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Pemphigus vulgaris (PV) is an autoimmune skin blistering disease effecting both cuta-
neous and mucosal epithelia. Blister formation in PV is known to result from the binding 
of autoantibodies (autoAbs) to keratinocyte antigens. The primary antigenic targets of 
pathogenic autoAbs are known to be desmoglein 3, and to a lesser extent, desmoglein 
1, cadherin family proteins that partially comprise the desmosome, a protein structure 
responsible for maintaining cell adhesion, although additional autoAbs, whose role in 
blister formation is still unclear, are also known to be present in PV patients. Nevertheless, 
there remain large gaps in knowledge concerning the precise mechanisms through 
which autoAb binding induces blister formation. Consequently, the primary therapeutic 
interventions for PV focus on systemic immunosuppression, whose side effects repre-
sent a significant health risk to patients. In an effort to identify novel, disease-specific 
therapeutic targets, a multitude of studies attempting to elucidate the pathogenic mech-
anisms downstream of autoAb binding, have led to significant advancements in the 
understanding of autoAb-mediated blister formation. Despite this enhanced characteri-
zation of disease processes, a satisfactory explanation of autoAb-induced acantholysis 
still does not exist. Here, we carefully review the literature investigating the pathogenic 
disease mechanisms in PV and, taking into account the full scope of results from these 
studies, provide a novel, comprehensive theory of blister formation in PV.

Keywords: pemphigus vulgaris, autoantibodies, signaling pathways, p38MAPK, calcium, epidermal growth factor 
receptor, Rho GTPases

iNTRODUCTiON

Pemphigus vulgaris (PV) is an autoimmune skin blistering disease characterized by the presence 
of autoantibodies (autoAbs) directed against keratinocyte surface antigens. It has been well estab-
lished that autoAbs alone are capable of driving blister formation in PV. Early studies identified the 
primary target of pathogenic autoAbs as desmoglein 3 (Dsg3) and to a lesser extent, desmoglein 
1 (Dsg1). More recently, additional autoAbs specificities have been identified in PV patients that 
could potentially also contribute to disease pathogenicity (1, 2). Despite extensive research, the exact 
mechanisms through which autoAbs induce a loss of cell–cell adhesion (also termed acantholysis) 
are not well understood.

Since the primary target of PV autoAbs was shown to be a desmosomal protein, most of the 
earliest theories of acantholysis suggested that the loss of cell adhesion was simply the result of 
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autoAbs sterically hindering the homo- and heterophillic binding 
of desmosomal proteins between neighboring cells (3, 4). Studies 
showing that staphylococcal exfoliative toxins, which cleave 
Dsg1, could produce blisters similar to those seen in PF, indicated 
that disturbance of desmosomal proteins was capable of causing 
a loss of cell–cell adhesion (5, 6). The relationship between des-
moglein expression and cell adhesion was further supported by 
the observation that Dsg3-deficient mice develop mucosal lesions 
similar to those seen in PV patients (7). Together, these data 
demonstrated that interference with desmoglein interactions was 
sufficient to drive a loss of cell–cell adhesion.

The observation by multiple groups that PVIgG was seen only 
to bind at desmosomal areas also supported the idea that autoAb 
interference of desmosomal interaction drives blister formation 
(8–10). In addition, in areas of acantholysis, PVIgG was seen to 
bind to both desmosomal plaques and split desmosomes (11), 
indicating that PVIgG could access desmosome-associated 
desmogleins.

