
Sequence analysis

Mutalyzer 2: next generation HGVS nomenclature

checker

Mihai Lefter 1,*, Jonathan K. Vis1,2, Martijn Vermaat1, Johan T. den Dunnen1,2,

Peter E. M. Taschner1,3 and Jeroen F. J. Laros 1,2,4

1Department of Human Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands, 2Department of Clinical

Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands, 3Generade Centre of Expertise Genomics and Leiden

Centre for Applied Bioscience, University of Applied Sciences Leiden, Leiden, The Netherlands and 4National Institute for Public

Health and the Environment (RIVM), Bthoven, The Netherlands

*To whom correspondence should be addressed.

Associate Editor: Jinbo Xu

Received on July 3, 2020; revised on December 2, 2020; editorial decision on January 21, 2021; accepted on January 22, 2021

Abstract

Motivation: Unambiguous variant descriptions are of utmost importance in clinical genetic diagnostics, scientific lit-
erature and genetic databases. The Human Genome Variation Society (HGVS) publishes a comprehensive set of
guidelines on how variants should be correctly and unambiguously described. We present the implementation of
the Mutalyzer 2 tool suite, designed to automatically apply the HGVS guidelines so users do not have to deal with
the HGVS intricacies explicitly to check and correct their variant descriptions.

Results: Mutalyzer is profusely used by the community, having processed over 133 million descriptions since its
launch. Over a five year period, Mutalyzer reported a correct input in �50% of cases. In 41% of the cases either a syn-
tactic or semantic error was identified and for �7% of cases, Mutalyzer was able to automatically correct the
description.

Availability and implementation: Mutalyzer is an Open Source project under the GNU Affero General Public
License. The source code is available on GitHub (https://github.com/mutalyzer/mutalyzer) and a running in-
stance is available at: https://mutalyzer.nl

Contact: m.lefter@lumc.nl

1 Introduction

The Human Genome Variation Society (HGVS) publishes (http://var
nomen.hgvs.org) nomenclature guidelines (Ad Hoc Committee on
Mutation Nomenclature, 1996; Antonarakis, 1998; den Dunnen
and Antonarakis, 2000; den Dunnen et al., 2016) for the unambigu-
ous description of genetic variants in order to prevent undesired
errors in clinical diagnostics and to enable sharing and comparison
of variants across different institutes. Since their initial introduction,
the HGVS guidelines are continuously extended and adapted to ac-
commodate the evolution of the domain. As a result, it has become
increasingly complex for users, i.e. researchers, database curators
and manuscript reviewers, to check whether variant descriptions
comply with the HGVS guidelines.

A method that automatically deals with the HGVS intricacies
and outputs correct unambiguous variant descriptions is of high ne-
cessity for consistent variant dissemination. In this context, the
Mutalyzer tool suite was created to assist geneticists in applying the
HGVS guidelines in databases (e.g., Charoute et al., 2013; Fokkema
et al., 2011; Sahajpal et al., 2014) and literature (‘Human Mutation’

and ‘European Journal of Human Genetics’ require that compliance
with HGVS nomenclature must be verified using tools such as
Mutalyzer) by providing the means for automatic checking and cor-
rection of HGVS variant descriptions. The core of the first version
of Mutalyzer (https://git.lumc.nl/mutalyzer/mutalyzer-legacy) con-
sists of an implementation of the Name Checker that was developed
with elementary variants in mind. In order to add support for allele
descriptions and to offer flexibility with regards to the changing na-
ture of the HGVS guidelines, a formal specification of the HGVS
language (Laros et al., 2011) and a more modular design was
needed. This approach gave rise to additional interfaces introduced
in Section 5.

In this paper, we present the second iteration of the Mutalyzer
suite. While bearing the same name as its initial version (Wildeman
et al., 2008), Mutalyzer 2 is a complete new implementation of this
idea. Its core functionality is provided by the Name Checker tool
which provides checking and disambiguation of variant descrip-
tions. The Name Checker is able to process variant descriptions for
any organism, as long as the corresponding reference sequences can
be retrieved from supported sources. In addition, it offers features

VC The Author(s) 2021. Published by Oxford University Press. 2811

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unre-

stricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 37(18), 2021, 2811–2817

doi: 10.1093/bioinformatics/btab051

Advance Access Publication Date: 4 February 2021

Original Paper

http://orcid.org/0000-0003-3876-4754
http://orcid.org/0000-0002-8715-7371
https://github.com/mutalyzer/mutalyzer
https://mutalyzer.nl
http://varnomen.hgvs.org
http://varnomen.hgvs.org
https://git.lumc.nl/mutalyzer/mutalyzer-legacy
https://academic.oup.com/


such as protein effect prediction in the form of amino acid changes
relative to the protein reference sequence. Several other related tools
are included in the suite, e.g. the Position Converter, which converts
descriptions between chromosomal and transcript references and the
Description Extractor, which computes a description when provided
with two sequences.

