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ABSTRACT: The rapid development of big data technology and
machine learning has increasingly focused attention on fault
diagnosis in complex chemical processes. However, data-driven
approaches often overlook the inherent physical correlations within
the system and lack a robust mechanism for providing trusted
explanations for fault diagnosis. To address this challenge, a graph-
based fault diagnosis model framework is proposed along with a
dependable fault node diagnosis analysis method. In order to
enhance the extraction of chemical process features from a spatial
perspective, a graph convolution network (GCN)-based node
spatial encoding module is integrated. The construction of the
adjacency matrix involves combining a priori knowledge of chemical
processes with Pearson correlation, thereby incorporating the
physical correlations between nodes. Simultaneously, to capture temporal dependencies in fault data, a spatiotemporal feature
fusion module based on the long short-term memory network (LSTM) is employed. In terms of model training, a dual-supervision
strategy is adopted to ensure stable convergence of the multiclass fault diagnosis model. For model inference, a multi-model voting
strategy is designed to mitigate accuracy degradation resulting from model prediction bias. To tackle the interpretability challenge, a
fault diagnosis analysis method based on node masking is designed, effectively identifying critical nodes contributing to system faults.
Experimental validation on the Tennessee Eastman process demonstrates the effectiveness of the proposed model, achieving high
accuracy in fault diagnosis. The average fault diagnosis rate for all fault types reaches 0.9844, showcasing state-of-the-art performance
in fault diagnosis.

1. INTRODUCTION
Chemical process production plays a crucial role in the
advancement of industrial production. It is of paramount
importance to diagnose and analyze the anomalies in chemical
processes for the safety of chemical systems.1 Consequently,
fault diagnosis in complex systems has garnered significant
interest among researchers.2 Fault detection aims to determine
whether a system has malfunctioned, while fault diagnosis
seeks to accurately identify and classify the types of faults that
occur in a system, as well as determine the root cause
(variable), magnitude, and location of the fault.3 The fault
diagnosis rate refers to the accuracy of fault classification.
In the past few years, the rapid emergence of artificial

intelligence (AI) and big data technologies has garnered
significant attention in the academic community for data-
driven fault diagnosis methods.4 Data-driven fault diagnosis
methods can be mainly divided into several categories: data-
based probability analysis, machine learning methods, time
series analysis, multivariate statistical learning methods, and
deep learning methods. Data-driven probabilistic analysis
methods utilize probability and statistical theory to perform
fault diagnosis through probabilistic analysis of the observed

data. Examples of these methods include Bayesian networks,5

hidden Markov models (HMMs),6 and Markov chains.7

Machine learning methods employ pattern recognition and
learning from data to conduct fault diagnosis. Common
machine learning algorithms used in this context include
support vector machines (SVMs),8 decision trees,9 random
forests,10 and k-nearest neighbors (KNNs).11 Time series
analysis is particularly important for understanding and
diagnosing time-dependent faults. Multivariate statistical
learning methods include well-known classical techniques
such as principal component analysis (PCA),12 independent
component analysis (ICA),13 and partial least squares (PLS).14

These methods aim to reduce the dimensionality of high-
dimensional data by transforming it into a lower-dimensional
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space. Anomaly scores, typically based on statistics like
Hotelling’s T2 or squared prediction error (SPE), are then
computed among the new variables in the lower-dimensional
space. These scores are compared to predefined thresholds to
facilitate fault diagnosis.15 Deep learning is a machine learning
method based on artificial neural networks, which can
automatically learn features and patterns from data through
multilevel neural network structures and learning algorithms.
Deep learning methods have shown remarkable success in

modeling complex chemical processes, particularly in the field
of fault diagnosis. Various classical neural network structures,
such as the convolutional neural network (CNN), deep
confidence network (DCN), autoencoder (AE), long short-
term memory (LSTM), generative adversarial network (GAN),
gated recurrent units (GRUs), and attention mechanisms, have
been employed for fault diagnosis tasks. For instance, Zhang
and Zhao adopted a scalable deep belief network (DBN) and
achieved an average fault diagnosis rate of 82.1% for all 20 fault
types in the Tennessee Eastman (TE) process.16 Wu and Zhao
proposed a fault diagnosis method using a deep CNN
(DCNN) model,17 outperforming other fault diagnosis
methods reported in the literature. Zhang et al. employed
bidirectional recurrent neural networks (BiRNNs) to construct
a fault diagnosis and detection model of complex RNN units.18

Deng et al. introduced a dynamic CNN method based on a
genetic algorithm, achieving an average diagnosis rate of
89.72% for 20 faults.19 Chen et al. utilized an encoder-decoder
network with a self-focusing mechanism for fault classifica-
tion.20

In recent years, an increasing emphasis has been placed on
the utilization of physics-inspired neural networks or AI
methodologies to facilitate the effective integration of data-
driven techniques with the dynamic characteristics inherent in
physical systems.21 This integration is designed to elevate the
comprehension, modeling, and analysis of intricate physical
phenomena, resulting in enhanced predictive capacities and
profound insights into the underlying mechanisms. The
incorporation of prior knowledge, such as physical space
layout and reaction mechanisms, into graph structures within
the chemical process industry has been explored.22 This
facilitates the explicit learning of inherent a priori knowledge
by graph-based models, culminating in more precise
representations and improved capabilities for capturing the
intricacies of real-world processes. GCN is a class of neural
network models designed specifically for processing graph-
structured data. Relationships and topologies in graphs are
effectively captured by GCN, making them well-suited for fault
diagnosis tasks in the chemical industry. For instance, Zhang
and Yu introduced a novel graph neural network called pruned
graph convolutional network (PGCN) for feature learning on
graph-structured data.23 They transformed one-dimensional
process data into graph data using graph construction methods
and utilized GCN to extract features from the process data. Jia
et al. developed a topology-guided graph learning framework
for fault diagnosis, integrating graphs with process physics.24

