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Abstract: Carbon nanomaterials (CNMs) and enzymes differ significantly in terms of their physico-
chemical properties—their handling and characterization require very different specialized skills.
Therefore, their combination is not trivial. Numerous studies exist at the interface between these
two components—especially in the area of sensing—but also involving biofuel cells, biocatalysis,
and even biomedical applications including innovative therapeutic approaches and theranostics.
Finally, enzymes that are capable of biodegrading CNMs have been identified, and they may play
an important role in controlling the environmental fate of these structures after their use. CNMs’
widespread use has created more and more opportunities for their entry into the environment, and
thus it becomes increasingly important to understand how to biodegrade them. In this concise
review, we will cover the progress made in the last five years on this exciting topic, focusing on the
applications, and concluding with future perspectives on research combining carbon nanomaterials
and enzymes.

Keywords: carbon nanomaterials; carbon nanotubes; graphene; carbon nano-onions; carbon nanodots;
enzymes; nanozymes; sensing; fuel cells; medicine

1. Introduction

Carbon nanomaterials (CNMs) and enzymes belong to two scientific fields that have
been traditionally widely separated, and research at their interface bears a number of
challenges to overcome, both experimentally and culturally [1]. Nevertheless, in recent
years a number of studies have allowed great progress in this research area, pushing the
limits of what was considered possible, and demonstrating great innovation potential for a
wide number of applications. Enzymes can be covalently conjugated onto nanocarbons,
adsorbed on their surface, or even encapsulated in those with a hollow structure, as
reviewed elsewhere [2–5]. The interactions between proteins and nanocarbons can play
an important role in determining their fate in vivo, including their biodegradation [6–8],
formation of a biocorona [9–11], and consequent modulation of the immune response [12].

Besides the exciting area of biointegration of nanocarbons, for instance for the regener-
ation of conductive tissues [13], and (flexible) bioelectronics’ development [14], the fields
of sensing and diagnostics [15] certainly benefit from the inclusion of both nanocarbons
and enzymes. Finally, considering the current emergency we are facing in terms of en-
vironmental impact of human activities and climate change that requires urgent action,
the use of enzymes is very attractive for the production, modification, and degradation of
nanocarbons to render the relevant processes more sustainable.

To provide a general overview of the diverse members of each family, this minireview
will briefly introduce the classification of enzymes and nanocarbons, followed by an
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overview of the literature describing their combination. We will then discuss the recent
progress in a variety of applications, focusing on the last five years, and directing the reader
to reviews of each topic where older research can be found. Finally, we will conclude with
a perspective towards the future of this exciting research area.

1.1. Enzyme Classification

Enzymes have attracted scientists’ attention for a long time. It is imperative to adopt
an unambiguous nomenclature and classification for this enormous and diverse group
of biological catalysts to permit their rigorous study and accelerate scientific progress in
this area. The International Union of Biochemistry and Molecular Biology (IUBMB) has
introduced the IUBMB ExplorEnz website [16], where it is possible to navigate the Enzyme
Commission (EC) system, which uses four-component numbers to identify each enzyme
(i.e., EC X.X.X.X):

1. The first component refers to the general type of reaction being catalyzed. For instance,
EC 1 indicates oxidoreductases that catalyze redox reactions, and EC 3 identifies
hydrolases that catalyze hydrolytic reactions (Figure 1).

2. The second number indicates the subclass based on the type of compound or func-
tional group involved in the reaction. For example, EC 1.13 refers to oxygenases that
insert oxygen on the substrate, and EC 2.3 indicates acyl-transferases that transfer
acyl groups, etc.).

3. The third component denotes the sub-subclass, by further specifying the reaction
being catalyzed, for instance in terms of acceptors, or specific groups being transferred.
As an example, EC 2.1.1 indicates methyl transferases.

4. The fourth component is simply a serial number that refers to the specific enzyme.
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Figure 1. Seven enzyme classes constituting the first component of the Enzyme Commission
(EC) number.