2 Problem description

A variant in the context of molecular sequence analysis is the differ-
ence between two sequences, i.e. strings over a molecular alphabet.
One of them is chosen to be the reference sequence, the other one is
named the observed sequence. Given a reference sequence and a
variant, the observed sequence can be reconstructed. Variants can be
expressed in different description languages (Beaudet and Tsui,
1993; Danecek et al., 2011; den Dunnen et al., 2016; Holmes et al.,
2020), among which various inconsistencies exist. In the following,
we consider the HGVS nomenclature (den Dunnen et al., 2016) as a
description language for variants.

The representation of a variant in the HGVS description lan-
guage (Laros et al., 2011) is a list of elementary variants, i.e. trans-
formations that together, not independently, describe the difference
between the reference and the observed sequences. Within the
HGVS description language, the same variant can be described in
different ways. We define the set of interpretable descriptions of a
variant as all equivalent ways of describing the same variant.

The HGVS nomenclature offers guidelines to select a canonical
variant description from the set of interpretable descriptions, i.e. to
disambiguate a description. However, a deterministic algorithm for
doing so is not given, instead, numerous examples are given from
which an attempt of creating such an algorithm can be made. The
challenge is to create an algorithm that accepts all interpretable
HGVS variant descriptions and finds the canonical one.

3 HGVS variant descriptions

An HGVS variant description is composed of three parts: a reference
sequence identifier, a positioning system and a list of elementary
variants. Each elementary variant consists of the positions of the ref-
erence sequence that are affected, the operation to be performed
and, optionally, what is to be newly inserted.

Consider the following description of an allele written in the
HGVS language, which is interpretable but not canonical:

NG_012337.1:g.[7G>T; 14del].

Here, the reference sequence identifier is NG_012337.1, the
positioning system is g. (linear genomic) and the elementary variants
are 7G>T and 14del. The first elementary variant indicates that at
position 7 instead of a G, a T was observed, while the second indi-
cates that the nucleotide present at position 14 in the reference se-
quence is missing from the observed sequence. A visual
representation is given in Figure 1a.

Ambiguity arises if multiple descriptions lead to the same
observed sequence. In the example given above, a C occurs at posi-
tions 14 and 15, either of which can be deleted in order to be left
with one C in the observed sequence. Consequently, the description
[7G>T; 15del] leads to the same observed sequence, as depicted
in Figure 1b. According to the HGVS recommendations, the latter
description is the preferred description since it respects the 30 rule
(den Dunnen et al., 2016). Note that in the Variant Call Format
(Danecek et al., 2011), a left shift with respect to the genome
should be performed (Yen et al., 2017), there 14del is preferred
over 15del.

4 Approach

Given an interpretable description, the Mutalyzer Name Checker
finds the canonical description using the following general ap-
proach. First, a syntactic check is performed, which allows for the

interpretation of the description and the retrieval of the reference se-
quence. Next, a semantic check is done to establish whether the de-
scription makes sense in the context of the reference sequence.

Finally, the description is disambiguated.

4.1 Preliminaries
The formalization of the HGVS syntax (Laros et al., 2011) has made
it possible to implement a context free grammar parser, which rec-

ognizes a syntactically valid description and generates a parse tree.
In this manner, all parts of the description can be accessed
programmatically.

If the variant description is syntactically correct, i.e. it can be
parsed, its validity in the context of the reference sequence is veri-

fied. The reference sequence, identified by the accession and version
numbers, is retrieved from a reference sequence repository.

Currently, the supported sources are the National Center for
Biotechnology Information (NCBI) (for GenBank files (O’Leary
et al., 2016)) and the European Bioinformatics Institute EMBL-EBI

(for Locus Reference Genomic (LRG) files (MacArthur et al.,
2014)). Reference sequence files contain a reference sequence and
feature annotations, e.g. locations of transcripts, coding sequences

(CDS) and exons.
To work with different types of reference sequence files, an ab-

straction layer is used. For every reference sequence file type, a dedi-
cated parser provides a uniform reference model that can be used for

the semantic check. Because the annotation of reference sequence
files is not always complete, an annotation enrichment procedure is
used to standardize this information. Annotation enrichment con-

sists mainly of the linking of transcripts to its CDS and protein. In
many cases, (especially in GenBank files) there is no direct link be-

tween a transcript and its CDS, making it impossible to reconstruct
the layout of the transcript and thereby the biological effect of a
variant. The enrichment procedure will try to deduct these links by

other means (e.g. by additional queries to the NCBI databases).
The HGVS nomenclature supports different positioning systems

(den Dunnen et al., 2016). In contrast to most positioning systems
used in mathematics and computer science, the number zero is not
included in any of the HGVS positioning systems. As a result, in the

c. system, which can be regarded as the most complex one, posi-
tions �1 and 1 are adjacent, introducing a discontinuity.

