (motif position weight ma-
trix-based log-odds probabilities; seeHOMER software for detail) of
all of the binding sites on this RE; and R̃Ek represents the normal-
ized accessibility [REk×REk/median(REk)] of kth RE. The first term
REk represents the actual accessibility of the RE, and the second
term represents relative accessibility compared to the median ac-
cessibility level of this RE on external data. If one RE is accessible
in the given cellular context, and the accessibility is also much

higher than the accessibility level on other contexts, then this
RE is specifically accessible in the given cellular context; Ikj repre-
sents the interaction strength between the kth RE and jth TG,
which is learned from the PECA model on diverse cellular con-
texts. T̃Gj represents the normalized expression level of the jth
TG [TGj×TGj/median(TGj)]. TFAi represents the activity of the
ith TF (geometric mean of normalized expression and motif en-
richment score on open region); Rij is the expression correlation
of the ith TF and jth TG across diverse cellular contexts. Higher reg-
ulation score TRSij implies the jth TG is more likely to be regulated
by the ith TF. In deciding which TRSij are statistically significant,
we randomly select some {TFi−TGj} pairs and take these pairs as
negative controls. We choose the threshold of the regulation score
by controlling the false discovery rate (FDR) at 0.001.

PECA2 then improves the RE-TG accuracy by taking the TF
combinatorial regulation into account and aggregating the TFs us-
ing a given RE.We define cis-regulation score (CRS) for RE-TG pairs
based on the binding TFs’ TRS as

CRSkj =
∑

i

BikTRSij

( )
× Ikj × REk.

We approximate the distribution of non-zero log2(1+CRS) by
a normal distribution, and predict RE-TG associations by selecting
the pairs that have P-value <0.05.

Regulatory module detection by matrix factorization

To detect key TF-TG subnetworks (core modules) from the TRS, we
use non-negativematrix factorization (NMF). Beforematrix factor-
ization, we perform the following transformations for TRS matrix:
(1) log2 transformation T̃RS = log2 (1+ TRS); (2) normalize across
rows and columns, normalized TRS = Z(T̃RS)+ Z(T̃RST )T , where
function Z(x) represents Z transformation for each row of matrix
x; and (3) set the negative values to zero. We assign the TFs and
TGs into the clusters based on the maximum factor loading. To
determine the number of modules, we run NMF 50 times and cal-
culate consistency based on the cophenetic correlation coefficient
(Brunet et al. 2004).We choose K from the range of 2–7 and choose
the K which gives the most consistent results.

Module-specific genes

Given one gene and its correspondingmodule, we define amodule
specificity score for this gene by comparing the normalized TRS of
in-module TFs andout-module TFs (one-tailed rank-sum test). If an
in-module TF’s normalized TRS score is significantly higher than
that of the out-module TF’s, then this gene is specific to this mod-
ule. Module specificity score is defined as the product of −log10(P-
value) and the mean TRS score with the TFs in the same module.
We take the 500 genes that have the highest module specificity
score asmodule-specific genes. Similarly, we definemodule-specif-
ic TFs by comparing the normalized TRS of in-module genes and
out-module genes.

Ancestor–descendant mapping via driver TF

Tomap themodules in adjacent timepoints, we define a transition
score TSijt for the ith module from the tth time point, and the jth
module from the (t+1)th time point by mean normalized TRS
score of source TF set Si,t to target TF set Tj,t+1 as

TSijt =
∑

h[Si,t

∑
l[Tj,t+1

NTRSthl
|Si,t | × |Tj,t+1| ,

where normalized TRS NTRSthl is the Z-score of the TRS score, is de-
fined as TRS minus mean TRS score of hth TF and divided by the
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standard deviation of hth TF. Source TF set Si,t is the top 50module-
specific TFs from the ith module of tth time point. Target TF set
Tj,t+1 is defined as the top 20 driver TFs from the jth module of
the (t+1)th time point. If the number of driver TFs is <20, we
add some TFs from top-ranking module-specific TFs to get a target
TF set Tj,t+1 containing 20 TFs. The ancestor–descendant relation
should have a higher transition score. So we map the jth module
from the (t+1)th time point to the module at the tth time point,
which has a maximum transition score.