They constructed symbolic directed graphs (SDGs) to
describe the process topology and employed GCN structures
and convolutional gating mechanisms to propagate informa-
tion based on the topological graph structure. Wu et al.
integrated GCN, self-attention mechanisms, and process
topology knowledge, incorporating information from both
upstream and downstream processes, resulting in high-
performance fault diagnosis models.25 These studies under-

score the importance of incorporating process knowledge into
GCN-based models for fault diagnosis. By leveraging graph
structures and considering underlying process relationships,
enhanced accuracy in fault diagnosis tasks in the chemical
industry can be achieved.
In the task of fault diagnosis, accurately extracting temporal

features is crucial for comprehending the underlying patterns
and dynamics of the system’s behavior. LSTM networks are
well-suited for capturing temporal dynamic features in complex
systems. Equipped with specialized memory units and gating
mechanisms that can selectively store and access relevant
information over a long period of time,26 LSTM networks have
been leveraged by researchers in the field of fault diagnosis to
develop effective models. For instance, Zhao et al. proposed a
fault diagnosis network based on LSTM and conducted
experiments on the TE process, achieving an average fault
diagnosis rate of 80% for 20 different faults.27 Zhang et al.
proposed a three-layer stacked LSTM network that effectively
models sequential data and detects anomalies by fully utilizing
long-term dependency information in the raw data.28 Addi-
tionally, Zhang and Qiu presented a semi-supervised approach
called LSTM-LAE (long short-term memory ladder self-
encoder) for fault diagnosis.29

Indeed, the interpretability of data-driven fault diagnosis
models remains a significant challenge. While these models
have achieved high diagnostic performance, transparency in
terms of the specific process variables contributing to their
fault prediction results is often lacking.30 However, under-
standing the variables associated with faults is crucial for
operators to make informed decisions and take corrective
actions to restore normal operation.31 To address this issue,
current research is focused on the development of fault
diagnosis models with both high diagnostic performance and
interpretability. An approach to enhance interpretability by
assessing the physical consistency of the model using a GNN
interpreter was proposed by Jia et al.24 This ensures
transparency in the model prediction process, enabling
operators to better understand how the model arrives at its
results. Wu et al. explained the basis for fault decisions in a
diagnostic model by visualizing the self-attention mechanism
weights.25 By examining the attention weights assigned to
different variables, we facilitate understanding regarding which
variables are crucial for fault classification. In addition,
Gangopadhyay et al. proposed a spatiotemporal attention
module that enhances understanding of the contributions of
different features to the predictive outputs of time series.32

This mechanism aids in identifying critical temporal dynamics
and specific features during the fault process. These studies
underscore the importance of interpretability in fault diagnosis
models. Interpretive analysis of fault diagnosis provides
operators with reliable and actionable troubleshooting
guidance.
In this study, the synergies of GCN and LSTM are leveraged

to propose an advanced fault diagnosis model, integrating prior
knowledge. The model comprises a GCN-based node spatial
encoding module and a LSTM-based spatiotemporal feature
fusion module. This combined approach enables the extraction
of features possessing both spatial and temporal characteristics,
which are essential for precise fault diagnosis in complex
industrial chemical process systems. Additionally, the study
introduces a node-masking-based fault diagnosis analysis
method, contributing to enhanced interpretability. This
methodology effectively identifies pivotal variables, demon-
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strating robust physical correlations with the origins of faults.
The primary contributions of this work can be briefly
summarized as follows:

1 A fault diagnosis model tailored for the chemical
industry is presented. The model employs a GCN-
based node spatial encoding module to extract spatial
features from nodes. The construction of the adjacency
matrix utilizes a methodology grounded in prior
knowledge of the chemical process, complemented by
Pearson correlation. This approach ensures a thorough
consideration of the physical correlations between
nodes. Furthermore, a LSTM-based spatiotemporal
feature fusion module is introduced to effectively capture
correlations within time series data, thereby enhancing
the model’s capacity for fault diagnosis.

2 A dual-supervision strategy is employed for model
training to ensure stable convergence of the multiclass
fault diagnosis model. Also, a multi-model voting
strategy is devised for model inference to mitigate the
accuracy degradation caused by prediction bias.

3 A fault diagnosis analysis method based on node
masking is designed. This method identifies the crucial
nodes associated with faults by analyzing the weight
distribution of the model. The importance of these key
nodes in the fault diagnosis inference process is verified
through node masking experiments.

The rest of this article is organized as follows: Section 2
introduces the basic principles of graphs and LSTM networks.
Section 3 presents the proposed model framework for fault
diagnosis. Section 4 is a case study of the TE process, which
shows the high performance of the proposed model. Section
4.5 describes the proposed fault diagnosis analysis method.
Section 5 presents the results and discussion. Section 6
concludes the paper.

2. PRELIMINARIES
2.1. Graph Convolutional Network. A graph is generally

defined as a collection of nodes (V) and edges (E),
representing complex relationships between entities. It can
be represented using an adjacency matrix A and node features
X. Nodes are the fundamental units in a graph, while edges
represent the relationships between nodes. Neighbor nodes
refer to the nodes that are directly connected to a specific
node. An adjacency matrix is an n × n matrix, where n is the
number of nodes, and the elements in the matrix indicate
whether there is an edge between nodes, = ×A a( )ij n n. The
expression of aij is shown in eq 1. Node features refer to the
attributes or feature vectors associated with each node. Node
features can be of any data type, such as numerical, textual, or
image data

=
l
m
ooo
n
oooa

v v E

v v E

1 ( , )

0 ( , )
ij

i j

i j (1)

where aij represents the element in the adjacency matrix
corresponding to the connection between nodes vi and vj.
(vi,vj) ∈ E: this condition checks whether an edge exists
between nodes vi and vj. If an edge exists, aij is set to 1,
indicating a connection. (vi,vj) ∉ E: if there is no edge between
nodes vi and vj, aij is set to 0, signifying the absence of a
connection.

2.2. Long Short-Term Memory Network. LSTM is built
upon the foundation of RNNs and addresses the issue of long-
term dependencies in processing long sequential data.26 It
introduces gated structures that enable dynamic control over
information retention and discard. The LSTM unit structure is
depicted in Figure 1.

LSTM utilizes a forget gate, an input gate, and an output
gate to control the cell state. The forget gate is responsible for
integrating the previous hidden state ht−1 and the current t
time input vector Xt. It uses a sigmoid function to generate the
output vector f t. The previous cell state Ct−1 is then multiplied
element-wise with f t to perform data forgetting, effectively
controlling which information should be discarded from the
cell state. The expression formula for the forgetting gate f t is

= [ ] +f W h X b( , )t t t t1 c (2)

where σ(·) represents the sigmoid function. Wt refers to the
weight matrix associated with the forget gate. bc represents the
bias term associated with the forget gate.
The input gate arithmetic expression is

= [ ] +C W h X btanh( , )t t tc 1 c (3)

= [ ] +i W h X b( , )t t ti 1 i (4)

where Ct represents the candidate state. Wc and Wi are the
weight matrices associated with the candidate state and the
input gate, respectively. it represents the input gate weight
vector. bi represents the bias term associated with the input
gate.
To convert the previous cell state Ct−1 to the current cell

state Ct, the conversion formula is

= * + *C f C i Ct t t t t1 1 (5)

where “*” symbol represents the element-wise multiplication
operator between matrices or vectors.
The output gate arithmetic expression is