Further support for the steric hindrance theory came from 
later studies attempting to characterize the fine-epitope specific-
ity of anti-Dsg3 autoAbs. It was shown that autoAbs primarily 
target the amino terminal of Dsg3 which, based on the crystal 
structure of other classical cadherins, was predicted to facilitate 
trans-interaction (12–17). Furthermore, only anti-Dsg3 auto-
Abs targeting the amino terminal EC1-2 of Dsg3 could illicit 
blister formation when passively transferred to neonatal mice, 
not anti-Dsg3 autoAbs targeting the more carboxyl domains 
EC3-5. Another study demonstrated that anti-Dsg3 autoAbs 
preferentially recognize the mature form of Dsg3, but not an 
immature form, which requires additional proteolytic processing 
to participate in adhesion (18, 19). It was also shown that autoAb 
binding was dependent on the proper calcium stabilized forma-
tion of Dsg3, which is known to be required for proper adhesive 
functioning (13, 20, 21). Later experiments using atomic force 
microscopy (AFM) were able to demonstrate that PVIgG could 
directly interfere with Dsg3 trans-interaction (22).

One potential liability of the steric hindrance theory was the 
possibility that blistering effects were mediated by the constant 
regions of the Abs. However, experiments showing that Fab and 
F(ab2) fragments, as well as single-chain variable fragments which 
lack the Fc domain, were able to induce blister formation in vitro 
proved that Fc-dependent mechanisms were not necessary for 
blister formation (23–26). Additional experiments demonstrating 
the pathogenicity of PVIgG in C5a-deficient mice indicated that 
compliment activation was not required for acantholysis (23).

Over time, evidence has accumulated suggesting steric hin-
drance may not be the primary or sole pathogenic mechanism 
operative in PV. One of the earliest indications that alternative 
mechanisms may drive pathogenesis was the observation that IgG 
from PF patients could induce disease in mice without interfering 
with trans-adhesion of Dsg1 (27). It was noted in multiple studies 
that PVIgG was seen to bind extra-desmosomal spaces on the 
surface of keratinocytes, allowing for the possibility that binding 
of autoAbs outside of desmosomes may affect disease (3, 28). It was 
also shown that PVIgG binding induced cytoskeletal changes and 
the retraction of keratin intermediate filaments before any visible 
changes in desmosomes (29–33). It was also noted that in early 

PV lesions keratinocytes first separate at inter-desmosomal areas 
and desmosomes are still intact and interacting with neighboring 
desmosomes (29, 34–36). Together, these findings suggested that 
desmosomal separation may be downstream of other processes 
induced by the binding of autoAbs. Recently, one research group 
used AFM to demonstrate that the loss of Dsg3 binding alone was 
not sufficient to cause a loss of cell adhesion, strongly indicating 
that steric hindrance by itself cannot sufficiently explain acantho-
lysis in PV (37).

An early alternative to the steric hindrance theory was sug-
gested by results showing that the binding of autoAbs initiated 
the activation of proteases which in turn degraded Dsg3 and 
inhibited cell–cell adhesion. Specifically, plasminogen activator 
was thought to play a role in disease (38). PVIgG was shown to 
induce signaling that led to increased production of plasminogen 
activator (39, 40). Furthermore, PVIgG induced keratinocyte 
expression of plasminogen activator receptor (38, 41). However, 
inhibition of plasminogen via dexamethasone did not prevent 
PVIgG-induced acantholysis (42). The role of other proteases was 
also shown not to be essential in disease by the failure of protease 
inhibitors and gene ablation to prevent blister formation (43, 44).

One of the earliest studies that indicated that autoAbs may 
exert their pathogenic effect through the activation of intracel-
lular cascades demonstrated that plakoglobin (Pkg)-deficient 
mice were protected from PVIgG-induced blister formation (45). 
Pkg, an armadillo family protein, is well established as a major 
signaling molecule involved in the regulation of cell adhesion (46, 
47). The inability of PVIgG to induce blisters in the absence of 
Pkg strongly suggests that alteration of Pkg signaling is a primary 
pathogenic mechanism of PVIgG. In addition, keratinocytes 
incubated at 4°C did not show any effects of PVIgG on cell adhe-
sion, suggesting that the mechanisms underlying blister forma-
tion are energy dependent (48).

