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The interaction between PD1 and its ligand PDL1 has been shown to render tumor cells resistant to apoptosis and
promote tumor progression. An innovative mechanism to inhibit the PD1/PDL1 interaction is PDL1 dimerization
induced by small-molecule PDL1 binders. Structure-based virtual screening is a promising approach to discov-
ering such small-molecule PD1/PDL1 inhibitors. Here we investigate which type of generic scoring functions is
most suitable to tackle this problem. We consider CNN-Score, an ensemble of convolutional neural networks, as
the representative of machine-learning scoring functions. We also evaluate Smina, a commonly used classical
scoring function, and IFP, a top structural fingerprint similarity scoring function. These three types of scoring
functions were evaluated on two test sets sharing the same set of small-molecule PD1/PDL1 inhibitors, but using
different types of inactives: either true inactives (molecules with no in vitro PD1/PDL1 inhibition activity) or
assumed inactives (property-matched decoy molecules generated from each active). On both test sets, CNN-Score
performed much better than Smina, which in turn strongly outperformed IFP. The fact that the latter was the case,
despite precluding any possibility of exploiting decoy bias, demonstrates the predictive value of CNN-Score for
PDL1. These results suggest that re-scoring Smina-docked molecules with CNN-Score is a promising structure-
based virtual screening method to discover new small-molecule inhibitors of this therapeutic target.
The protein-protein interaction of Programmed Cell Death-1/
Programmed Cell Death-Ligand 1 (PD1/PDL1) leads to tumor resistance
to apoptosis and promotes tumor progression. It has become one of the
most promising targets for cancer immunotherapy, as inhibiting this
interaction helps prevent its pro-tumor activity. The U.S. Food and Drug
Administration has approved seven PD1/PDL1-targeting monoclonal
antibody therapies, four binding to PD1 and the others to PDL1 receptors,
providing effective PD1/PDL1 blockades (Upadhaya et al., 2022). There is
currently a strong interest in finding small-molecule PD1/PDL1 modula-
tors to overcome the disadvantages of therapeutic antibodies, e.g.
immune-related side effects, the lack of oral bioavailability and high
treatment prices (Konieczny et al., 2020). An innovative mechanism to
disrupt PD1/PDL1 is via PDL1 dimerization (Shi et al., 2019), relying on a
small molecule that binds to PDL1, inducing the formation of a PDL1 dimer
and therefore impeding its interaction with PD1. There is thus a need for in
silico models that can facilitate the search for potent PDL1 dimerizers.
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We hypothesize that generic machine-learning (ML) scoring functions
(SFs) would be an effective manner to carry out structure-based (SB)
virtual screening (VS) for PDL1 dimerizers. This is based on numerous
studies reporting the superiority of these multi-target-trained MLSFs
(Shen et al., 2019; Li et al., 2020; Adeshina et al., 2020; Fresnais and
Ballester, 2020; Nguyen et al., 2019; Li et al., 2021; Durrant et al., 2015;
Meng and Xia, 2021; S �a nchez-Cruz et al., 2021), including those that
reported the discovery of potent actives for various other targets (Ade-
shina et al., 2020; Durrant et al., 2015; Ghislat et al., 2021). With this
purpose, we evaluated an MLSF based on convolutional neural network
(CNN) models called CNN-Score (Ragoza et al., 2017), which is an
ensemble of five CNN models (deep learning architecture with 7–20
hidden network layers) selected to balance pose prediction, VS perfor-
mance and runtime. Only two models (dense and default2017) were
trained using a large proportion of property-matched decoys (assumed
inactives) extracted from the DUD-E database (1,429,790 training
), Inserm, U1068, Marseille, F-13009, France.
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instances per model, including 22,645 docked active instances). By
contrast, the other three (general_default2018, crossdock_default2018,
redock_default2018) were entirely trained on experimental data from
PDBbind (11,324, 13,839, and 13,780 instances, respectively). It is
noteworthy that PD1/PDL1 is not one of the 102 targets of DUD-E and,
among all PDBbind-extracted training instances, only two correspond to
a dimer or a tetramer (PDB IDs: 5N2F, 5N2D) of PDL1 co-crystallized
with a small-molecule PD1/PDL1 inhibitor. In this study, the perfor-
mance of two non-MLSFs was also evaluated on the same data and
compared to that of CNN-Score. The first of these is Smina (Koes et al.,
2013), a classical SF employed by the docking program of the same name
that was used to dock all test molecules. The second is IFP (Tran-Nguyen
et al., 2021), measuring the similarity of ligand-target complexes by their
interaction fingerprints. IFP was recently reported as a superior SF in
retrospective SBVS experiments on other targets, outperforming GRIM
and two generic MLSFs (Tran-Nguyen et al., 2021).

