
Predictions of avian Plasmodium
expansion under climate change
Claire Loiseau1*, Ryan J. Harrigan2*, Coraline Bichet3, Romain Julliard4, Stéphane Garnier3,
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Vector-borne diseases are particularly responsive to changing environmental conditions. Diurnal
temperature variation has been identified as a particularly important factor for the development of malaria
parasites within vectors. Here, we conducted a survey across France, screening populations of the house
sparrow (Passer domesticus) for malaria (Plasmodium relictum). We investigated whether variation in
remotely-sensed environmental variables accounted for the spatial variation observed in prevalence and
parasitemia. While prevalence was highly correlated to diurnal temperature range and other measures of
temperature variation, environmental conditions could not predict spatial variation in parasitemia. Based
on our empirical data, we mapped malaria distribution under climate change scenarios and predicted that
Plasmodium occurrence will spread to regions in northern France, and that prevalence levels are likely to
increase in locations where transmission already occurs. Our findings, based on remote sensing tools
coupled with empirical data suggest that climatic change will significantly alter transmission of malaria
parasites.

C
limate change and its resulting habitat alteration are expected to have major impacts on the dynamics of
infectious diseases1–5. Global warming effects on human vector-borne diseases, such as dengue or malaria,
have been extensively investigated6,7; however, it can be extremely challenging to address the impacts of

future climate change on human infectious diseases, as the influence of socioeconomic and environmental factors
are often intertwined8,9. Although it is now well-documented that the malaria transmission cycle is sensitive to
climate, there is a mismatch between the predicted expansion of areas with endemic malaria based on climatic
models and the observed reduction in endemicity over the last century10. Therefore, the assumed link between
rising temperature and the spread of human malaria is heavily debated8. A way to avoid the problem of the
antagonistic effects of socioeconomic and environmental factors is to focus on wildlife parasites, such as the avian
malaria.

Recently, temperature constraints on the sporogonic development of the avian Plasmodium parasite have been
investigated within the mosquito vector11, demonstrating that any increase of temperature could facilitate the
spread of the parasite to areas that present suitable environmental conditions for its development. In addition, a
literature survey from more than 3,000 avian species found that the prevalence of Plasmodium has increased in
parallel with climate changes12. While knowledge of parasite response to climate change is useful, identifying the
environmental drivers of local malaria prevalence and parasitemia is paramount to linking the disease to expected
environmental changes.

From a physiological perspective, in addition to mean temperatures, diurnal fluctuations in temperature have
been shown to affect the rate of parasite development, and the essential elements of mosquito biology3. In
addition, recent work has stressed that vector competence could be reduced at higher temperature, demonstrating
that vectorial capacity of malaria mosquitoes needs an optimum temperature13. With the availability of fine-scale
remotely sensed variables for both current and future climate conditions14, an investigation of how such variables
are related to detailed empirical field data on host-parasite dynamics can add much to our understanding of the
potential direction of evolutionary changes induced by environmental modifications15.

Here, we extensively sampled a ubiquitous host, the house sparrow (Passer domesticus) and its parasite
Plasmodium relictum across a large region. We predict that prevalence (i.e. the proportion of infected individuals
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in a population) of Plasmodium relictum should be linked to climatic
conditions, temperature and rainfall variables, which affect vector
and parasite development16; parasitemia (i.e. the density of parasites
within the host) which reflects the ability of the host to control the
infection should exhibit a weaker relationship with environmental
characteristics17,18. In addition, based on recent work on avian mal-
aria in northern latitude19 and on an elevation gradient20, we predict
that under climate change scenarios, the occurrence of Plasmodium
should experience significant geographical range changes.