Additionally, the first position after the CDS is denoted as *1, intro-
ducing another discontinuity. Finally, the use of offsets for intronic
positions introduce yet another type of discontinuity, e.g. position

c.12 can be adjacent to c.12þ1 while it is not adjacent to c.13.
For transcripts that reside on the reverse complement strand, the dir-

ection of their positioning system is opposite to that of the genomic
one, e.g. if c.1 is equivalent to g.10, then c.2 is equivalent to
g.9. These peculiarities make performing arithmetic operations in

the HGVS positioning systems tedious and error prone. Mutalyzer
uses an internal zero-based half-open coordinate system and imple-

ments the conversion from HGVS c., g. and n. positioning systems
to this coordinate system and vice versa in order to perform arith-
metic operations. Note that the HGVS genomic circular o. position-

ing system (https://varnomen.hgvs.org/bg-material/consultation/svd-
wg006/) is currently not supported and that the special mitochon-

drial DNA m. is treated in a similar manner as g.

Fig. 1. Elementary variants of descriptions NG_012337.1:g.[7G>T; 14del] (a)

and NG_012337.1:g.[7G>T; 15del] (b) applied to a reference sequence in

order to obtain the same observed sequence

2812 M.Lefter et al.

https://varnomen.hgvs.org/bg-material/consultation/svd-wg006/
https://varnomen.hgvs.org/bg-material/consultation/svd-wg006/


4.2 Semantic checking
With the parsed description and the information from the reference
model, a semantic check can be performed. This is done in multiple
steps, described below.

If a transcript ID is provided and its annotation is present in the
reference sequence file, the corresponding exons and CDS positions
are retrieved and used to convert the positions of the elementary var-
iants to the internal coordinate system. This allows for the verifica-
tion of the given positions from different perspectives. First, all
positions should be within the sequence boundaries. Second, for
ranges, the end position should be greater than the start position.
Third, for insertions, the start and end positions should be consecu-
tive. Fourth, offsets for intronic positions should start on exon boun-
daries and should have the correct orientation following the
annotation in the reference model.

To better assist users, Mutalyzer still supports several deprecated
HGVS constructs. Old intronic position descriptions, such as c.
IVS4þ1, which referred to the first nucleotide of intron 4, are con-
verted to the correct format. In addition, if a range length is pro-
vided, its length is checked for equality to the length determined
from the positions, e.g. 3_9del7. When deleted sequences are speci-
fied in a description, such as 10_12delAAT, Mutalyzer checks
whether the reference sequence indeed contains the sequence AAT in
the indicated range. No checks are performed on specifications of
inverted sequences.

4.3 Disambiguation
After the syntactic and semantic checks, disambiguation is per-
formed. First, a check is performed for the delins and inv elemen-
tary variants in order to determine whether the minimal description
is used.

For example, for the reference sequence AACGTAA, the deletion–
insertion 3_4delinsTT results in the observed sequence AATTTAA.
The same result is obtained when the variant 2_6delinsATTTA is
applied. The latter description can be minimized by removing the
longest common prefix and the longest common suffix of the deleted
and the inserted sequence.

For an inversion, a prefix of the inversion can be equal to the re-
verse complement of its suffix, i.e. a partial palindrome. The de-
scription of an inversion is minimized in a similar way as described
above.

After the minimization step, a simplification scheme is used to
check whether the elementary variant type used is the simplest one
possible. A delins can insert a sequence that is a prefix or a suffix
of the deleted sequence. In this case, the delins should be simpli-
fied to a del. Likewise, if the deleted sequence is a prefix or suffix
of the inserted sequence, the delins is actually an ins. For ex-
ample, given the reference sequence AACGTAA, the deletion–inser-
tion 2_5delinsGT is simplified to 2_3del since the inserted part,
GT is a suffix of the deleted part, ACGT. For the same reference se-
quence, 3delinsT is simplified to the substitution 3C>T.

Similar checks are performed for other cases, the elementary
variant types that can possibly be written as a simpler type are
shown in Table 1.

Finally, a deletion, insertion or duplication is shifted to the most
30 position possible. An algorithm that considers all circular permu-
tations of the deleted or inserted sequence is used in order to find
this position. If e.g. the sequence CGTC is inserted in the reference
sequence AACGTAA, the algorithm will correct the description
2_3insCGTC to 5_6insCCGT.

Note that this method is applied to both the forward as well as
the reverse strand, so if a gene resides on the reverse strand, the

position will be shifted in the opposite direction to that of the gen-
omic one. Furthermore, if an insertion or a deletion is described on a
transcript, the position will not be shifted over a splice site.

The Name Checker treats elementary variants independently, ir-
respective of their relative locations. As a result, adjacent variants
are not merged contrary to the most recent HGVS recommendations
regarding substitutions (https://varnomen.hgvs.org/recommenda
tions/DNA/variant/substitution/) and deletion–insertions (https://var
nomen.hgvs.org/recommendations/DNA/variant/delins/). For ex-
ample, the following two substitutions [2A>G; 3T>C] are not
merged to 2_3delinsGC. However, the experimental Description
Extractor, introduced in Section 5.3.2, will merge the adjacent sub-
stitutions into a deletion–insertion. Additionally, it is capable of
merging elementary variants of other types, for which the HGVS
does not provide any recommendation.