The experimental design of this study is illustrated in Fig. 1. Small-
molecule PDL1 dimerizers (true actives) were first mined from known
patent data, while true inactives were retrieved from PubChem BioAssay
(step 1). Assumed inactives (property-matched decoys) were generated
by DeepCoy (Imrie et al., 2021) for each active (step 2), before all mol-
ecules were docked into the PDL1 template with Smina (step 3). The
resulting ligand-receptor complexes were scored using the three afore-
mentioned SFs (step 4), after which their performance was evaluated and
compared (step 5).

The use of PDL1 dimers to dock PD1/PDL1 inhibitors has been
observed in the literature, and was proven promising for SBVS in a
recently published pilot study (Kuang et al., 2020). In the same vein, we
chose the 6NM8 PDB structure as the PDL1 template for this study due to
the following reasons: (i) it is a PDL1 homodimer co-crystallized with a
known small-molecule PD1/PDL1 inhibitor (HET code: KSD), (ii) the
structure was resolved by X-ray diffraction crystallography and is of
acceptable resolution (2.79 Å), and (iii) the ligand KSD binds with PDL1
in a non-covalent manner on the same interface as that observed in
Fig. 1. Overview of the experimental design to eva
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PD1/PDL1 complexes (Fig. 2). The structure of the target was down-
loaded from the Protein Data Bank and prepared using the DockPrep tool
of Chimera (v.1.15) with its recommended parameters. Standard prep-
aration workflows for protein structures were performed: solvent mole-
cules and non-complexed ions were deleted, while hydrogen atoms and
charges were added at pH 7.4.

Two test sets were constructed to compare how well each SF would
rank the same set of docked actives embedded in a much larger pool of
docked inactives. The same 296 PDL1 dimerizers, retrieved from the
patent WO2015034820A1, act as true actives in both test sets (KSD does
not form part of the test sets). The first test set is called TrueInactives, as
its inactive components come from the in vitro PubChem assay ID 2316,
which only identified a single weak active, denoting PD1/PDL1 as a hard
target. The second test set is named DeepCoys, containing DeepCoy-
generated structurally-dissimilar molecules having similar physico-
chemical properties to the actives. A novel method based on graph-
generative neural networks, DeepCoy was shown to offer more chal-
lenging decoys in VS scenarios than property-matched decoys employed
in DUD-E and DEKOIS, while posing no additional risk of false negative
bias in the resulting data set, according to its original study (Imrie et al.,
2021). 14,650 decoys were generated for this test set, corresponding to
50 decoys per active (three actives out of 296 were not processed by
DeepCoy).

Each molecule was first prepared from its SMILES string using the
ChemAxon suite (v.21.18.0) as follows: removal of inorganics and mix-
tures, 3D structural conversion and cleaning, normalization of specific
chemotypes, and removal of duplicates. A 3D sdf structure was issued for
each ligand. The Open Babel software (v.2.3.1) was next used to prepare
3D mol2 files from the above sdf: protonation was done on an atom-by-
atom basis, while MMFF94 partial charges were assigned, such that
molecules with multiple ionizable centers would have all centers ionized.
The final output files were ready for the subsequent docking procedure.