= [ ] +O W h X b( , )t t to 1 o (6)

= *h O Ctanht t t (7)

where Ot represents the hidden layer state weight vector. Wo
represents the output gate to be a trained parameter matrix. bo
represents the output gate to be trained for the bias term. ht
represents the current moment’s hidden layer state.
The current hidden state ht and the current input vector Xt

interact at the input gate. Applying the sigmoid function to this
interaction yields the hidden state weight vector Ot. The

Figure 1. Architecture of LSTM cell.
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current cell state Ct is then normalized using the hyperbolic
tanh function, resulting in a vector with all elements ranging
from −1 to 1. Multiplying this normalized cell state Ct with the
hidden state weight vector, Ot selectively forgets certain
information. This process yields the updated hidden state ht at
the current time step, which completes the updating of the
short-term memory.

3. FAULT DIAGNOSIS FRAMEWORK
A novel fault diagnosis model framework, named PG-STF, is
proposed, as illustrated in Figure 2. This framework comprises
a node spatial encoding module and a spatiotemporal feature
fusion module. Within the node spatial encoding module,
GCN is employed to acquire node representations. The
construction of the adjacency matrix incorporates prior

knowledge of chemical processes, effectively depicting the
physical correlations inherent in the system. Pertinent
information and features crucial for fault diagnosis are derived
through the utilization of spatial relationships between nodes.
To integrate temporal information, the spatiotemporal feature
fusion module amalgamates temporal encoding with local
spatial encoding. This approach empowers the model to
capture both temporal correlations and local spatial features,
thereby elevating the overall fault diagnosis performance.
For model training, a dual-supervised training strategy is

introduced to accelerate convergence and ensure a stable
model performance. Additionally, an efficient multi-model
voting inference strategy is proposed to improve the decision-
making process. By aggregating predictions from multiple
models, the model can make more accurate and reliable fault

Figure 2. PG-STF model framework.

Figure 3. Visualization of 22 node connections.
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diagnosis decisions, mitigating the accuracy problem caused by
prediction bias.
3.1. Node Spatial Encoding Module. The node spatial

encoding module employs GCN to obtain the node
representations. A priori knowledge of the chemical process
is utilized to construct a topology that describes the physical
associations within the system. The process consists of two
steps: first, the graph data is transformed into an adjacency
matrix representation and, second, spatial node encoding is
conducted by defining feature vectors for each node.
3.1.1. Building the Adjacency Matrix. Constructing an

adjacency matrix involves utilizing a priori knowledge of the
structure of process flows in chemical systems. Analyzing the
process flow allowed us to identify the nodes corresponding to
process variables and their interconnections. This information
is crucial for building an adjacency matrix that represents the
relationships between nodes. The node set V consists of
continuous variables in the chemical process system, while the
edge set E delineates the connectivity between these variables.
The construction of the adjacency matrix, guided by the
chemical process flow, ensures that the GCN accurately
captures the physical correlations within the system and
effectively learn features from the graph data.
Figure 3 presents a visualization of the connectivity

relationships among the 22 nodes (continuous variables) in
the adjacency matrix. The matrix is based on a chemical
simulation of the TE process. The 22 nodes are represented in
the figure by different colored circles. The arrows indicate the
connections between the nodes, illustrating how the variables
in the TE process are interconnected and highlighting the
effect that one variable may have on another. For example, F1
represents the feed flow rate of component A. In the
constructed adjacency matrix, F1 is connected to two other
nodes, namely, P1 (reactor pressure) and L1 (reactor level).
This connection signifies that the component A feed flow rate
(F1) has a relationship with both the reactor pressure (P1) and
the reactor level (L1). Understanding these connections helps
in comprehending the complex dynamics and dependencies
between the continuous measurement variables in the TE
process.

3.1.2. Spatial Node Encoding. The input feature vector
XN×D represents the node feature information, where N is the
number of nodes and D is the dimension of the feature vector
for each node. The coded representation of each node, H(0) is
initialized randomly. Spatial node encoding is conducted using
GCN, which leverages the graph structure to enhance the node
representations by combining node features with the graph
topology. The transfer function of GCN is defined as follows33

=f H A D AD H W( , ) ( )l l l( ) 1/2 1/2 ( ) ( ) (8)

where A represents the adjacency matrix, = +A A I , A
represents the symmetric normalized matrix, and I is the
identity matrix. D is the degree matrix of A, which is a diagonal
matrix with diagonal elements =D jAij ij. H

(l) represents the
node feature matrix at layer l, and the initial input layer H(1) =
X. W(l) is the weight matrix at layer l. σ is the activation
function, typically ReLU.
The GCN structure conducts graph convolution operations

using the adjacency matrix and node features. The architecture
of the GCN is depicted in Figure 4. At each layer I = 1, 2, ..., L
(where L is the number of graph convolution layers), a graph
convolution operation takes place. This operation aggregates
the features of a node with those of its neighboring nodes,
facilitating the learning of comprehensive node representa-
tions. To obtain richer node representations, a multilayer graph
convolution operation is performed by stacking two graph
convolution layers. Consequently, each node acquires an
encoded representation xgcn, serving as the output of the GCN
and becoming the input for the subsequent spatiotemporal
fusion model.
3.2. Spatiotemporal Feature Fusion Module. Modern

chemical process data exhibit strong time correlation.34 To
extract more feature information from fault types, considering
both the time-domain features and local spatial features of the
data is essential. Therefore, this article introduces a temporal
and spatial feature fusion module designed to effectively extract
temporal and local spatial features from fault data. The module
consists of two main parts: the temporal encoding module and
the local encoding module.

Figure 4. GCN with two graph convolution layers.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.3c09122
ACS Omega 2024, 9, 9486−9502

9490

https://pubs.acs.org/doi/10.1021/acsomega.3c09122?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c09122?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c09122?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c09122?fig=fig4&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.3c09122?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


The temporal encoding module is designed with a set of
LSTM units to extract the temporal correlation from sequence
features and encode the information. LSTM units are capable
of handling data sequences of varying lengths and capturing
long-term dependencies. Sequentially capturing time-depend-
ent information, the module outputs the encoded temporal
feature representation as xtime.