Baseline methods for TRS score

We have five baseline methods for TRS: Pearson’s correlation coef-
ficient (PCC), summation of TF binding strength in nearby open
regions (BO), summation of TF binding strength in interacting re-
gions (BI), summation of TF binding strength in interacting open
regions (BOI), and combination of PCC with BOI. PCC-based TRS
is defined as PCC between TF expression and TG expression from
diverse cellular contexts. Baseline TRS are defined as follows:

BO-basedTRSij =
∑

k

BikR̃Eke−dkj/d0 ,

BI-basedTRSij =
∑

k

BikIkj,

BOI -basedTRSij =
∑

k

BikR̃EkIkj,

BOI+ PCC-basedTRSij =
∑

k

BikR̃EkIkj

( )
× 2|Rij |,

where dkj represents the distance between the kth RE and the jth
TG; d0 is a constant; and we choose 40 kb as a default value. We
only consider the REs within 200 kb distance from the TGs.

Identification and quantification of REs

We define regulatory elements (REs) by the union of open peaks
from ATAC-seq (called by MACS2) data on each time point. In
thewhole induction process, we get 174,059 REs in total. To quan-
tify the accessibility of the peaks, we calculate the openness score
for each sample in each region. Given a certain region of length L,
we treat this region as foreground and denote by X the count of
reads in the region. To remove the sequencing depth effect, we
choose a background region with a length L0 and denote by Y
the count of reads in this backgroundwindow. The openness score
is defined as the fold change of read counts per base pair as

O = X/L
(Y + d)/L0

,

where δ is a pseudocount (the default value of δ is 5 in our
implementation).

Gene specificity and GO analysis

To select specific genes in each time point, we define gene specif-
icity score based on expression in the current condition and itsme-
dian expression level on publicly available diverse context data
and RA time course data. Gene specificity of the ith gene on the
tth time point is defined as follows:

Gene specificityi,t =
FPKMi,t�����������������������������������������������������

median (FPKMi, public)×median (FPKMi, RA)
√ ,

where the median(FPKMi, public) represents the median expression
level of the ith gene in public data, median(FPKMi, RA) represents
the median expression level of the ith gene in RA time course
data, FPKMi,t represents the expression level of the ith gene on

the tth time point.We select the top specific 200 genes andGO en-
richment analysis based on PANTHER Version 14.1 (Thomas et al.
2003).

Reprogramming data analysis

To do TimeReg analysis on reprogramming data, we setK as [1, 2, 2]
on the three time points, respectively. ASCL1 ChIP-seq target
genes are genes that have ASCL1 ChIP-seq peak on promoters or
enhancers. Driver TFs are ranked by −log10(P-value) × fold, where
fold is the mean TRS score of up-regulated genes divided by
mean TRS score of non-up-regulated genes.

Experimental design of retinoic acid–induced mESC

differentiation

Mouse ES cell lines R1 were obtained from the American Type
Culture Collection (ATCC Cat. no. SCRC-1036). The mESCs were
first expanded on an MEF feeder layer previously irradiated.
Then, subculturing was carried out on 0.1% bovine gelatin-coated
tissue culture plates. Cells were propagated in mESCmedium con-
sisting of Knockout DMEM supplemented with 15% knockout
serum replacement, 100 µM nonessential amino acids, 0.5 mM
beta-mercaptoethanol, 2 mM GlutaMAX, and 100 units/mL
Penicillin-Streptomycin with the addition of 1000 units/mL of
LIF (ESGRO, Millipore).

mESCs were differentiated using the hanging drop method
(Wang and Yang 2008). Trypsinized cells were suspended in a dif-
ferentiation medium (mESC medium without LIF) to a concentra-
tion of 50,000 cells/mL. Then, 20 µL drops (∼1000 cells) were
placed on the lid of a bacterial plate, and the lid was upside
down. After 48 h incubation, embryoid bodies (EBs) formed at
the bottom of the drops were collected and placed in the well of
a six-well ultralow attachment plate with fresh differentiation me-
dium containing 0.5 µM retinoic acid for up to 20 d, with the me-
dium being changed daily.

We followed the ATAC-seq protocol published by Buenrostro
et al. (2013) with the following modifications. The EBs were first
treated with 0.25% Trypsin+ EDTA for 10–15 min at 37°C with pi-
petting. The pellet was then resuspended in the transposase reac-
tion mix (25 µL 2× TD buffer, 2.5 µL transposase, and 22.5 µL
nuclease-free water) and incubated for 30 min at 37°C. After puri-
fication, DNA fragments were amplified using 1:30 dilution of 25
µMNextera Universal PCR primer and Index primer under the fol-
lowing conditions: for 5min at 72°C, for 30 sec at 98°C, and a total
10 cycles of 10 sec at 98°C, 30 sec at 63°C, and 1 min at 72°C. The
library of mESC, D2, D4, and D20 was sequenced on NextSeq with
50-bp paired-end reads; the library of D10was sequenced onHiSeq
with 100-bp paired-end reads.