4.4 Verification
Since there is no formal specification of the HGVS nomenclature, it
is impossible to validate or verify software that uses the HGVS rec-
ommendations in a formal sense. We used numerous examples pro-
vided by the HGVS to compile a comprehensive set of publicly
available (https://github.com/mutalyzer/mutalyzer/tree/master/tests)
unit and integration tests for verification purposes.

5 Related problems

In addition to variant description disambiguation, Mutalyzer tackles
some related problems in order to aid the user with the interpret-
ation and validation of variant descriptions.

5.1 Effect prediction
Apart from the effect, a variant has on a transcript, the impact on
the potential protein is also highly relevant. Therefore, the Name
Checker runs a series of effect predictions after a successful, i.e.
error free, disambiguation step.

For all the annotated transcripts in the reference sequence, the
corrected variant description is shown together with a list of protein
descriptions. Each of the variant descriptions can be selected for a
more detailed analysis. In the detailed analysis, the reference protein
and the variant protein are visualized with the area of change high-
lighted. Additionally, for the selected transcript, a list of exon start
and end positions is given, as well as the CDS start and end
positions.

For all elementary variants, effects on restriction sites are calcu-
lated. A table is generated that contains a list of removed restriction
sites and a list of added restriction sites for every elementary variant.

Effect prediction becomes more complex when variants are near
or overlapping splice sites. Barring some specific cases, Mutalyzer
takes a safe approach by issuing a warning and omitting prediction
of a translated protein if a splice site is hit, e.g.
NG_012772.3(NM_000059.3):c.508_516þ9del. However, a
deletion partly covering two exons, thereby spanning an intron, al-
though affecting two splice sites, is considered to be a case where
protein prediction can still be valuable. For example, for
NG_012772.3(NM_000059.3):c.508_525del, the deletion is
interpreted as forming a fusion exon. Likewise for the deletion
NG_012772.3(NM_000059.3):c.317-10_631þ14del, cover-
ing four complete exons, Mutalyzer removes the exons from the
CDS to give a meaningful protein prediction. In practice, large dele-
tions are often described without specifying their precise break
points by using fuzzy intronic offsets (e.g.,
NG_012772.3(NM_000059.3): c.317�?_631þ? del).
Internally and for the conversion to g. descriptions, Mutalyzer inter-
prets these offsets as being in the center of the intron.

5.2 Support for contigs and chromosomes
Large GenBank files, for instance, whole chromosomes or contigs,
cannot be parsed in a reasonable amount of time, which makes on-
line parsing during the page load of an interactive web page

Table 1. Simplification of elementary variant types

Type Simplification

delins del, ins, subst, inv, dup

ins dup

inv subst

Mutalyzer 2 2813

https://varnomen.hgvs.org/recommendations/DNA/variant/substitution/
https://varnomen.hgvs.org/recommendations/DNA/variant/substitution/
https://varnomen.hgvs.org/recommendations/DNA/variant/delins/
https://varnomen.hgvs.org/recommendations/DNA/variant/delins/
https://github.com/mutalyzer/mutalyzer/tree/master/tests


impractical. For this reason, the maximum accepted file size for the
Name Checker is set to 10 MB. To be able to work with larger refer-
ence files, the Reference File Loader can be used to generate slices of
large reference files which are subsequently uploaded to Mutalyzer
in order to be used in variant descriptions. These references are pro-
vided with an internal accession number starting with UD_.

A slice can be made directly by supplying the name or accession
number of a chromosome or contig, the slice start and end positions
and the orientation. Alternatively, a gene name in combination with
the name of an organism and the sizes of the flanking regions can be
used to select the slice automatically from the latest genome build of
the organism.

Since the generated reference identifiers are only valid within a
particular Mutalyzer instance, using these identifiers for dissemin-
ation is not recommended. This is why Mutalyzer additionally pro-
vides the genomic variant description with respect to the origin of
the slice. This workaround has been superseded by full support for
chromosomal references described in Section 5.2.2.

5.2.1 Transcript and chromosome mappings

The Position Converter converts a description using a RefSeq tran-
script to one using a chromosomal reference sequence and vice
versa. For this purpose, it uses mapping information that is retrieved
from the NCBI. Currently human genome builds NCBI36, GRCh37
and GRCh38, as well as mouse (GRCm38) and dog (canFam3) are
supported.

The Position Converter can be used to quickly convert variants
found by a high throughput screening technique like Next
Generation Sequencing to transcript-oriented HGVS descriptions.
Another use of this interface is to convert (lift over) a description
from one transcript to another, or to transcripts of other (overlap-
ping) genes. Finally, by using transcripts that are mapped to multiple
genome builds, it is possible to convert a chromosomal description
from one build to another. Potentially, descriptions can be lifted
over to other species, provided cross-species transcript annotation is
available.