Results
We determined the prevalence and parasitemia of Plasmodium relic-
tum of 1750 individuals sampled in 24 different house sparrow popu-
lations in France (Table 1). We found 24% of infected sparrows with
the parasite Plasmodium relictum (lineages Plasmodium SGS1,
GenBank accession number JN164729 and Plasmodium GRW11
GenBank accession number JN164731). Prevalence varied from 0%
to 78% and parasitemia (relative quantification, see methods) from 0
to 3.7204 between populations (Table 1). In addition to SGS1 and
GRW11, we also found seven other parasite lineages, referring to
other Plasmodium morphospecies or to Haemoproteus sp. The very
low prevalence of these lineages (ranging from 1% to 8%) prevented
us to reliably test the association with climatic variables, and we
therefore decided to focus on Plasmodium relictum.

The characteristics of each site were determined using a set of
environmental variables that included nineteen bioclimatic metrics
at 1 km from the WorldClim dataset14 (http://www.worldclim.org)
and elevation measure. We constructed classification trees using a
Random Forest model21 under the R framework22, with climate vari-
ables (extracted for each site) as predictors, and both parasitemia and
prevalence as response variables.

Bioclimatic variables and elevation did little to explain parasite-
mia, and optimized models never explained more than 2% of vari-
ation in parasitemia. In contrast, models attempting to explain
variation in malaria prevalence performed well, with up to 83% of
all variation explained by only bioclimatic and elevation variables. Of
these variables, under both criteria used to evaluate performance
(percentage of increase of mean squared error and increase of purity;

Fig. 1), temperature variables were the most important in describing
where difference in prevalence occurred (Fig. 1). Interestingly,
sampled locations with higher diurnal temperature ranges were areas
that had higher malaria prevalence in sparrow hosts (Fig. 2). In our
predictive map, when extrapolating the correlation between diurnal
temperature range and prevalence to the all country, we found that
mountains areas, Brittany and the north coast is presenting low
prevalence while the south of France is showing high prevalence. A
higher temperature seasonality and higher minimum temperature of
the coldest month were also bioclimatic variables explaining a higher
prevalence in populations.

When looking at the map with current environmental conditions,
malaria prevalence is low in the north, on the northwest and south-
west coast as well as in mountain areas. Prevalence seems especially
high in the south of France (Fig. 3a). Under future climate scenarios
(IPCC 4th Assessment A1 scenario for the year 2050 and 2080), we
found a shift in regions suitable for Plasmodium occurrence. Sparrow
populations from most of the geographical area covered by this study
are predicted to suffer from a substantial increase of malaria preval-
ence (Fig. 3b). Interestingly the south of France, where prevalence is
high for now, will exhibit a decrease in prevalence in the future.
However, the entire north and the northwest coast will show a drastic
increase in prevalence, possibly exposing house sparrows and other
passerine species to more severe parasite-mediated selection
pressures.

Discussion
The study presented here suggests that avian malaria prevalence is
greatly affected by bioclimatic conditions, and that Plasmodium
transmission will increase as warming trends continue. As a large
portion of the region studied here is predicted to have both mean
diurnal and temperature seasonality range increases in the future,
and these variables will associated with higher prevalence of avian
malaria, we expect avian populations in this region to be under
increasing threat from this disease.

Recent laboratory studies suggest differential development and
transmission of malaria under varying temperature conditions3.

Table 1 | GPS coordinates, sample size, prevalence (%) and parasitemia (relative quantification log 1 1 6 SE) are given for each of the 24
populations sampled from South to North. No SE is given for Quimper and Kerinou since only one individual was infected in each site