= * + *C x C x x( ) ( ) tanh( )n ngcn
f

1 gcn
i

gcn (9)

= *x x C( ) tanh( )ntime gcn
o

(10)

where Cn is the memory unit, xgcnf is the forgetting gate, xgcni is
the input gate, and xgcno is the output gate. The tanh activation
function is defined as

=
+

xtanh( )
1 e
1 e

x

x

2

2 (11)

The local encoding module employs a fully connected layer
for the extraction of local spatial features from input feature X.
This layer extracts local features of the original signal to
provide local spatial information about the data. Through
linear mapping, the feature vector of each node is transformed
into locally coded features. The local spatial features of a node
at the current time step are denoted by xlocal.

= = +x f X WX B( )local c (12)

where W represents the weight matrix and B represents the
bias term.
The fusion of time features and local spatial features results

in the output feature xfused. By incorporating both time-domain
and spatial-domain features, the final extracted features possess
rich spatiotemporal characteristics, enhancing the diagnostic
performance of the model. The output features are then input
to the fault classifiers to execute the fault classification task.
xfused is defined as follows

= [ ]x x x( , )fused time local (13)

where φ denotes the feature fusion operation.
3.3. Dual-Supervised Training Strategy. To ensure

stable convergence during model training, a dual-supervised
training strategy is devised. This strategy involves joint training
with two classifiers: an anomaly classifier and a fault diagnosis

classifier. Both classifiers utilize multi-layer perceptron (MLP)
networks.35 The MLP classifier is described as a function
denoted by f, which maps the input vector x to output vector y

=y f x( ; ) (14)

For an L-layer MLP, the function f consists of the following
transformations

= +h W x b( )1 1 1 (15)

= +h W h b( )l l l l1 1 1 (16)

where θ represents all the parameters in the MLP, including
the weights w and bias terms b. σ is the activation function
such as ReLU.
The anomaly classifier, implemented using a MLP, predicts

the abnormal state of the output node, treating it as a binary
classification task. The input to the anomaly classifier is the
locally encoded feature xlocal. The predicted anomaly state is
generated by the MLP model and denoted as yabnorm, as defined
in eq 17. The CrossEntropyLoss objective function is utilized
to quantify prediction errors between yabnorm and the truth label
yabnorm during the training of this anomaly classifier.
Minimizing the CrossEntropyLoss enables the MLP to learn
distinguishing patterns in xlocal indicative of normal or
abnormal states.

=y xMLP ( )abnorm abnorm local (17)

=

=

y y

y f y

Loss CrossEntropyLoss( , )

log( ( ; ))T
abnorm

abnorm abnorm abnorm

abnorm (18)

The fault diagnosis classifier employs another MLP to
predict the fault type of the output nodes, representing it as a
multiclass classification output. The input to the fault diagnosis
classifier is the aggregated feature, xfused, encompassing both
the local encoding feature and the temporal encoding feature.
Additionally, the output yabnorm from the anomaly classifier is
incorporated, enabling the fault diagnosis classifier to focus on
classifying fault types within an abnormal range. The output of
the fault diagnosis classifier is denoted as y, as defined in eq 19.
To address the common issue of class imbalance in fault

Figure 5. Multi-model voting mechanism.
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diagnosis tasks, the FocalLoss function is employed for training
the fault diagnosis classifier

= ·y x yMLP( )fused abnorm (19)

=

= [ ] [ ]

y y

y f y f y

Loss FocalLoss( , )

1 ( ; ) log ( ; )T
(20)

where γ is the focusing parameter that controls the degree of
weight reduction for the well-classified samples. The higher the
value of γ, the more attention is paid to samples that are
difficult to classify.
Employing a dual-supervision strategy, where two classifiers

are trained jointly, enhances the accuracy and reliability of
model fault diagnosis. The anomaly classifier serves as an initial
filter to identify potential anomalies, while the fault diagnosis
classifier conducts a finer classification of detected anomalies,
thereby achieving an accurate fault diagnosis.
3.4. Multi-Model Voting Inference Strategy. The

multi-model voting inference strategy, an ensemble learning
approach widely applied in integrated learning, combines
predictions from multiple independent models to derive the
final prediction. This approach aims to enhance accuracy and
minimize errors by leveraging the strengths of models with
comparable performance.36 Employing a soft voting inference
mechanism in this strategy utilizes prediction probabilities to
improve accuracy.37 Figure 5 illustrates the multi-model voting
strategy, with specific steps outlined below.

• Step 1: integration of multiple models: select multiple
independent models for training, considering their
distinct features and strengths.

• Step 2: prediction: for a given input sample, input it into
each model for prediction, obtaining the predicted
probability for each fault.

• Step 3: set confidence threshold: based on a
predetermined confidence threshold (set to 0.75 in
this case), evaluate the prediction results of each model.

Filter out model outputs with confidence levels below
the threshold, retaining only valid votes.

• Step 4: determine the final prediction: weight and
average the valid votes to obtain the final classification
result.

The implementation of the multi-model voting inference
strategy effectively leverages the strengths of multiple models,
facilitating an accurate evaluation of each model’s contribution.
This approach ensures the acquisition of more reliable and
accurate diagnostic results, overcoming the challenge of
reduced diagnostic accuracy associated with prediction bias
in individual models.
3.5. Interpretability Analysis. In our study, an inves-

tigation of the interpretability of the proposed model was
undertaken. It was observed that GCN is highly effective in
capturing complex relationships between nodes, rendering it
particularly suitable for identifying potential anomaly patterns
within a system. Valuable insights into the interactions among
nodes are provided by the weight distribution of GCN,
enabling an understanding of how the fault features are
extracted from the graph structure. Through the weight
analysis of GCN, insights into the fault diagnosis process of the
model are gained, allowing the identification of nodes crucial
for decision-making during model inference and the accurate
pinpointing of potential fault sources. This process enhances
the precision and credibility of the fault localization.
To objectively assess the relative contributions of nodes in

the model, an innovative approach known as node masking
experiments was introduced. Node importance is quantified by
evaluating the impact of node masking on the accuracy of the
model inference. Through this approach, the contribution of
each node to fault prediction can be quantitatively measured,
thereby identifying key nodes that play a critical role in the
overall process.
The identification of key nodes essential for fault prediction

can be accurately accomplished by combining the weight
analysis of the model with the results of the node masking

Figure 6. TE process flow.
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experiments. This comprehensive analysis contributes to a
deeper understanding of the specific causes of faults. Detailed
experimental results related to this interpretability aspect can
be found in the section Fault Diagnosis Analysis of the article.