The Smina software (v.2019-10-15) was used to carry out molecular
docking. The search space was centered on the co-crystallized ligand of
luate three generic SFs for SBVS against PDL1.



Fig. 2. (A) Homodimeric structure of PDL1 (PDB ID: 6NM8) showing that the co-crystallized ligand (HET code: KSD) binds to PDL1 (B) on the same interface as that
observed in PD1/PDL1 complexes (zoomed view from the top of the PD1/PDL1 region in the full structure).
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6NM8, and the size of each axis was set at 30 Å to give the ligands suf-
ficient space to rotate. Only one pose was output per docked molecule.
Note that there is so far no strict rule as to howmany docked poses should
be retained per ligand for re-scoring (single-pose scoring or multi-pose
scoring); and the difference, if there were any, in VS performance that
results from these two approaches depends largely on the target and the
screened data. All output poses were saved as mol2 files. The native
Smina generic SF also predicted the binding free energy for each ligand.

The IFP module from the IChem package (v.5.2.9) was used to
compute the Tanimoto score between the IFP of each docked pose and
that of the crystal ligand KSD (the higher the score, the better the
molecule). The 3D structures (mol2) of the receptor, the crystal ligand,
and each docked pose are required to calculate the corresponding IFPs,
on the basis of all receptor residues engaging in direct interactions with
the small molecules, taking into account the following features per
ligand: hydrophobic, aromatic, hydrogen-bond, and electrostatic.

The Smina scores, the IFP Tanimoto similarity scores, and the CNN-
Scores were used to rank all docked molecules, generating, in total, six
hit lists corresponding to our two test sets and three generic SFs.
Precision-recall (PR) areas under the curve (AUCs) were computed using
the scikit-learn toolkit (v.1.0.2). PR curves are useful for assessing VS
performance when the classes are highly imbalanced, as in this case.

Fig. 3 portrays the performance of Smina, IFP, and CNN-Score on the
same TrueInactives and DeepCoys test sets by means of PR curves. On the
TrueInactives set, CNN-Score (PR-AUC ¼ 0.33) performed much better
Fig. 3. SBVS performance of generic SFs portrayed by PR curves on two test sets. The
and DeepCoys test sets. Their PR curves are portrayed in black (Smina), in blue (IFP),
figure legend, the reader is referred to the Web version of this article.)
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than Smina (PR-AUC ¼ 0.12), which, in turn, strongly outperformed IFP
(PR-AUC ¼ 0.04). This trend was also observed when the same PDL1
actives were distinguished from the property-matched decoys in the
DeepCoys test set (PR-AUCs of CNN-Score, Smina, and IFP equal to 0.53,
0.08, and 0.04, respectively). Despite the poor discriminatory power of
the two non-MLSFs evaluated in this study (Smina, IFP), their perfor-
mance on both test sets was still at least twice better than it would be
expected from random guessing (PR-AUC¼ 0.01 for the TrueInactives set
and 0.02 for the DeepCoys set, which are given by P/(P þ N) (Saito and
Rehmsmeier, 2015), with P being the number of positives or actives, and
N being the number of negatives or inactives).

IFP was observed to perform poorly on both test sets. On some other
targets, IFP was reported to outperform two MLSFs namely Pafnucy and
ΔvinaRF20 (Tran-Nguyen et al., 2021). However, these MLSFs were
trained on data not including any true or assumed inactives (Tran-N-
guyen et al., 2021), which is known to be suboptimal for SBVS
(W�ojcikowski et al., 2017) and hence partly the reason why their SBVS
performance was inferior to that of IFP. Here we found that IFP per-
formed on PDL1 much worse than CNN-Score or even Smina. This
interaction-based SF ranks docked molecules according to how similar
they are to a reference, in terms of interaction mode with the receptor. It
may easily identify actives with similar scaffolds and receptor-binding
modes to those of the reference, but may fail to do so if otherwise, due
to the dissimilarity of interaction fingerprints. Fig. 4 illustrates this point:
the co-crystallized ligand of PDL1 and a true PDL1 dimerizer (1–71) are
three generic SFs Smina, IFP, CNN-Score were tested on the same TrueInactives
and in green (CNN-Score). (For interpretation of the references to colour in this