Identification and characterization of the precise signaling 
pathways driving autoAb-induced acantholysis has been a sig-
nificant focus for PV research. As a result, large amounts of (often 
conflicting) information concerning the signaling alterations 
downstream of anti-Dsg and PVIgG binding have been character-
ized. Moreover, studies showing that autoAbs in PV sera directed 
at non-desmoglein antigens can also elicit intracellular signaling 
have further complicated efforts to elicit the precise mechanisms 
driving disease (49, 50). The primary signaling pathways and the 
evidence that supports their role in PV pathogenesis are reviewed 
below (see Table 1 for evidence supporting steric hindrance vs. 
intracellular signaling).

SiGNALiNG PATHwAYS iMPLiCATeD  
iN Pv

p38MAPK
p38 is one of the three major families of mitogen-activated pro-
tein kinases (MAPK), which are known to play a prominent role 
in a wide range of cellular pathways (51). In general, p38MAPK 
proteins can be activated by environmental stress and regulate the 
transcription of inflammatory cytokines (52). All MAPKs require 
dual phosphorylation for enzymatic activity, and each contains a 
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TABLe 1 | Evidence supporting steric hindrance vs. intracellular signaling.

evidence supporting the steric hindrance theory

• Desmoglein 3 (Dsg3)/desmoglein 1 (Dsg1), the primary targets of pathogenic 
autoantibodies (autoAbs), directly mediate cell adhesion

• Enzymatic cleavage of Dsg1 is sufficient to cause a loss of cell adhesion
• Pathogenic anti-Dsg3 autoAbs preferentially target the EC regions thought to 

mediate trans-adhesion
• Pathogenic anti-Dsg3 autoAbs preferentially recognize Dsg3 in the calcium 

bound, functional competent conformation
• Anti-Dsg3 autoAbs can access and bind Dsg3 molecules in intact 

desmosomes

evidence indicating a role for intracellular signaling

• In PF, a related disease, autoAbs targeting Dsg regions that do not mediate 
trans-adhesion can induce a loss of cell adhesion

• After exposure to PVIgG, cytoskeletal changes occur before impairment of 
desmosomal adhesion

• In early pemphigus vulgaris lesions, inter-desmosomal contacts are impaired 
while desmosomal contacts remain intact

• Studies using atomic force microscopy have shown that blocking of trans-
adhesion alone does not induce a loss of cell adhesion

• PVIgG-induced acantholysis is impaired at low temperatures, suggesting an 
energy requiring process is involved

• Inhibition of multiple signaling pathways can inhibit PVIgG-induced 
acantholysis both in vitro and in vivo
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characteristic dual phosphorylation sequence which affect both 
the substrate specificity and ability to auto-phosphorylate (53, 54). 
There are four types of p38MAPK: α, β, γ, and δ, each displaying 
unique patterns of tissue expression (52). Only p38MAPK α, β, 
and δ are known to be expressed in keratinocytes (52, 54–58) and 
have been primarily associated with differentiation and apoptosis 
(59).

The significance of p38MAPK signaling in PV pathogenesis 
was first suggested by a study which observed that PVIgG induced 
significant increases in the phosphorylation of p38MAPK, 
MAPKAP2 (MK2), and heat-shock protein (Hsp)27 (60). The 
degree of phosphorylation was shown to increase when cells 
were treated with higher concentrations of PVIgG. In addi-
tion, treatment of cells with p38MAPK inhibitors was able to 
prevent PVIgG-induced acantholysis as well as changes in the 
actin cytoskeleton and the retraction of KIFs from desmosomal 
attachments, both of which are hallmarks of acantholysis in PV. 
Inhibition of p38MAPK also prevented PVIgG-induced phos-
phorylation of MK2, Hsp27, and p38MAPK (60).

Other studies assessing the role of PVIgG on p38MAPK 
activation identified that PVIgG causes keratin retraction and 
p38MAPK activation within 30 min, and another peak at 6–10 h 
in cultured human keratinocytes. Only inhibition at the earlier 
time point was associated with prevention of blister formation 
and keratin retraction (61). Another study showed that AK23, 
a mouse-derived monoclonal anti-Dsg3 antibody, could also 
activate p38MAPK, demonstrating that autoAb binding to Dsg3 
specifically can lead to p38MAPK activation (62).