Note that the Position Converter does not perform any semantic
checks or disambiguations, nor does it take any differences between
reference sequence content into account (for a discussion on the
underlying problem, see Section 7.1). This is why the output of the
Position Converter should always be checked with the Name
Checker before dissemination. In Section 5.2.2, we provide an alter-
native to this procedure.

5.2.2 Support for chromosomal references

Support for full chromosomal references has been lacking until re-
cently because of the time-consuming nature of reference sequence
file parsing. Since version 2.0.27, however, Mutalyzer preprocesses
reference sequences of human genome builds GRCh37 and
GRCh38, the results of which are stored in a database for quick re-
trieval. This allows for the online handling of HGVS descriptions
for full chromosomal references of the aforementioned genome
builds.

With this added functionality, users do not have to rely on the
Reference File Loader or the Position Converter to analyze variants
described on chromosomes.

5.3 Generating descriptions
While checking the validity of variant descriptions is important,
methods aiding the user in the generation of such descriptions is at
least as valuable, especially for those who are new to the field.
Mutalyzer addresses this topic from two different perspectives.

5.3.1 Name Generator

The Name Generator is an interactive interface for the construction
of HGVS variants, tailored to people that are less familiar with the
HGVS nomenclature. After choosing a reference sequence, variants
can be added one by one in an easy to use point and click interface.

The HGVS variant description is build incrementally from these var-
iants and can be checked with the Name Checker afterwards.

5.3.2 Description Extractor

A recent addition to the Mutalyzer tool suite is the HGVS variant
Description Extractor (Vis et al., 2015). This tool automatically
generates HGVS variant descriptions given a reference sequence and
an observed sequence. As a deterministic algorithm for the gener-
ation of variant descriptions, this method will also be applied in the
disambiguation of complex variant descriptions when using the
Name Checker. Currently, the Description Extractor runs as an ex-
perimental service in this context.

6 Usage

In this section, we present the interfaces that provide access to the
tools in the Mutalyzer suite. Furthermore, we provide some quanti-
tative insights with respect to the usage of the tools and their interfa-
ces for the LUMC hosted Mutalyzer instance. Note that other
instances exist, since Mutalyzer is Open Source and permissively
licensed; hence, it can be downloaded and installed locally.

6.1 Interfaces
The Mutalyzer website interface (https://mutalyzer.nl/) provides
interactive access to all the tools in the suite. To facilitate automated
use of the Mutalyzer tools, two other interfaces are available.

6.1.1 Batch jobs

The Batch Checker is an interface used for processing batches of
data in a noninteractive way. It is available for the Name Checker,
the Syntax Checker and the Position Converter.

The Batch Checker accepts three types of input formats: CSV
files (the delimiters are detected automatically), Microsoft Excel files
and OpenOffice ODS files. Each row consists of a variable number
of fields, where every field contains a single variant description. For
backwards compatibility, the format used by Mutalyzer 1.0.3 is also
accepted. The output of a Mutalyzer batch run is a tab delimited
CSV file. Note that empty lines are removed from the batch output
file. When a submitted batch job is finished, the user receives a
download link via email.

6.1.2 Web services

A large number of web services are available to facilitate developers
that want to use the Mutalyzer functionality. Currently, two major
protocols are supported: SOAP (Box et al., 2000) and JSON-RPC
(JSON-RPC Working Group, 2010) over HTTPS. Documentation
of the APIs as well as example client scripts in various languages are
available on the website (https://mutalyzer.nl/webservices).

6.2 Statistics
Here, we present usage statistics to provide insights into the com-
mon types of errors made in the field as a motivation for the import-
ance of Mutalyzer to the community. Additionally, we show the
usage of different types of reference sequences to serve as a basis for
the discussion in Section 7.

Simple usage statistics are shown in Figure 2, with the number of
variant descriptions given as input (or as output in case of the
Description Extractor) on the y-axis. From this graph, it can be seen
that the Position Converter is the most frequently used tool, irre-
spective of the interface through which it was accessed, followed by
the Name Checker. Also note that the automated interfaces are used
more than the interactive ones, with the batch jobs as the most
popular interface, followed by the web services and finally the
website.

In the remainder of this section, we present usage information
extracted from the Mutalyzer access logs recorded between
September 2014 and October 2019. We focus on the Name Checker
and Position Converter.

2814 M.Lefter et al.

https://mutalyzer.nl/
https://mutalyzer.nl/webservices


6.2.1 Name Checker

The Name Checker processed �87 million descriptions in total, of
which 20% (17 million) were unique. From the remaining 80%, the
most frequent descriptions are invalid or syntactically incorrect,
with various forms of notation indicating that no variant is present
accounting for �11% of the total.