Site N Prevalence Parasitemia Latitude Longitude

Saintes Maries de la Mer 112 72.32 1.01205 (61.81206) 43u27’10" N 4u25’43" E
Arles 49 78.57 2.10204 (61.80204) 43u40’35.90" N 4u37’40.12" E
Chizé 54 56.52 3.83206 (61.48206) 46u08’49.35" N 0u25’31.98" W
Dijon 20 55 9.29205 (64.57205) 47u19’18" N 5u02’29" E
Hoedic 685 11.09 5.26205 (63.83205) 47u20’23.46" N 2u52’40.56" W
Cosnes Cours sur Loire 61 50 3.57206 (66.67205) 47u23’15.05" N 2u54’27.88" E
Groix 45 0 0 47u38’21.95" N 3u27’13.04" W
Vannes 42 23.81 3.21205 (69.40206) 47u39’21" N 2u45’37" W
Ploemeur 15 13.33 1.35205 (63.51206) 47u44’08.50" N 3u25’38.18" W
Languidic 56 16.07 3.33205 (61.53205) 47u50’03" N 3u09’24" W
Quimper 32 3.13 3.69204 47u59’51.58" N 4u05’52.76" W
Sein 32 0 0 48u02’13.94" N 4u51’06.23" W
Kerinou 26 3.85 1.58204 48u20’32.92" N 4u45’21.69" W
Crennes 55 30.77 4.57205 (63.22205) 48u22’42.54" N 0u16’44.60" W
Molène 30 0 0 48u23’46.51" N 4u57’30.36" W
Anglus 58 35.71 2.81205 (61.97205) 48u23’54.54" N 4u44’23.47" E
Saint Elven 15 0 0 48u27’41.15" N 4u22’22.07" W
Ouessant 64 0 0 48u27’48.15" N 5u05’16.57" W
Wissous 39 48.72 8.79206 (63.05206) 48u43’51.48" N 2u19’38.69" E
Cachan 20 30 1.50205 (61.40205) 48u47’41.08" N 2u20’06.64" E
Rully 58 35.19 1.08204 (64.76205) 48u49’30.91" N 0u42’52.15" W
Paris 52 30.77 1.97206 (61.53206) 48u50’39.47" N 2u21’43.62" E
Crégy les Meaux 85 41.1 2.26206 (61.90206) 48u58’40.54" N 2u52’36.15" E
Thieux 45 33.33 4.57205 (63.64205) 49u32’36.74" N 2u19’01.13" E
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Using a lineage of rodent malaria, Plasmodium chabaudi and the
vector Anopheles stephensi, it has been shown that fluctuations
around cooler temperatures (18uC) enhanced parasite transmission,
whereas fluctuations around a warmer temperature (24uC) impaired
it3. Given the fact that our study region is thermally more analogous
to the cooler temperature regime in this laboratory study (mean
value of 16.6uC), the effects of diurnal temperature range on preval-
ence in our models is consistent with laboratory findings. Our results
suggest that temperature fluctuations may substantially influence
malaria transmission even in a natural setting where parasites, vec-
tors, and hosts are exposed to a full range of variable conditions.

Previous work has reported that both prevalence and parasitemia
are shaped by a combination of environmental and host traits17,23.
While links between prevalence and environmental conditions were
made in this study, there was little support for associations between
the climate and parasitemia in host populations. The strong response
of malaria prevalence to temperature conditions may be due to the
combined effect of higher abundance of vectors and accelerated devel-
opmental time within the vector in warmer areas. Conversely, para-
sitemia (the number of parasites in infected sparrows) is likely
determined by the balance between the capacity of the parasite to
multiply and the capacity of the host to control the infection, factors
that may be under less direct influence from environmental variability.

The house sparrow is a ubiquitous passerine host in Europe, and is
used in this study as an indicator species to forecast the response of

avian malaria within a larger avian community facing undergoing
climate changes. We provide here clear-cut results regarding the
future distribution of a generalist avian malaria parasite, Plasmo-
dium relictum. Plasmodium relictum is particularly interesting with
respect to the potential consequences of climate change because
it is maintained by multiple host species and might easily switch to
new hosts as long as it spreads into new areas24. The example of
the introduction of Plasmodium relictum (the lineage GRW4) and
its competent vector, Culex quinquefasciatus, in Hawaii is well
known to have decimated immunologically naı̈ve endemic avian
species25,26. Of course, each host species is likely to experience differ-
ential levels of exposure and response, and as such, this study should
only serve as a first prediction of the spatial extent of avian malaria
under future conditions. Our study also provides evidence that with
impending global warming, malaria will spread in the north of
France and that populations already experiencing malaria infec-
tions will exhibit higher prevalence. The predictive maps also show
that the southwest coast remains relatively unaffected by malaria
infection, as well as the center. These findings can be used as a
testable spatial template for verification by future ground-truthing
efforts.