The relevance of p38MAPK in disease was emphasized by 
findings that both p38MAPK and Hsp27 are phosphorylated 
in the lesional skin of PV patients (63). Further studies demon-
strated that p38MAPK inhibitor blocks acantholysis in vivo, as 
well as p38MAPK activation, suggesting auto-phosphorylation of 

p38MAPK (64). p38MAPK activation was also shown to cause 
Dsg3 internalization, and p38MAPK inhibition can prevent this 
phenomenon in  vivo (65). A more detailed assessment of the 
effects of p38MAPK showed that p38 depletes extra-desmosomal 
Dsg3 early as 30 min, and also is responsible for later depletion 
(2–24 h) of other desmosomal cadherins as well as DP (66–70).

The regulation of cytoskeletal changes by p38MAPK is 
especially relevant in understanding how p38MAPK plays a 
role in PV pathogenesis. In epithelial cells, cell detachment has 
been shown to induce p38MAPK activation (71), indicating a 
close relationship between p38MAPK and cellular adhesion. 
Furthermore, p38MAPK activation can lead to phosphorylation, 
and subsequent destabilization of keratin intermediate filaments 
(72), which could be one explanation for the characteristic 
retraction of KIFs seen in PV. p38MAPK is known to regulate 
actin filaments as well (73). Since extra-desmosomal Dsg3 
complexes with actin cytoskeleton and is required to bring DP to 
desmosomal plaques (74, 75), it is possible that PVIgG-induced 
dysregulation of p38MAPK could interfere with proper desmo-
some assembly.

MAPKAP2 is phosphorylated and activated by p38MAPK 
(76, 77). The activation of MK2 has been associated with cell 
cycle control, cytokine production, and regulation of the keratin 
and actin cytoskeletons (78–80). The inhibition of MK2 has 
been shown to prevent PVIgG-induced spontaneous blister 
formation in mice, but not blistering solicited via the application 
of mechanical stress (81). This suggests that while MK2 may 
mediate some of the pathogenic effects of PVIgG, additional 
pathways downstream of p38MAK are likely also contributing 
to acantholysis.

Heat-shock protein 27 is another signaling molecule activated 
by MK2 (82). Hsp27 regulates both actin (83–85) and keratin 
cytoskeleton (86, 87). Both p38MAPK and MK2 regulate the 
effect of Hsp27 on the cytoskeleton via phosphorylation (88–90). 
Taken together, these findings demonstrate that one possible 
pathogenic mechanism of PVIgG-induced p38MAPK activation 
could be the perversion of typical cytoskeletal regulation, result-
ing in impaired cell adhesion.

The degree of evidence supporting a role for p38MAPK 
activation in the pathogenesis of PV has led researchers to 
investigate the utility of p38MAPK inhibition for the clinical 
treatment of PV. In a small clinical trial, 15 PV patients were 
treated with KC-706, a small molecule allosteric inhibitor of 
p38MAPK. Unfortunately, the trial was terminated before 
completion due to severe side effects of the drug. At the 
time of cessation, half of the patients were seen to exhibit at 
least a partial response to treatment, whereas the other half 
showed no improvement or a worsening of symptoms (91). 
Hopefully, the development of newer, more specific inhibi-
tors of p38MAPK and other downstream targets will allow 
for effective pathway inhibition while avoiding serious side 
effects (92).