Total RNA was extracted using the Qiagen RNeasy mini kit.
Libraries were constructed using the NEBNext Ultra RNA Library
Prep Kit for Illumina (New England Biolabs) with the following
modifications. mRNA was first isolated from 1 µg of total RNA us-
ing the NEBNext Poly(A) mRNAMagnetic IsolationModule. Then
it was fragmented for 12min at 94°C before the first strand and the
second strand cDNA synthesis. The double-stranded cDNA was
then end repaired and ligated with NEBNext adaptor, followed
by AMPure XP beads purification (Beckman Coulter). Each library
was amplified using NEBNext Universal PCR primer and Index
primer (for detail see NEBNext multiplex oligo for Illumina
[E7335, New England Biolabs]) under the following conditions:
for 30 sec at 98°C, then a total of six cycles of 10 sec 98°C, 30 sec
at 65°C, and 30 sec at 72°C, with a final extension for 5 min at
72°C. Additional PCR (four to six cycles) were necessary to obtain
enough DNA for sequencing. Finally, an equal amount of DNA
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from each library was pooled together, and a 400-bp fragment was
selected by 2% E-Gel SizeSelect Gels (Thermo Fisher Scientific) and
purified with AMPure XP beads. The library was sequenced on
Illumina HiSeq with 100-bp paired-end reads.

Experimental design of shRNA knockdown in mESC

For plasmids and shRNA, the pSuper.puro vector containing the
human H1 RNA promoter for ectopic expression of small hairpin
RNA (shRNA) was obtained from Oligoengine. The shRNA con-
structs for each target were designed using the Clontech RNAi
Target Sequence Selector program.DNAoligonucleotideswere first
synthesized by Elim Biopharmaceutical, Inc. To anneal oligos,
DNA was incubated in the following conditions (for 30 sec at 95°
C; for 2 min at 72°C; for 2 min at 37°C; and for 2 min at 25°C).
Then, the annealed oligo inserts were ligated with pSuper.puro
vector linearized with BglII and either HindIII or XhoI restriction
enzymes. Following transformation, the positive clones were se-
lected by digesting with EcoRI and XhoI restriction enzymes and
run in 1% agarose gel. In addition, the presence of the correct in-
sert within pSuper.puro vector was confirmed by sequencing be-
fore transfection in mammalian cells (sequencing primer: 5′-
AAGATGGCTGTGAGGGACAG). The list of shRNA constructs
used in this study is shown in Supplemental Figure S9A. The prim-
ers used to measure target gene knockdown efficiency in qRT-PCR
are shown in Supplemental Figure S9B.

RNA interference (RNAi) experiments were performed with
Nucleofector technology. Briefly, 12 µg of plasmid DNAwas trans-
fected into 3.5 ×106 mouse ES cells using the Mouse ES cell
Nucleofector kit (Lonza). After nucleofection, the cells were incu-
bated in 500 µL warm ES medium for 15 min. Then, the cells
were split into four gelatin-coated 60-mm tissue culture plates con-
taining 5 mL of warm ES medium. Puromycin selection was intro-
duced 18 h later at 1 µg/mL, and the medium was changed daily.
Then at 30 h, 48 h, and 72 h after puromycin selection, the cells
were collected for RNA isolation.

To minimize genomic DNA contamination, RNAwas extract-
ed with RNeasy mini kit (Qiagen), and on-column DNA digestion
was performed using RNase-free DNase kit (Qiagen). Microarray
hybridizations were performed on theMouseRef-8 v2.0 expression
beadchip arrays (Illumina). To prepare the sample, 200 ng of total
RNA was reverse transcribed, followed by a T7 RNA polymerase-
based linear amplification using the Illumina TotalPrep RNA
Amplification kit (Applied Biosystems). After amplification, 750
ng of biotin-labeled cRNA was hybridized to gene-specific probes
attached to the beads, and the expression levels of transcripts
were measured simultaneously.

Software availability

Software and processed data of RA time course are available at
GitHub (https://github.com/SUwonglab/TimeReg, https://github
.com/SUwonglab/PECA), and as Supplemental Code.
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