However, the system presents room for improvement, because it is not always unam-
biguous. In fact, new classes are constantly being added to the EC system, and it should
also be noted that non-physiologically occurring enzymes are not included [17]. For these
reasons, many other databases can be useful to complement the ExplorEnz information. For
instance, helpful information can be found in the relevant metabolic pathways described
on KEGG [18], kinetic data on BRENDA [19], thermodynamic data on NIST [20], and
human gene names curated by HUGO [21] and NCBI [22]. New databases are continuously
being created, including some that use different classification criteria, such as MEROPS for
peptidases [23], and others that more generally collect various types of data pertaining to
proteins, such as Expasy [24].



Materials 2022, 15, 1037 3 of 33

1.2. Carbon Nanomaterials (CNMs)

The family of CNMs is very diverse, with new members continuously being discovered.
In this minireview, we will examine the most popular types of CNMs (Figure 2), as well as
their general properties. Those features are briefly discussed in the following sub-sections,
where readers are referred to reviews that describe in more depth the various CNM types
that are mainly composed of carbon atoms (Figure 2), and their general properties. We
will briefly mention their main features in the following sub-sections, where readers are
referred to recent reviews that describe more in depth the various CNM types [25].
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Figure 2. Main types of carbon nanostructures (not to scale). Reproduced from [26] under a Creative
Commons license. The CNO schematic structure is adapted with permission from [27], copyright
©1996, Elsevier.

Generally, sp2-hybridized carbon allotropes share common features, such as high
mechanical strength and electronic conductivity, together with low density, and a high
surface area; these can be functionalized to tailor their properties ad hoc for the intended
application, as reviewed elsewhere [15,28]. In particular, the various modes of interaction
and conjugation with proteins is a widely covered topic in the literature, and thus it will
not be discussed here [1,2,29]. CNMs composed mainly of sp3-hybridized carbon atoms
exist also, such as nanodiamonds (NDs) [30]; they find scope especially in sensing and
catalysis [31], although they have not attracted scientists’ attention to a great extent, likely
due to their more limited accessibility relative to other CNMs.

Each carbon nanostructure has a specific size, morphology, curvature, and reactivity.
However, despite the many research efforts on their modification for tailored applications,
it is not always straightforward to predict a priori which one will give the best perfor-
mance, with great variation across allotropes [32–36]. Nevertheless, their conductivity is
particularly promising to enhance (bio)materials’ properties [37–40], for the regeneration
of conductive tissues such as the challenging nerve [41–45] and cardiac tissues [46–51], in
sensing [52] and various types of catalyses [53–55], and in the field of energy sustainable
production [56], conversion [57], and storage [58]. Furthermore, the performance in the
latter fields can be enhanced by the generation of highly porous materials. Indeed, carbon
foams [59] and porous carbon [60] are highly advantageous since they can be produced
at low cost and from a variety of precursors [61], such as polymers [62] and biomass [63],
bearing high potential especially in gas [64–66] and energy storage [67–71], and in catal-
ysis [72–74]. However, in this review we will focus on the traditional CNM types, as
described in the following sub-sections.

1.2.1. Fullerenes

Buckminsterfullerene, a discrete molecule composed of 60 carbon atoms (C60), was
the first nano-allotrope to be discovered, in 1985 [75]. Fullerenes can also be composed
of more carbon atoms, such as C76, C84, and C90 [76]. After C60, the rugby-ball shaped
C70 is the second most known, and it is easier to isolate in sufficient amounts for research
than higher fullerenes [77]. The advent of 100-milligram scale preparation of C60 [78]
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opened the way to decades of research that have provided several routes for its chemical
functionalization, as recently reviewed [79]. Further tailoring of C60 properties can be
attained through doping with heteroatoms [80]. Molecular confinement also offers the
possibility to encase other elements in their interior to provide endohedral fullerenes [81]
with interesting properties [82].

Fullerenes are fascinating molecules that have attracted researchers’ interest as they
can be formed in space [83]. On Earth, they have been proposed for various applications,
including the targeted delivery of therapeutics [84] and innovative antiviral therapies [85].
Despite the many potential uses in medicine [86], especially in photodynamic cancer
therapy thanks to their ability to generate and modulate reactive oxygen species (ROS)
levels [87], their electronic properties thus far found translation mainly in the field of pho-
tovoltaics, thanks to their electron-acceptor nature [88] and electron-transport ability [89].