In addition to the effects listed above, p38MAPK can affect 
epidermal growth factor receptor (EGFR) signaling (93), RhoA 
activation (60, 68, 94, 95), and various apoptotic pathways (96). 
All of these pathways have been implicated in PV pathogenesis 
and are discussed in greater detail below.
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Calcium/Protein Kinase C (PKC)/
Phospholipase C (PLC)
The role of calcium signaling in keratinocyte differentiation and 
adhesion is well established. Increasing the Ca2+ concentration 
in keratinocyte culture medium increases intracellular calcium 
which in turn induces cell–cell contact (mainly adherens junc-
tions) within 5 min, and formation of desmosomes within 2 h 
(97–104). PLC, an isoenzyme that is responsible for the cleavage 
of phosphatidylinositol 4,5-bisphosphate (PIP2) into inositol 
1,4,5-triphosphate (IP3) and diacylglycerol (DAG), plays a signifi-
cant role in calcium-induced keratinocyte differentiation (103, 
105–108). PKC is a downstream target of PLC and is activated by 
calcium and DAG. Of the five isoforms known to be expressed in 
keratinocytes, PKC-alpha has been shown to play a major role in 
epidermal differentiation and proliferation (109–112).

Early studies showing that PVIgG leads to a rapid increase in 
intracellular calcium in keratinocytes were the first to implicate 
calcium signaling as a pathogenic signaling pathway in PV (113, 
114). Additional studies demonstrated that PKC was activated 
within 30 s of treatment of PVIgG (115). A significant role for 
calcium signaling in PV pathogenesis was strengthened by studies 
which showed inhibition of PKC could prevent acantholysis both 
in vitro and in vivo (116, 117). It was also shown that inhibition of 
PLC prevented PVIgG-induced acantholysis, as well as increases 
in intracellular calcium and PKC activation (118). These results 
suggest that PVIgGs may exert their pathogenic effect by eliciting 
an increase in intracellular calcium, which leads to the activation 
of downstream signaling pathways.

The identification of PKC as a potential driver of PVIgG-
induced pathogenesis is especially interesting due to the well-
established role of PKC in cell adhesion. It has been shown that 
PKC activation leads to weakened cell–cell adhesion, whereas 
PKC inhibition results in increased adhesion (119, 120). In addi-
tion, PKC is known to be required for desmosome assembly and 
disassembly (41, 97, 121–126). The association of PKC with cell 
adhesion and desmosomal regulation may provide insight to help 
identify exactly how PVIgG induced PKC activation results in a 
loss of cell adhesion. One study showed that PVIgG-induced acti-
vation of PKC leads to its dissociation from KIFs and subsequent 
phosphorylation of DP, which resulted in desmosomal instability 
(127, 128). Another mechanism through which PKC activation 
may contribute to disease pathogenesis is by its effect on KIF 
turnover. It has been shown that PKC directly phosphorylates 
keratin molecules, leading to a turnover in KIFs (129, 130). This 
phenomenon may also explain the mechanistic background for 
the detachment of KIFs which is the hallmark of acantholysis.

epidermal Growth Factor Receptor
Epidermal growth factor receptor is a well-studied signaling 
pathway that impacts a multitude of cellular processes either 
through the direct binding of its ligand, epidermal growth factor, 
or by cross-activation from a number of other signaling pathways 
(131–134). EGFR signaling has been shown to impact cell adhe-
sion via both adherens junctions and desmosomes (135–137). 
Specifically, association with Dsg1 has been shown to suppress 
EGFR extracellular signal-regulated kinase 1/2 signaling in skin 

(138). In addition, it has been shown that EGFR activation can 
induce the phosphorylation of Pkg and decrease the association 
of desmoplakin with the desmosome, resulting in weakened 
cellular adhesion (139). In general, these studies associate an 
activation of EGFR signaling with destabilization of desmosomal 
adhesion.

The association between EGFR signaling and cell adhesion 
provided a rationale for researchers to investigate if EGFR sign-
aling played a role in acantholysis, and it was eventually shown 
that PVIgG led to the activation of EGFR in keratinocytes (49, 
93). Further studies determined that the activation of EGFR 
could be detected as early as 30  min after exposure to PVIgG, 
but the activation occurred downstream of p38MAPK activation 
(49, 66, 67, 140). Another group was able to show that anti-Dsg3 
autoAbs could also lead to EGFR activation (14). Multiple studies 
then showed that the inhibition of EGFR could prevent PVIgG-
induced skin blistering both in vivo and in human skin explants 
(66, 93, 141).