In total, �26 million unique descriptions were processed by
Mutalyzer (all tools). These descriptions were submitted to the
Name Checker of a local Mutalyzer 2.0.32 instance to obtain
detailed information on the assessment made.

An overview of how the Name Checker assessed the variant
descriptions is presented in Figure 3. In 50.4% of the cases, no error
or warning messages were reported, signifying a correct input. In
�1.2% of the cases, the input was correct, but the Name Checker
warned for possible issues such as variants that occur near a splice
site or cover the translation start site.

The Name Checker had to correct and canonize variant descrip-
tion in �7.1% of the cases, reporting an appropriate warning mes-
sage related to the operations performed to correct the description
(see Section 4). In 36% of the cases, the HGVS 30 rule was applied
to disambiguate the input description. In 35% of the cases, an acces-
sion was given without a version number and the Name Checker
had to retrieve the most recent version. Finally, the variant type was
updated according to the HGVS prioritization rules in 29% of the
cases. Out of the latter, in >65% of the cases, an ins was simplified
to a dup.

Approximately 15.8% of the descriptions, of which 95%
were submitted via the web service interface, did not pass the
syntactic check (see Section 4). About 85% of the descriptions
submitted via the website were syntactically correct, while
descriptions submitted in batch jobs were syntactically correct in
only 80% of the cases.

Finally, 25.4% of the descriptions did not pass the semantic ana-
lysis of the Name Checker. The most common error messages are
shown in Figure 4. The error ‘ENOINTRON’ is the most frequent
one (36%), which occurs when an intronic position is used with a
reference that does not contain the intronic sequence (see Section
7.1 for a discussion on this topic). Other frequent errors were
‘EREF’ (15%), which is raised whenever a sequence in the descrip-
tion sequence does not correspond to what is present in the reference

sequence and ‘EOFFSETFROMBOUNDARY’ (10%), which indi-
cates that an intronic position did not start at an exon boundary.

The most common warnings are shown in Figure 5.
‘WSPLICE_OTHER’ is the most frequent one (59%), occurring
whenever a variant is near any of the splice sites of an annotated
transcript. Other frequent warnings were ‘WNOMRNA_OTHER’
(7.7%), which is emitted whenever the transcript model could not
be directly retrieved from the reference annotations and it had to be
reconstructed from the CDS, and ‘WSPLICE’ (7.6%), which indi-
cates that an elementary operation affects a splice site.

The reference sequence types used in syntactically correct
descriptions are presented in Figure 6. mRNA reference sequences
(prefixed by NM_ and XM_), are used almost twice as much as gen-
omic reference sequences (prefixed by UD_, NG_, LRG_ and NC_).
Since support for full chromosomal (NC_) reference sequences were
added only recently, UD_ prefixed (see Section 5.2) is the most used
genomic reference sequences. With respect to positioning systems, c.
was used in >90% of the cases.

Of all variants encountered, 78% were substitutions, 12% were
deletions, 5% were insertions. Duplications and deletion–insertions
accounted for 2% each and in 1% of the cases, no variant was
provided.

6.2.2 Position Converter

The Position Converter is the most frequently used tool in the
Mutalyzer suite. The usage of the three latest human reference
genomes is shown in Figure 7. Of the latest three human reference
genomes, GRCh37 is the one most frequently used (94%). Although
GRCh38 was released in December 2013, it is being used in only
5% of the cases. It is noteworthy that NCBI36 was last used in
2017.

7 Discussion

In this section, we discuss common misconceptions and issues that
arise from using standard reference sequence files.

7.1 Equivalent descriptions
The NCBI provides reference sequence files for various genomic fea-
tures at different levels (Pruitt et al., 2002). Chromosomal assembly
reference files (identified by the accession number prefix NC_) con-
tain both the entire chromosome sequence and annotation of its cor-
responding features. We refer to a transcript annotated on a
chromosome as chromosomal transcripts. Transcript reference files,
or RefSeq transcripts (identified by the accession number prefix NM_

Fig. 2. Mutalyzer usage per tool and interface, extracted from https://mutalyzer.nl

in December 2019

Fig. 3. Assessments made by the Name Checker for all submitted descriptions

Fig. 4. Common error codes returned by the Name Checker

Fig. 5. Common warning codes issued by the Name Checker

Mutalyzer 2 2815

https://mutalyzer.nl


or NR_), are available from the same source. These references only
contain the sequence and features for one transcript, they therefore
do not contain any intronic sequences.

The HGVS c. and n. positioning systems make it possible to de-
scribe a variant in the context of a transcript, while using a genomic
(chromosomal) reference sequence. The same notation can be used
to describe a variant using a RefSeq transcript, which results in a
very similar looking, but potentially very different variant descrip-
tion. This seemingly equivalent way of describing variants is the
source of many erroneous descriptions.

Tools like the Position Converter and the Variant Validator
(Freeman et al., 2018) provide a way to convert between chromo-
somal and RefSeq transcripts descriptions. However, because
RefSeq transcripts lack intronic sequences and, moreover, exonic
sequences may differ between chromosomal and RefSeq transcripts,
the results of such a conversion should be interpreted with great
care.