4. CASE STUDY
4.1. Simulation Setup. The TE process is based on a

chemical plant of Eastman Chemical Company in Tennessee,
USA, and it closely resembles the actual production process.20

The process (Figure 6) involves eight components, labeled A−
H, where component B is an inert substance that does not
participate in the reactions. The reactions in the process are all
irreversible exothermic reactions,38 and the reaction equations
are as follows

+ +

+ +

+

A(g) C(g) D(g) G(liq)

A(g) C(g) E(g) H(liq)

A(g) E(g) F(liq)

3D(g) 2F(liq) (21)

where (g) and (liq) represent the gas phase and liquid phase,
respectively. Components A, C, D, and E are the main raw
materials, while G and H are the main products. Component F
is a byproduct.
The TE process dataset used in the study includes a total of

41 measurement variables, 12 control variables, and 21
predetermined faults. Among the measurement variables,
XMEAS(1)-XMEAS(22) represent the continuous measure-
ment variables of the process. IDV(1−15) and IDV21
correspond to faults with known types, while IDV(16−20)
represents faults with unknown types. It is worth mentioning
that except for fault 6, the training set samples with faults were
obtained from a 25 h simulation, resulting in 480 observations.
The test set samples with faults were obtained from a 48 h
simulation, resulting in a total of 960 observations. Fault 6
caused the machine to shut down after 7 and 14 h, and its
training and test sets produced 140 and 280 samples,
respectively. Due to the long intermittent analysis variables
in the TE process dataset, which have long sampling intervals
and cannot effectively capture continuous changes in process
states, the study only utilizes the 22 continuous measurement
variables (XMEAS(1)-XMEAS(22)) as nodes for analysis.
4.2. Dataset Processing. In the dataset processing phase,

a sliding window approach is employed for data collection.
During the training phase, the sampling quantity is set to 100.
Additionally, the input data undergoes normalization. The
normalization process involves normalizing the data along the

time dimension for each of the 100-time steps. Mean and
variance calculations are performed on the input data for each
dimension to achieve normalization across all dimensions.
4.3. Performance of the Model in Fault Diagnosis. To

validate the effectiveness of the proposed PG-STF fault
diagnosis model, it is trained on a training dataset and
evaluated on a separate test dataset. Two evaluation metrics
are employed to assess the model’s performance: classification
accuracy (ACC) and fault diagnosis rate (FDR). ACC
measures the model’s ability to correctly predict the type of
faults in the samples, providing an overall measure of the
model’s effectiveness in terms of correctly classifying faults.
FDR evaluates the model’s ability to correctly identify specific
types of faults, indicating how well the model can accurately
diagnose and classify different fault types

= +
+ + +

ACC
TP TN

TP TN FP FN (22)

=
+

FDR
TP

TP FN (23)

where TP represents true positives, which are the number of
samples correctly classified as positive. TN represents true
negatives, which are the number of samples correctly classified
as negative. FP represents false positives, which are the number
of samples incorrectly classified as positive. FN represents false
negatives, which are the number of samples incorrectly
classified as negative.
Figure 7 illustrates the trend of the loss value, abnormal loss

value, and accuracy rate of the PG-STF model during the
training process. The loss and abnormal loss values exhibit a
gradual decrease and eventual stabilization as the number of
training batches increases. This indicates that the model has
effectively learned the relevant features in the data and
improves its ability to minimize the discrepancy between
predicted and actual values. Concurrently, the accuracy rate
shows a gradual increase, approaching a value of 1 as the
training progresses. This signifies that the model has become
highly proficient in accurately classifying faults. The ascending
accuracy rate further demonstrates the model’s capacity to
make correct predictions and classify fault types with a notable
level of precision. These results affirm the effectiveness and
performance of the model. Moreover, the introduction of the
abnormal loss function contributes to the improved con-
vergence speed of the model, which is crucial for the efficient
fault diagnosis in practical applications.
To evaluate the efficacy of the proposed PG-STF model for

fault diagnosis, the test dataset is input into the model, with the

Figure 7. Model test training curves. (a) Change of loss with training batches. (b) Change of abnormal loss with training batches. (c) Change of
accuracy rate with training batches.
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confusion matrix employed as the assessment metric. As
depicted in Figure 8, the confusion matrix provides a visual
representation of the model’s performance by showing the
relationship between the actual fault labels and the predicted
fault labels.39 In the confusion matrix, the horizontal axis
represents the actual labeling of the fault types, while the
vertical axis represents the predicted labeling. The values on

the diagonal represent the diagnostic accuracy of the PG-STF
model for each fault type. The values off the diagonal represent
the number of diagnostic errors in the PG-STF model for each
fault type. Taking fault 12 as an example, in 100 diagnostic
tasks, the model’s correct diagnostic rate for fault 12 is 0.9047,
with 9 times misdiagnosing fault 12 as fault 19 and 1 time
misdiagnosing fault 12 as fault 21. Analyzing the confusion

Figure 8. Confusion matrix for testing dataset.

Figure 9. Fault 16 Pearson correlation coefficient.
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matrix demonstrates that the PG-STF achieves an accuracy of
0.99 or more for 16 out of 21 fault types, 17 exceed an
accuracy of 0.95, 20 achieve an accuracy of 0.90 or more, and
only Fault 16 has an accuracy of less than 0.90. These results
demonstrate the efficiency and reliability of the PG-STF model
in fault diagnosis.
PG-STF initially achieves an average accuracy of 0.9795 on

21 fault types, but its performance on Fault 16 falls short of
expectations, with an accuracy of only 0.8587. To address this
issue and improve the model’s overall performance, an
optimization technique is implemented specifically for the
adjacency matrix of the model inputs. The original adjacency

matrix is constructed based on the knowledge of the chemical
process structure. However, in order to enhance its
effectiveness, a data-driven approach is employed. This
approach involves calculating the Pearson correlation coef-
ficient between different variables and using it as a weight to
construct the adjacency matrix.
The Pearson correlation coefficient is a statistical measure

that gauges the strength of the linear relationship between two
variables.40 It ranges from −1 to 1, where −1 signifies a
completely negative correlation, 0 indicates no linear
correlation, and 1 indicates a completely positive correlation.
For a time series data input matrix X = (x1, x2, ..., xm), the

Figure 10. (a) TE process for continuous measurement of variables. (b) Process of calculating the Pearson correlation coefficient for fault 16.