In addition, EGFR is implicated in PV pathogenesis via a 
second signaling axis independent of p38MAPK. PVIgG bind-
ing induces secretion of EGF and related mediators from basal 
keratinocytes, which in turn activate Src, focal adhesion kinase, 
and mammalian target of rapamycin (mTOR) via EGFR and nitric 
oxide synthase. The end result is the activation of caspases 3 and 
9, which have been proposed to contribute to bister formation 
(142–145). The role for traditional apoptosis in PV pathogenesis 
is currently unclear; our group showed that the induction of 
apoptosis-related mechanisms after anti-Dsg antibody binding is 
reversible and independent of the Fas/FasL axis (146). However, 
studies showing that inhibition of the low level caspase-3 induc-
tion caused by PVIgG prevented acantholysis in vitro and in vivo 
suggest that caspase-3 activation does indeed play a role in 
disease (147).

Rho Family GTPases
Rho and Rac are both members of the Rho small GTPases fam-
ily, which are known to play a role cytoskeletal reorganization, 
cell polarity, morphogenesis, and cell migration (61). These Rho 
family GTPases are known to affect the turnover of adherens 
junctions through multiple pathways (148). Both Rho and Rac are 
required for the establishment of adherens junctions (149, 150), 
and the activation of Rac has also been shown inhibit desmosomal 
adhesion in human keratinocytes (151).

The first association of Rho GTPases with PV pathogenesis 
was seen in experiments which demonstrated that the activation 
of Rho GTPases could prevent PVIgG-induced blister formation 
in human skin. Additional studies were able to show that RhoA 
activation was able to block the PVIgG-induced retraction of 
KIFs as well as loss of cell adhesion in HaCaT cells (41). Also, it 
was observed that HaCaT cells treated with PVIgG demonstrated 
a reduction in RhoA activity. In addition, p38MAPK inhibitors 
were shown to block the PVIgG-induced reduction of RhoA 
activity (94). These results suggest that PVIgG-induced activa-
tion of p38MAPK may induce blister formation, at least in part, 
by inhibiting the activity of RhoA. Given that the formation of 
adherens junctions has been shown to be necessary for proper 
assembly and disassembly of desmosomes (47, 152, 153), the loss 
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TABLe 2 | Evidence in support of pemphigus vulgaris (PV)-associated signaling pathways.

p38MAPK Ca/protein kinase C (PKC) epidermal growth factor 
receptor (eGFR)

Rho GTPases

 – PVIgG induces significant increases in the 
phosphorylation of p38MAPK, MAPKAP2, and heat-
shock protein (Hsp)27

 – Treatment of cells with p38MAPK inhibitors prevents 
PVIgG-induced acantholysis as well as changes in 
the actin cytoskeleton and the retraction of KIFs from 
desmosomal attachments

 – Inhibition of p38MAPK prevents PVIgG-induced 
phosphorylation of MAPKAP2, Hsp27, and 
p38MAPK in vivo

 – p38MAPK and Hsp27 are phosphorylated in the 
lesional skin of PV patients

 – PVIgG leads to a rapid increase 
in intracellular calcium in 
keratinocytes

 – Inhibition of PKC prevents 
acantholysis both in vitro and 
in vivo

 – Inhibition of phospholipase 
C prevents PVIgG-induced 
acantholysis, as well as 
increases in intracellular calcium 
and PKC activation

 – PVIgG leads to the 
activation of EGFR in 
keratinocytes

 – Anti-Dsg3 autoantibodies 
can also lead to EGFR 
activation

 – Inhibition of EGFR 
prevents PVIgG-induced 
skin blistering both 
in vivo and in human skin 
explants

 – Activation of Rho GTPases prevents 
PVIgG-induced blister formation in 
human skin

 – Cells treated with PVIgG demonstrate 
a reduction in RhoA activity

 – p38MAPK inhibitors block PVIgG-
induced reduction of RhoA activity

 – RhoA activation blocks PVIgG-
induced retraction of KIFs as well as 
loss of cell adhesion in HaCaT cells
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of desmosomal adhesion seen in PV may be secondary to the 
inhibition of adherens junctions caused by RhoA inhibition.