A summary of the differences between chromosomal and RefSeq
transcripts for in human genome builds GRCh37 and GRCh38 is
shown in Table 2. It is important to note that 6.79% of the tran-
scripts in GRCh37 and 2.52% of the transcripts in GRCh38 differ
in terms of sequence content from those found in RefSeq. Moreover,
in over 50% of the cases, these differences are found in the protein
coding region. This is why it is important not to confuse a chromo-
somal transcript like NC_123.4(NM_567.8) with NM_567.8, as
they may differ quite substantially.

The majority of the differences (about 80%) found in the survey
described above, consist of single nucleotide variants, but there are
cases in which deletions or insertions occur. These differences

change the mapping of positions between a chromosomal and a
RefSeq transcript sequence. Such an example is shown in Figure 8,
where in the chromosomal transcript a sequence of five nucleotides
is inserted between c.131 and c.132. This results in a discrepancy
for all positions downstream of this variant. In addition, the reading
frame is changed, which leads to various consequences at the protein
level.

When a variant description is lifted over to an other reference se-
quence, i.e. when the primary reference ID is changed, one should
make sure that both descriptions yield the same observed sequence
when applied to their respective reference sequences. For example, if
we assume that NC_000012.12 was used in the example from
Figure 8, descriptions lifted over to NM_032790.3 should include
the missing CCGCC sequence as an additional variant, e.g.
c.131_132insCCGCC. There are currently no tools available that
perform this operation.

For consistent variant dissemination, we recommend using either
chromosomal transcripts or RefSeq transcripts, whichever was used
in the primary data analysis. We strongly advise against conversion
between the two. When a transcript-oriented description is desired
for variants found in Next Generation Sequencing experiments, our
advice is to use the notation NC_123.4(NM_567.8) instead.

7.2 Unstable annotations
Mutalyzer is a fully deterministic system, which means that a given
input will always yield the same result. It is possible, however, that
the input changes without the end user noticing, giving rise to unex-
pected results. A change in the reference model, like the addition or
removal of features and changes in feature positions, is the most
common source of such problems.

For example, version 08-APR-2018 of RefSeq file
NM_012115.3 has an exon missing compared to the one dated 11-
AUG-2018 and version 06-JUN-2016 of NC_000002.12 contains
annotation for NM_032506.2, while the version dated 26-MAR-
2018 does not. Approximately 1000 mRNA features were removed
between the two mentioned dates for NC_000002.12 alone.

According to Pruitt et al. (2011), the NCBI updates the reference
identifier version number only when there is a change in the se-
quence. When alterations within the feature annotation section
occur, there is no version update. From the presented examples, it is
clear that Mutalyzer, or anyone for that matter, is not able to ensure
consistent output unless the reference sequence providers maintain
proper reference sequence versioning, both at the sequence and an-
notation level.

8 Support

Mutalyzer is an Open Source project available on GitHub (https://
github.com/mutalyzer/mutalyzer) under the GNU Affero General
Public License. The GitHub issue tracker system is used for feature
requests and error reporting.

The Mutalyzer mailing list (https://groups.google.com/g/muta
lyzer) is a general forum for the Mutalyzer tool suite. Messages can
be posted through the Google Groups interface or by sending an
email (mailto: mutalyzer@googlegroups.com). Additionally, there is a
low volume mailing list where updates to Mutalyzer are announced
(https://groups.google.com/g/mutalyzer-announce). Private questions
or security related issues can be communicated via a private email ad-
dress (mailto: info@mutalyzer.nl).

Fig. 6. Usage of reference sequence types

Fig. 7. Reference genomes used in Position Converter descriptions

Table 2. Sequence differences between chromosomal and RefSeq

transcripts

Assembly Total NMs Different NMs SNPs Alleles In CDS

(#) (#) (%) (%) (%) (%)

GRCh37 34 641 2353 6.79 78.20 21.80 64.56

GRCh38 56 104 1415 2.52 82.05 17.95 52.65

aRetrieved between February and April 2020.

Fig. 8. Example of different sequences between an NC and an NM

2816 M.Lefter et al.

https://github.com/mutalyzer/mutalyzer
https://github.com/mutalyzer/mutalyzer
https://groups.google.com/g/mutalyzer
https://groups.google.com/g/mutalyzer
https://groups.google.com/g/mutalyzer-announce


Support on locally installed instances of the Mutalyzer tool suite,
e.g. for the analysis of private/confidential variants, can be arranged
through PhenoSystems S.A. (http://www.phenosystems.com/www/
index.php/products/mutalyzer).