Table 1. FDR Comparison of Fault Diagnosis Results

fault type DCNN17 BiGRU18 CGN41 PTCN42 target transformer43 MEWMA-PCA-BM44 PG-STF

normal 0.978 0.969 0.985 0.9924 0.55 0.9946
IDV 1 0.986 0.986 0.975 0.9931 0.9975 0.90 0.9996
IDV 2 0.985 0.972 0.980 0.9819 0.9844 0.91 0.9966
IDV 3 0.917 0.935 0.935 0.9938 0.10 0.9977
IDV 4 0.976 0.974 0.824 0.9956 0.9962 0.89 0.9983
IDV 5 0.915 0.998 0.980 0.9786 0.9188 0.93 0.9979
IDV 6 0.975 1 1 1 0.9821 0.91 0.9948
IDV 7 0.999 1 1 1 0.9994 0.90 0.9932
IDV 8 0.922 0.753 0.966 0.9160 0.9556 0.88 0.9987
IDV 9 0.584 0.807 0.6601 0.6869 0.09 0.9956
IDV 10 0.964 1 0.881 0.9276 0.9769 0.45 0.9988
IDV 11 0.984 0.965 0.778 0.9798 0.9806 0.80 0.9292
IDV 12 0.956 0.961 0.981 0.9704 0.9706 0.89 0.9047
IDV 13 0.957 0.953 0.758 0.8969 0.9621 0.87 0.9721
IDV 14 0.987 0.996 0.986 0.9964 0.9875 0.51 0.9976
IDV 15 0.28 0.541 0.0035 0.3406 0.10 0.9970
IDV 16 0.442 0.788 0.814 0.9685 0.5269 0.63 0.9517
IDV 17 0.945 0.97 0.848 0.9254 0.9475 0.87 0.9965
IDV 18 0.939 0.923 0.685 0.9049 0.9425 0.82 0.9453
IDV 19 0.986 0.926 0.964 0.9650 0.9869 0.13 0.9980
IDV 20 0.933 0.981 0.871 0.8825 0.9425 0.49 0.9999
IDV 21 0.9996
avg 0.882 0.927 0.9392 0.9039 0.648 0.9844
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Pearson correlation coefficient is the quotient of the covariance
and standard deviation of the two features
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where μX di
and μX dj

represent the means of features Xi and Xj,
respectively, and σXdi

and σXdj
represent their standard deviations.

The optimization process of the adjacency matrix involves
calculating the Pearson correlation coefficients between 22
continuously measured variables using the time-series data of
Fault 16. The resulting correlation coefficient matrix is
depicted in Figure 9. In the figure, variable F is the flow
rate, variable P is the pressure, variable L is the liquid level,
variable T is the temperature, and variable C is the compressor
power. By setting an appropriate threshold, it can be
determined which variables exhibit sufficiently strong correla-
tions and are included in the adjacency matrix. Figure 10
illustrates the difference between the two methods of adjacency
matrices: the original matrix based on knowledge of the
chemical process structure and the data-driven correlation
matrix. To leverage both sources of information, the two
matrices are fused together. This fusion process aims to retain
the information from the original matrix while highlighting the
similarities between the two matrices. The resulting optimized
adjacency matrix is then utilized as an input for the PG-STF
model. With the newly constructed adjacency matrix, the
accuracy of the PG-STF model in predicting Fault 16
significantly improves from 0.8587 to 0.9517. Moreover, the
average accuracy of the PG-STF model increases from 0.9802
to 0.9844. These results demonstrate the effectiveness and

feasibility of optimizing the adjacency matrix to enhance the
model’s performance.
The experimental results presented in Table 1 demonstrate

the performance of the PG-STF model for fault diagnosis and
compare it with deep models based on CNN, RNN, and GCN,
as well as the PTCN model that utilizes graph structures. In
addition, comparisons were made with a modified transformer
model called target transformer, and a comprehensive
framework (MEWMA-PCA-BM) combining multivariate
exponentially weighted moving average PCA and Bayesian
methods. According to the results, the PG-STF model achieves
a higher FDR compared to that of other models under normal
conditions. A higher FDR indicates that the PG-STF model
effectively reduces false alarms, which can improve operators’
trust in the fault diagnosis system. Furthermore, the PG-STF
model outperforms the baseline model in 14 types of fault
diagnoses. This improvement can be attributed to the
incorporation of prior knowledge about the TE process,
which helps the model make sense of the learning process and
enhances the diagnostic performance across various fault types.
For example, for faults 9 and 15, which are two types of faults
that are difficult to distinguish from the normal state, the PG-
STF model achieves high accuracy rates of 0.9956 and 0.9970,
respectively. However, the accuracy of the model in addressing
faults 11 and 12 is slightly lower compared to that of the
benchmark models. A detailed analysis of the confusion matrix
reveals that this discrepancy originates from the tendency of
the PG-STF model to misclassify fault 11 as unknown fault 17
and fault 12 as unknown fault 19. It is evident that in the
pursuit of enhancing the accuracy for faults 17 and 19, a
discernible trade-off exists, resulting in a modest reduction in
accuracy for faults 11 and 12. Furthermore, it should be noted
that the model has not yet achieved a perfect accuracy of 1,
despite attaining notable accuracy on several faults. Overall, the
PG-STF model achieves the highest average accuracy of 0.9844
among all of the compared models. These results highlight the
significant advantages of the PG-STF model in fault diagnosis

Figure 11. Comparison of ablation result.
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tasks, showcasing its superior accuracy in identifying and
classifying different types of faults.
4.4. Ablation Experiments. The key components of the

PG-STF model include the addition of a node spatial encoding
module, a spatiotemporal feature fusion module, and the
introduction of an anomaly assisted classifier during the
training process. These components play a crucial role in
improving the model’s performance for fault diagnosis tasks.
To evaluate the effectiveness of these components, ablation
experiments are conducted. These experiments involve
comparing the FDR and ACC of 21 kinds of faults under
different models. Figure 11 illustrates the FDR results for the
four tested models, while Table 2 presents the corresponding
ACC values.