For a summary of evidence in support of PV-associated signal-
ing pathways, see Table 2.

iNTeGRATeD MODeL OF Pv autoAb-
iNDUCeD SiGNALiNG

The pathogenic processes following the binding of autoAbs 
that eventually drive the loss of cell adhesion are diverse and 
complex. Taken together, the above data suggest that the disease 
mechanisms underlying PV are the result of both the direct steric 
interference of adhesion molecule interaction by autoAb binding 
and the activation of intracellular signaling pathways elicited via 
autoAb binding. A viewpoint that could tie both these mecha-
nisms together is to see the desmosome/keratin intermediate 
filament complex as a signaling complex which participates in 
mechanosensing in addition to providing structural stability. 
Although desmosomal proteins have not yet been shown to 
function in this manner, a wealth of data exists which describes 
a similar function in adherens junctions (154). If this was shown 
to be the case with desmosomal proteins as well, it would be rea-
sonable to assume that, in addition to physically interfering with 
desmosomal adhesion, the binding of autoAbs in PV may alter 
signaling pathways associated with the desmosomal complex, 
such as p38MAPK, EGFR, and PKC that ultimately interfere with 
the structural stability of keratinocytes.

Taking into consideration the breadth of experimental data 
detailing autoAb-induced activation of intracellular signaling 
pathways, we propose that blister formation in PV may result 
from the following mechanism: (1) binding of autoAbs to target 
desmosomal antigens (either desmosomal or extra-desmosomal) 
induces the activation of PLC, leading to the activation of PKC via 
Ca2+ and DAG, which in turn activates p38MAPK via MAP3ks 
[such as Ask1 (155, 156)]; (2) activated PKC (either through direct 
phosphorylation of keratin filaments or DP) and p38MAPK (via 
MK2 and Hsp27 phosphorylation) then induce the retraction 
of the KIFs as well as the turnover of the actin cytoskeleton; (3) 
the retraction of KIFs from the desmosomal plaques, as well 

as cytoskeletal rearrangements, then cause a destabilization of 
desmosomes, and a weakening of cell adhesion; (4) finally, the 
weakening of cell adhesion, coupled with the mechanical stress 
induced by cytoskeletal rearrangements, induces a cellular stress 
response, resulting in the activation of Src, EGFR, and Rac1 (as 
well as other pathways), and re-initiation/perpetuation of the 
pathological cycle (Figure 1).

A primary advantage of this model is the ability to provide 
a mechanistic framework for understanding how the widely 
variegated set of factors that have been implicated across multiple 
studies may be contributing to PV pathogenesis. For example, 
multiple studies have linked increased levels of reactive oxygen 
species (ROS) to PV (157–161), but a potential mechanistic 
contribution to disease has not been well defined. Using our 
model, however, the known ability of ROS to affect KIF and actin 
cytoskeletons as well as PKC, Src, p38MAPK, and RhoA signaling 
(162–167) potentially demonstrates how ROS may contribute to 
blister formation in a number of ways. As a result, our model 
can also explain how anti-mitochondrial autoAbs, which have 
been suggested to play a role in PV and shown to increase ROS 
production, can directly mediate disease pathogenesis (50, 
168–172). Furthermore, the activation of pro-apoptotic pathways 
by autoAb binding has been shown to modulate p38MAPK (50) 
and may further contribute to the signaling pathologies that drive 
acantholysis.