9 Conclusions and further research

In this paper, we presented Mutalyzer 2, a tool suite created to assist
geneticists in applying the HGVS variant nomenclature guidelines for
consistent dissemination in clinical research, databases and scientific
literature since its launch in August 2010, Mutalyzer proved its utility
by processing over 133 million variant descriptions. Log statistics in-
dicate that �50% of the input descriptions were correct, while for
41% of them, either a syntactic or a semantic error was identified. In
�7% of the cases, Mutalyzer provided a corrected description.

For upcoming versions of Mutalyzer, support for reference se-
quence providers such as EMBL-EBI’s Ensembl should be added.
Support for descriptions that use multiple reference sequences, e.g.,
g.123_124insLRG_199:g.2233_2361 is also highly desirable.
Finally, the Description Extractor should be used as a central com-
ponent of the Name Checker, as this will allow for disambiguation
of complex allele descriptions.

Acknowledgements

The authors thank the following people for their contributions to Mutalyzer 2

(in alphabetical order): Ivo F.A.C. Fokkema, Mark Kroon, Gerard C.P.

Schaafsma and Gerben R. Stouten.

Funding

This work was partly funded by the Netherlands Bioinformatics Centre,

which is supported by the Netherlands Genomics Initiative. This publication

was supported by the Dutch National Program COMMIT.

Conflict of Interest: none declared.

References

Ad Hoc Committee on Mutation Nomenclature (1996) Update on nomencla-

ture for human gene mutations. Hum. Mutat., 8, 197–202.

Antonarakis,S. et al. (1998) Recommendations for a nomenclature system for

human gene mutations. Hum. Mutat., 11, 1–3.

Beaudet,A. and Tsui,L.-C. (1993) A suggested nomenclature for designating

mutations. Hum. Mutat., 2, 245–248.

Box,D. et al. (2000) Simple Object Access Protocol (SOAP) 1.1. https://www.

w3.org/TR/2000/NOTE-SOAP-20000508/.

Charoute,H. et al. (2013) The moroccan genetic disease database (MGDD): a

database for DNA variations related to inherited disorders and disease sus-

ceptibility. Eur. J. Hum. Gene., 22, 322–326.

Danecek,P. et al. (2011) The variant call format and VCFtools.

Bioinformatics, 27, 2156–2158.

den Dunnen,J. and Antonarakis,S. (2000) Mutation nomenclature extensions and

suggestions to describe complex mutations: a discussion. Hum. Mutat., 15, 7–12.

den Dunnen,J. et al. (2016) HGVS recommendations for the description of se-

quence variants: 2016 update. Hum. Mutat., 37, 564–569.

Fokkema,I.F.A.C. et al. (2011) Lovd v.2.0: the next generation in gene variant

databases. Hum. Mutat., 32, 557–563.

Freeman,P.J. et al. (2018) Variantvalidator: accurate validation, mapping, and

formatting of sequence variation descriptions. Hum. Mutat., 39, 61–68.

Holmes,J.B. et al. (2020) SPDI: data model for variants and applications at

NCBI. Bioinformatics, 36, 1902–1907.

JSON-RPC Working Group (2010) JSON-RPC 2.0 specification.

Laros,J. et al. (2011) A formalized description of the standard human variant

nomenclature in extended Backus-Naur form. BMC Bioinform., 12, S5.

MacArthur,J. et al. (2014) Locus Reference Genomic: reference sequences for

the reporting of clinically relevant sequence variants. Nucleic Acids Res.,

42, D873–D878.

O’Leary,N.A. et al. (2016) Reference sequence (RefSeq) database at NCBI:

current status, taxonomic expansion, and functional annotation. Nucleic

Acids Res., 44, D733–D745.

Pruitt,K. et al. (2011) RefSeq Help [Internet], Chapter RefSeq Frequently

Asked Questions (FAQ) 2010 Nov 15 [Updated 2020 Jan 31]. Bethesda,

MD: National Center for Biotechnology Information (US).

Pruitt,K. et al. (2002) The NCBI Handbook [Internet]. Chap. 18. Bethesda,

MD: National Center for Biotechnology Information (US).

Sahajpal,R. (2014) HGVTB: a comprehensive online resource on human genes

and genetic variants associated with tuberculosis. Database: J. Biol.

Databases Curation, 2014, bau112.

Vis,J. et al. (2015) An efficient algorithm for the extraction of HGVS variant

descriptions from sequences. Bioinformatics, 31, 3751–3757.

Wildeman,M. et al. (2008) Improving sequence variant descriptions in muta-

tion databases and literature using the Mutalyzer sequence variation

Nomenclature Checker. Hum. Mutat., 29, 6–13.

Yen,J. et al. (2017) A variant by any name: quantifying annotation discord-

ance across tools and clinical databases. Genome Med., 9, 7.

Mutalyzer 2 2817

http://www.phenosystems.com/www/index.php/products/mutalyzer
http://www.phenosystems.com/www/index.php/products/mutalyzer
https://www.w3.org/TR/2000/NOTE-SOAP-20000508/
https://www.w3.org/TR/2000/NOTE-SOAP-20000508/

	tblfn1