The whole experiment is as follows. Initially, a model relying
only on basic temporal encoding is tested but shows poor
performance, indicating that temporal encoding alone is
insufficient for an accurate fault diagnosis. To overcome this
limitation, an anomalous auxiliary classifier is introduced into
the temporal encoding model. The addition of an anomaly
classifier helps the model converge faster. The ACC value of

the model is improved to 0.9131, which indicates a significant
enhancement in the fault diagnosis capability. Then, the
spatiotemporal feature fusion module is incorporated into the
model. The module combines temporal encoding with local
spatial encoding, enabling the model to capture both temporal
correlations and spatial features. The results show that the
integration of the spatiotemporal feature fusion module
improves the ability of the model to diagnose faults accurately,
and the ACC value of the model further increases to 0.9362.
Finally, the model integrates the node spatial encoding module
to learn node features and capture spatial relationships using
GCN. This integration significantly improves the performance
of the model, achieving the highest accuracy of 0.9795 among
all of the tested models.
The results of ablation experiments show that each

component plays an important role in improving the
performance of the model, and these improvements contribute
to improving the diagnostic accuracy of the model.
4.5. Fault Diagnosis Analysis. A fault diagnosis analysis

method based on a node mask is designed, and the fault
diagnosis results are analyzed and interpreted from the model’s
perspective. First, node representation vectors are used to
identify variables contributing to the faults and analyze the root
causes. Second, the importance of these variables in the fault
diagnosis inference process is assessed through node masking
experiments.
4.6. Fault Result Analysis. The lack of interpretability in

deep learning-based fault diagnosis models is a common
challenge due to the complexity and large number of network
parameters. It often becomes difficult to accurately localize the
cause of a fault involving specific variables, leading to a lack of
trust in the model’s results.

Table 2. Results of the Ablation Experiment

ID baseline

abnorm
auxiliary
classifier

spatiotemporal
feature fusion
module

node spatial
encoding
module ACC

1 √ 0.9079
2 √ √ 0.9131
3 √ √ √ 0.9362
4 √ √ √ √ 0.9795

Figure 12. TE process 21 kinds of fault node representation weight heatmap.
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To address this issue, an interpretable fault diagnosis analysis
method is designed that focuses on locating critical nodes
responsible for system faults. In this method, the importance of
system nodes in fault diagnosis is estimated by utilizing the
weights assigned to nodes in the shallow GCN weights in the
spatial encoding module. Specifically, larger weights assigned
to a node indicate a stronger influence on fault diagnosis and
suggest a higher probability of that node being critical in the
fault diagnosis process

=H AXW( )1 1 (25)

where X ∈ R22 represents the input data and 22 denotes the
number of nodes. A ∈ R22×22 represents the adjacency matrix,
W1 ∈ R22×64 represents the network weight of the first GCN
layer, H1 ∈ R22×64 represents the feature output after encoding
the first GCN layer, and σ is the activation function.
Aggregation and normalization operations are performed on

the GCN weight matrix, resulting in the generation of a node
representation vector denoted as Wnorm
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where N represents the total number of nodes and σ represents
the activation function.
The visualization of node representation vector output

values as a heatmap offers an intuitive understanding of the
variables’ features, which is crucial for fault diagnosis. By
sorting the output values of all nodes, the top 4 nodes are
selected as the most important ones for further analysis. This
approach facilitates the explanation of fault causes and provides
reliable and interpretable fault diagnosis results.
Figure 12 depicts a heatmap of the node representation

weights for 21 different faults. Table 3 enumerates the top 4
variables with the highest weights from Figure 12. The first
column delineates the fault type, the second column furnishes
a fault description, and the third column presents the four
variables with the highest extracted weights. Chemical process
faults can originate from various underlying reasons, impacting
different process variables in diverse ways. This implies that
during the fault localization process, the model may extract
multiple process variables as fault-related variables, exhibiting
certain correlations. Through the analysis, the model
successfully localizes the fault to the relevant continuous
measurement variables in the TE process.
Fault 1 corresponds to a change in the A/C feed flow rate,

which directly affects the feed flow rate of reactant A. The
model successfully extracts this variable as a fault-related
variable. Fault 4 is characterized by a change in the cooling
water inlet temperature of the reactor. From Table 3, it can be
observed that this fault directly impacts the reactor temper-
ature and the outlet temperature of the cooling water. An
increase in the cooling water inlet temperature leads to changes
in the reactor outlet temperature, the product temperature of
the separator, and the separator temperature. The concen-
tration of reactant D and its closely related variables are
significantly affected by this fault. Fault 12 has its root cause in
random variations of the cooling water inlet temperature to the
condenser. The model successfully extracts the cooling water
inlet temperature from the condenser as a fault-related variable.
This type of fault directly affects the cooling efficiency of the
condenser. Fault 14 involves the sticking of the reactor cooling

water valve, which is crucial for controlling the flow rate of
cooling water to maintain the reactor temperature. When the
valve sticks, the cooling water flow rate cannot be properly
adjusted, resulting in an unstable reactor temperature and
outlet temperature of the cooling water. Fault 16 is an
unknown fault with an unknown root cause. Based on the top
4 variables with the highest weights listed in Table 3, it can be
inferred that this fault primarily affects the operation state of
the distillation column.
Analyzing the top 4 variables with the highest weights for

each fault enables the model to successfully identify the
variables most affected by the faults. These variables offer
valuable insights into the causes and impacts of the faults,
contributing to a more profound understanding of the fault
diagnosis process.
4.7. Fault Analysis Verification. The node masking

experiments are designed to simulate the absence or
unavailability of nodes during the inference process, aiming

Table 3. TE Process 21 Kinds of Fault Node Representation
Vectorsa

fault fault description
top 4 variables with largest

weight

1 A/C feed flow ratio changes Q(A feed), T(stripper), W(compressor),
T(condenser cooling)

2 B composition changes (A,C feed) Q(purge), T(reactor),
T(condenser cooling), Q(A feed)

3 D feed temperature changes Q(A,C feed), L(separator),
Q(stripper steam), T(reactor cooling)

4 reactor cooling inlet temperature
changes

T(reactor), T(reactor cooling),
Q(D feed), T(separator)

5 D feed temperature changes
randomly

T(condenser cooling), T(stripper),
W(compressor), T(separator)

6 A feed loss Q(A feed), P(separator), P(reactor),
T(separator)

7 C feed header pressure loss-reduced
availability

Q(A,C feed), Q(reactor), T(reactor),
P(separator)

8 A, B, C feed composition changes
randomly

Q(A feed), T(condenser cooling),
W(compressor), T(stripper)

9 D feed temperature changes
randomly

T(reactor cooling), L(separator),
P(reactor), Q(E feed)

10 C feed temperature changes
randomly

T(stripper), Q(stripper steam),
T(reactor), Q(separator)

11 reactor cooling water inlet
temperature changes randomly

T(reactor), T(reactor cooling),
P(separator), P(stripper)

12 condenser cooling inlet temperature
changes randomly

T(condenser cooling), T(stripper),
T(separator), P(stripper)

13 reaction kinetics drift slowly Q(purge), P(separator), T(separator),
T(reactor cooling)

14 reactor cooling water valve sticking T(reactor), T(reactor cooling),
P(stripper), Q(recycle)