Fig. 4. The co-crystallized ligand of PDL1 (KSD in its crystallographic pose,
labeled, in cyan) and a true PDL1 dimerizer (1–71 in its top-ranked pose
generated by Smina, labeled, in light red) inside their receptor. While KSD forms
two hydrogen bonds with Phe19 and Asp122, the active 1–71 forms two
hydrogen bonds with Tyr56. Their receptor-interacting fingerprints are there-
fore dissimilar, and IFP failed to retrieve this true active among the top 1%-
ranked molecules on both test sets, while CNN-Score managed to do so. (For
interpretation of the references to colour in this figure legend, the reader is
referred to the Web version of this article.)
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shown inside their receptor. The orientation of the two molecules is
different, hence their interaction modes with the protein. As a result, the
Tanimoto similarity of their receptor-interacting fingerprints is relatively
low: IFP did not retrieve this true active among the top 1%-ranked
molecules on both test sets, while CNN-Score did. Other authors have
also observed that MLSFs outperformed IFP on many other targets (Shen
et al., 2021) (the difference is larger with target-specific MLSFs, which
were not considered in the original study (Tran-Nguyen et al., 2021)).
Another point concerns the choice of a reference ligand to run IFP
(Tran-Nguyen et al., 2021): the proportion of screened actives similar to
the reference may affect ligand-based and interaction-based VS (Ballester
et al., 2009), and this is only known in retrospective settings.

CNN-Score performance is influenced by the test decoys. As explained
before, this SF was partly trained on DUD-E decoys whose physico-
chemical properties were matched to those of training actives (W �o jci-
kowski et al., 2017). DeepCoys decoys are also property-matched to an
active in a similar way. Since the performance of an MLSF is over-
estimated when it is trained and tested with the same type of
property-matched decoys, it is likely that CNN-Score was somewhat
overestimated on the DeepCoys test set. However, there is no reason to
think that its performance only comes from exploiting decoy bias: mul-
tiple examples suggest that this is actually far from being the case (Bal-
lester, 2020). Here we found yet another example: CNN-Score
performance on TrueInactives, where no decoy bias is exploited, was still
much better than that of Smina and IFP. As the nature of the inactives
(true or decoy) is the only factor that varies between our two test sets,
decoy bias must be responsible for the difference in the PR-AUCs of
CNN-Score (0.53 versus 0.33). Nevertheless, the performance of this SF is
unlikely affected by docked pose quality: its discriminatory power did
not vary when only one best-ranked pose or multiple poses were retained
per ligand for scoring, according to its original paper (Ragoza et al.,
2017). Besides, the chemical structures of our test actives are diverse
(Supporting Information): there was hence no favoritism towards certain
scaffolds that might lead to the SF's good performance.
209
To conclude, the results of this study suggest that CNN-Score is a
promising SBVS method to discover PDL1 dimerizers after chemo-
libraries are docked to the 6NM8 structure of PDL1. It is remarkable that
only three out of five models constituting the CNN-Score architecture
were trained on data involving PDL1, and that such data only represent a
tiny proportion of those used to train each of these models (below
0.02%), therefore implying that its predictive accuracy on PD1/PDL1
mainly comes from exploiting data related to other targets. In the future,
we plan to investigate MLSFs trained on both experimental and
synthetically-generated PDL1 data, as such target-specific approaches
generally result in improved predictive accuracy (Fresnais and Ballester,
2020; W �o jcikowski et al., 2017; Xiong et al., 2020; Yasuo and Sekijima,
2019).
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