The impact of climate change on parasite distribution is likely to be
extremely complex, and influenced by numerous factors, including
but not limited to local environmental conditions. We do not dis-
count here other variables that may affect transmission, such as

Figure 1 | Importance scores for each environmental variable as related to Plasmodium prevalence, that were used as predictors in random forest
algorithm models. Increase in mean square error (left panel) is calculated as the average increase in squared residuals of the test set when the explanatory

variable is randomly permuted. When a given variable has little predictive power, its permutation will not cause substantial difference in model residuals,

therefore a higher increase in mean square error is indicative of a more important variable. A larger increase in node purity (right panel) represents more

homogeneous calls within partitions of the data. Each measure of variable importance identified diurnal temperature range as the top predictor, along

with minimum annual temperature, temperature seasonality, and annual temperature range as being top predictors of Plasmodium prevalence.
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vector development and its life cycle; a survey of vector abundance
and diversity will be performed in parallel with host populations. In
this time of rapid global change, the goal of our study is to reveal and
emphasize the necessity of studying the effects of ecological change
on vector-borne parasites in wildlife, with obvious conservation
implications, but also in consideration of larger management and
policy decisions, as our methods may be useful when applied to other
host-parasite systems.

Methods
Samples were collected across France at 24 sites between 2004 and 2008. In total, 1750
individuals were captured using mist-nets and nest boxes (Table 1). We banded them

with a numbered metal ring and blood samples (20 ml) were collected from the
brachial vein and stored in lysis buffer (10 mM Tris-HCL pH 8.0, 100 mM EDTA, 2%
SDS).

DNA was extracted from whole blood using the Qiaquick 96 Purification Kit
(QIAGEN) according to the manufacturer’s instructions. For Plasmodium detection,
we used a nested PCR to amplify a 600 bp fragment of cytochrome b with the primers
HAEMF/HAEMR2 - HAEMNF/HAEMNR227. The PCR products were run out on a
2% agarose gel using 13TBE, and visualized by an ethidium bromide stain under
ultraviolet light to check for positive infections. We identified lineages by sequencing
the fragments on an ABI3730XL, Applied Biosystems. For each positive PCR product,
we also performed a quantitative PCR to obtain parasitemia28. Briefly, for each
individual, we conducted two qPCR in the same run: one targeting the nuclear 18s
rDNA gene of Plasmodium and the other targeting the 18s rDNA gene of bird (see
ref. 28 for primers and probe sequences). Parasite intensities were calculated as

Figure 2 | (a) Map showing i) prevalence of Plasmodium at sampled locations (dots in warmer colors equal higher prevalence) overlayed on ii) a

spatially continuous map of diurnal temperature range (the most important variable in our models, warmer colors indicate higher diurnal temperature

ranges); (b) Correlation between the prevalence (percentage of infected individuals per site) and the mean diurnal temperature range (Celsius degree

x10). Map created in ArcMap 10 (Environmental Systems Resource Institute, ArcMap 10.0 ESRI, Redlands, California).

Figure 3 | Predictive map of malaria prevalence under (a) current environmental conditions and (b) future conditions in years 2050 and 2080. Green

areas indicate those that will experience a predicted decrease in prevalence by at least 1% as compared to current predictions, and red areas are those

predicted to have an increase in prevalence by at least 10% over current predictions. Maps created in ArcMap 10 (Environmental Systems Resource

Institute, ArcMap Release10.0, ESRI, Redlands, California).
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relative quantification values (RQ) as 2e – (Ct18s Plasmodium - Ct18s bird) using the
software SDS 2.2 (Applied Biosystem). Ct represents the number of PCR cycles at
which fluorescence is first detected as statistically significant above the baseline,
which is inversely correlated with the initial amount of DNA in a sample. RQ can be
interpreted as the fold-amount of target gene (Plasmodium 18s rDNA) with respect to
the amount of the reference gene (host 18s rDNA). All qPCR were run on an ABI
7900HT real-time PCR system (Applied Biosystem).