15 condenser cooling water valve
sticking

Q(stripper steam), T(condenser cooling),
Q(purge), T(stripper)

16 unknown fault Q(stripper steam), T(stripper),
L(stripper), Q(recycle)

17 unknown fault T(reactor cooling), T(reactor),
W(compressor), T(stripper)

18 unknown fault T(stripper), T(separator),
T(condenser cooling), W(compressor)

19 unknown fault T(condenser cooling), T(stripper),
T(separator), W(compressor)

20 unknown fault W(compressor), P(separator),
T(condenser cooling), T(stripper)

21 the valve for flow 4 is fixed in a
steady-state position

L(reactor), Q(purge), Q(reactor),
Q(D feed)

aQ, T, W, L, and P are flow, temperature, power, liquid level, and
pressure signals, respectively. Subscripts represent unit operations or
streams.
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to assess the impact of nodes on the model’s inference. This is
achieved by masking the nodes, setting their data value to 0,
and observing the resulting performance changes in the model.
Figure 13 provides an illustration of the node masking process.
Table 3 presents an analysis of the top four variables with the
highest weights for each fault in the TE process. To evaluate
the importance of these variables, node masking experiments
were conducted to observe the resulting changes in the model’s
diagnostic accuracy. In particular, fault 4, which involves
changes in the reactor cooling water inlet temperature, was
selected for detailed analysis. The model identified the
following four variables as being most affected by this fault:
reactor temperature (T1), reactor cooling water outlet
temperature (T4), component D feed flow rate (F2), and
product separator temperature (T2), as shown in Table 3.
Subsequently, node masking experiments were carried out on

these four variables individually to simulate the scenario where
important information about them is lost during the model’s
inference process. The PG-STF diagnostic model was
reexecuted after each masking to assess its diagnostic
performance, and the outcomes are depicted in Figure 14.
When masking the first variable T1, the diagnostic rate of the
model decreased by 10.26%. Masking the first two variables T1
and T4 resulted in a 14.29% decrease in the model’s diagnostic
rate. Similarly, masking the first three variables T1, T4, and F2
led to a 21.22% decrease in the model’s diagnostic rate. Finally,
when all four variables were masked, the model’s accuracy
decreased by 31.45%. By comparing these results with the
performance of the original model in diagnosing fault 4, the
impact of node masking on the model’s diagnostic perform-
ance can be observed. The significant decrease in diagnostic
performance due to node masking implies that the masked

Figure 13. Node masking process.

Figure 14. Fault 4 node masking FDR results.
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nodes play a crucial role in the fault diagnosis process, and the
model effectively utilizes these nodes for accurate diagnosis.
The experimental findings depicted in Figure 15 reveal that

as the first variable with the highest weight, the first two
variables, the first three variables, and the first four variables are
sequentially masked, the average accuracy of the model for
diagnosing the 21 faults decreases by 6.37, 13.69, 18.71, and
27.16%, respectively. These experimental results emphasize a
significant reduction in model accuracy as the number of
masked nodes increases, further affirming the pivotal role of
these nodes in the system.
Important nodes are obtained by visualizing the fault node

representation vector. Subsequently, the important nodes
undergo masking experiments to explore the contribution of
key variables to fault diagnosis. The experimental results
described above demonstrate that the fault diagnosis inference
process can be analyzed from a model perspective using the
proposed method, thereby better revealing the root cause of
fault occurrence.

5. RESULTS AND DISCUSSION
In this section, a comprehensive evaluation of the performance
of the proposed PG-STF model for chemical process fault
diagnosis is provided, considering both its strengths and
limitations. The selected inference mechanism for the model is
the strategy of multi-model voting inference, offering the
advantage of enhancing overall robustness and accuracy
through the amalgamation of opinions from multiple models.
However, it introduces challenges, such as the need to
coordinate the training and cooperation of multiple models.
Future research endeavors will focus on optimizing this
inference framework, aiming to further enhance the model’s
effectiveness. An additional aspect to underscore is the
deliberate focus on training and testing the proposed model
specifically in TE chemical processes. This emphasis arises
from the recognition that chemical systems in real-world
applications may exhibit variations in process parameters,

operating conditions, or equipment configurations. Future
work will strive to broaden the applicability of the model,
making it more generalizable and adaptable to diverse types of
chemical systems. This expansion may involve incorporating a
wider collection of datasets and implementing more
sophisticated model adaptations.
It is important to note that the current research phase has

already yielded encouraging results for the PG-STF model. It
has demonstrated its capability to effectively capture
anomalous patterns in chemical systems, serving as a robust
tool for fault diagnosis. Nevertheless, additional efforts are
imperative to address the challenges in practical applications,
ensuring the reliability and usefulness of the model. Ongoing
work will focus on refining the model and overcoming these
challenges to broaden its applicability in real-world scenarios.

6. CONCLUSIONS
This paper has presented a new fault diagnosis method PG-
STF for the chemical process, which integrates a node spatial
encoding module with a spatiotemporal feature fusion module.
The spatial encoding module, based on GCN, is utilized to
extract features from the spatial perspective of chemical
processes. The adjacency matrix is constructed by combining
a priori knowledge of the chemical process with the Pearson
correlation, taking into account the physical correlation
between the nodes. The spatiotemporal feature fusion module
based on the LSTM network extracts features from the time
perspective to capture the time dependence of fault data. To
ensure stable convergence of the multiclassification fault
diagnosis model, a double-supervised training strategy is
designed. During the model’s inferring process, a multi-
model voting inference strategy is employed to enhance the
accuracy and robustness of the diagnosis by leveraging multiple
models. Additionally, a fault diagnosis analysis method based
on node masking is developed to identify the key variables that
the model focuses on during the fault diagnosis process.
Experimental results on the TE process demonstrate the

Figure 15. Twenty-one fault type node masking ACC results.
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effectiveness of the PG-STF model, achieving an average fault
diagnosis rate of 0.9844 across all fault types, indicating a
strong diagnostic performance. For each type of fault, the
model successfully identifies several key variables, displaying a
strong physical correlation with the underlying cause.
The integration of data-driven analyses with mechanism

exploration remains pivotal for comprehending fault prop-
agation relationships in chemical systems. Nevertheless, despite
the theoretical advancements of the proposed approach,
practical implementation encounters challenges. Specifically,
further in-depth investigation is required for fault propagation
paths and potential mechanisms. In our subsequent work,
efforts will be directed toward addressing these challenges and
delving deeper into the system’s complexity to achieve a more
comprehensive and profound understanding of fault prop-
agation mechanisms in chemical systems.
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