Although this model lays a comprehensive framework for the 
mechanism of blister formation incorporating all of the major 
signaling pathways implicated in pathogenesis by the litera-
ture, future experiments are required to test the validity of this 
model and more precisely define the series of signaling events 
which occur downstream of autoAb binding. Determining 
the degree to which both desmosomal and extra-desmosomal 
Dsg proteins associate with signaling molecules and whether 
or not the binding of autoAbs to these proteins is sufficient 
to elicit intracellular signaling is a high priority to ascertain 
if these molecules could function as signal transducers and if 
so, through which pathways. Immunofluorescent studies of 
keratinocyte monolayers before and after PVIgG treatment 
may be one way to determine which molecules are physically 
associated with desmosomal proteins and determine if autoAb 
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FiGURe 1 | Proposed comprehensive model of signaling mechanisms underlying blister formation in pemphigus vulgaris. (1) Binding of autoantibodies (autoAbs) to 
target keratinocyte antigens (either desmosomal or extra-desmosomal) induces the activation of phospholipase C (PLC), and subsequently the activation of protein 
kinase C (PKC) via Ca2+ and diacylglycerol (DAG), which then activates p38MAPK via MAP3ks (such as Ask1); (2) activated PKC {either through direct 
phosphorylation of keratin filaments or DP} and p38MAPK {via MAPKAP2 (MK2) and heat-shock protein (Hsp)27 phosphorylation} then induce the retraction of the 
KIFs as well as the turnover of the actin cytoskeleton; (3) the retraction of KIFs from the desmosomal plaques, as well as cytoskeletal rearrangements, then cause a 
destabilization of desmosomes, and a weakening of cell adhesion; (4) finally, the weakening of cell adhesion, coupled with the mechanical stress induced by 
cytoskeletal rearrangements, induces a cellular stress response, resulting in the activation of Src, epidermal growth factor receptor (EGFR), and Rac1 (as well as 
other pathways), and re-initiation/perpetuation of the pathological cycle. RhoA is inhibited by multiple pathways (such as PKC, EGFR/Src, and Rac1). As RhoA 
activation has been shown to inhibit PVIgG-induced acantholysis, an inhibition of RhoA would promote cell dissociation. Blue arrow-headed lines indicate activation, 
while red bar-headed lines indicate inhibition of selected molecules/pathways.
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binding leads to their activation/translocation. Another 
important step would be to more precisely define the upstream 
MAPK cascade that leads to p38MAPK activation. There are 
multiple upstream signaling molecules which are known to 
activate p38MAPK and the characterization of the molecules 
involved in this process could allow for a better understanding 
of how autoAbs, or additional factors such as hormones or 
cytokines (which are known to utilize specific cascades) could 
activate p38MAPK (173–175). Protein microarray analysis, 
which allows for rapid, highly specific, multiplexed analysis 
of the signal transduction pathways (176, 177), would be well 
suited for this task.

Desmosomal proteins as a mechanosensing signaling 
complex would provide a logical intersection between the two 
primary theories of autoAb-induced blister formation in PV. 
Although future studies are still needed, there exists a great 
potential to significantly and directly affect the development of 
future treatments in PV. Identification of the signals transduced 
by autoAb binding could lead to the identification of poten-
tially novel drug targets, or, at the very least allow researchers 
to focus on disease-specific signaling pathologies, resulting in 
small molecule inhibitors with a lower chance of harmful side 
effects and the ability to minimize systemic suppression of the 
immune system. In addition, large scale profiling of the signal 
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transduction pathways upstream of MAPK may represent an 
especially beneficial endeavor as such studies could identify 
cytokines or hormones which may be contributing to disease 
process. In addition to facilitating the use of disease specific 
anti-cytokine or hormonal therapies which may already be in 
use for other disease modalities, such information could be 
individualized to the specific pathologies driving disease in 
a given patient, informing more tailored and effective treat-
ment strategies and greatly enhancing clinical management of 
disease.
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