Modeling under random forest. We used a set of moderately high-resolution climate
and satellite remote sensing variables to characterize the environmental differences
among our sampling areas. Variables were re-aggregated from their native resolutions
to 1 km resolution. We used 19 bioclimatic variables (representing both temperature
and precipitation) from the WorldClim database14 which are 50-year averages (1950–
2000) of annual means, seasonal extremes and degrees of seasonality in temperature
and precipitation, and represent biologically meaningful variables for characterizing
species range15,19,29: (http://www.worldclim.org/), and we used elevation measure,
downloaded from the Earth Remote Sensing Data Analysis Center (ERSDAC,
http://www.jspacesystems.or.jp/ersdac/eng/index.E.html) at ,30 m resolution.

We modelled the ability of bioclimatic variables to predict variation in two res-
ponse variables in House sparrow hosts, parasitemia and prevalence of avian malaria.
We ran 5000 regression trees in a random forest model (RandomForest21) under the R
framework (R development Core Team 2004) to measure the percent variation
explained in each response. We extracted two measures of variable importance for
each model, the percent increase in mean square error when individual variables are
randomly permutated, and the total decrease in node impurities from splitting each
variable, as measured by the residual sum of squares. Due to the inability of our suite
of variables to predict variation in parasitemia (see Results and Discussion), we
focused further analyses only on malaria prevalence.

Most statistical procedures and traditional data modeling technique (such as linear
regression or ANOVA) measure variable importance indirectly by selecting variables
using criteria such as statistical significance and Akaike’s Information Criterion. The
Random Forest has a different approach; it is a non-parametric algorithm method.
We used this method because Random Forest procedures (i) do not require the use of
any particular model (which might be difficult to assign given a complex response
such as disease prevalence), (ii) do not require normalized data, and (iii) have con-
sistently outperformed traditional regression procedures on a number of data-
sets15,30–32. The advantage of random forest models is their ability to predict a con-
tinuous (in this case, prevalence) rather than categorical (presence/absence) variable
across a landscape, and their ability to model complex interactions among predictor
variables. Also, autocorrelation between predictors is not an obstacle for these algo-
rithms because if climatic variables are highly correlated, then removal of one variable
does not affect the model, because an autocorrelated variable can just take its place in
the model. In our study, for the case of prevalence, each of the first couple of variables
explained unique variation in prevalence; this is not the case for the parasitemia data.

In details, for each tree in the forest, there is a misclassification rate for the out-of-
bag observations. To assess the importance of a specific predictor variable, the values
of the variable are randomly permuted for the out-of-bag observations, and then the
modified out-of-bag data are passed down the tree to get new predictions. The
difference between the misclassification rate for the modified and original out-of-bag
data, divided by the standard error, is a measure of the importance of the variable. The
mean square error is an estimate of the full model’s error rate, whereas the purity is a
measure of how often an out-of-bag record from the set would be incorrectly called in
the ‘‘child’’ leaves of the tree as compared to the ‘‘parent’’. It is a measure of homo-
geneity versus heterogeneity in each node of the branch. The purity index represented
therefore the sum of how each variable contributes to the homogeneity of out-of-bag
calls, and that a larger increase in purity represents more homogeneous calls within
partitions of the data.

In addition, we created spatial predictions by applying the relationships deter-
mined by the models to 30,000 randomly-selected points within the host range, to
predict prevalence in unsampled areas under current climatic conditions. These
predictions were then used to create interpolations between points using an Ordinary
Kriging33, in order to generate a continuous spatial prediction map of current malaria
prevalence (Fig. 3a).

Finally, using the current relationship between climate and malaria prevalence, we
projected the spatial variation of prevalence under future climate conditions using
environmental data downloaded from the 4th Assessment of the IPCC under an A1
scenario, http://www.worldclim.org). These projections were made for two decadal
time periods, 2050 and 2080, in an attempt to understand how patterns of malaria
prevalence are likely to change under future climate conditions (Fig. 3b).
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