1.2.2. Carbon Nano-Onions (CNOs)

Multiple fullerenes can be organized one inside another in carbon nano-onions
(CNOs) [27]. These concentric, multi-layered fullerenes can have a size ranging from
2 to 100 nm, depending on the method of synthesis [90]. Generally, multi-fullerenes display
a decreasing reactivity with increasing size, corresponding to decreasing curvature, and
therefore, the associated strain on the CNO surface. Consequently, small CNOs present
good reactivity, although it should be noted that also other factors, such as the production
method and the consequent amount of defect sites, affect their reactivity [91].

In the last decade, their biological [92,93] and electrochemical [94,95] applications have
significantly expanded due to the favorable properties of the nanomaterial, including their
small size, large accessible surface area, and high biocompatibility [96–98], especially once
they are rendered soluble through covalent and non-covalent functionalization [99–103].
It is worth noting that recent findings described white-light luminescence arising when
CNOs were produced through pyrolysis and underwent oxidative treatments [104].

1.2.3. Carbon Nanohorns (CNHs)

Carbon nanocones [105] can form clusters termed carbon nanohorns (CNHs) [106].
Like many other CNMs, pristine nanocones unfortunately tend to aggregate in many
solvents, and they do so in various morphologies termed dahlia-, bud-, or seed-like
CNHs [107]. Despite this limitation, they can find promising applications in biosens-
ing [108], medicine [109], and electrocatalysis [110], sometimes even outperforming other
CNMs [111], and with relevance to clean energy [112] and carbon dioxide fixation [113].
There are not many studies on CNHs relative to the other CNMs, possibly also due to a
more limited number of commercial sources. As a result, this type of nanomaterial remains
an underexplored opportunity for innovation in numerous fields.

1.2.4. Carbon Nanodots (CNDs)

In the last few years, luminescent carbon dots (CNDs) have emerged for their innova-
tion potential, especially in sensing and biomedicine [114,115], thanks to their low-toxicity,
chemical inertness, ease of preparation, environmental friendliness, and interesting physico-
chemical properties [116,117]. Another key advantage relative to many other CNMs, is
the excellent solubility of CNDs in a large variety of solvents, both organic and aqueous,
depending on their chemical nature [118].

These nanomaterials have attracted great attention for their cost-efficient and sustain-
able production [119], using, for instance, natural products [120,121] or biomass waste as
carbon source [122]. However, the fine tailoring of their desired optical properties has
been challenging [123]. Indeed, the exact chemical structure of CNDs still poses many
unanswered questions [124,125], and the thorough use of spectroscopic methods is key
to providing an accurate characterization of the emittive species [126]. As we advance
our understanding of CNDs’ nature, further prospects open up [127], expanding their
applications to organocatalysis [128], sensitizers for photocatalysis [129] and pollutant
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degradation [130], and to energy conversion and storage [131], as capacitor electrodes, for
instance [132].

1.2.5. Nanodiamonds (NDs)

NDs are characterized by sp3-hybridization of their carbon core. NDs come in different
sizes, morphologies, and surface types, depending on the method used for their preparation
and functionalization [133]. They display attractive physico-chemical properties such as
hardness, biocompatibility, and chemical inertness, leading to research on a variety of
potential biological uses, especially delivery of therapeutics and imaging [134,135], but
also sensing [136], tissue regeneration [137], skin products’ formulations [138], and in
polished or active coatings with antimicrobial, antifriction, and mechanical reinforcing
properties [139].

Recently, NDs have been considered also for their use in theranostics as applied to
neurodegenerative diseases, thanks to their additional benefit of crossing the blood-brain-
barrier [140]. Other emerging areas of application include primarily biological use in
cells [141,142] and in vivo [143], but also catalysis [144].

1.2.6. Carbon Nanotubes (CNTs)

Carbon nanotubes can be composed of one graphitic layer rolled up in single-walled
CNTs (SWCNTs) [145], or multiple coaxial graphitic nanotubes called multi-walled CNTs
(MWCNTs) [146], which can be grown with branches also [147]. CNTs can have very
different properties; for instance, they can be semiconducting or metallic, depending on
their type and chirality [148]. Over the years, several functionalization strategies have
been developed [149]; oxidation is by far the most popular way to increase their polarity
and dispersibility in various solvents, including water [150]. Therefore, fine control over
their synthesis, purity and, thus, homogeneity is critical to enable their translation into
large-scale use [151] and to fill the gap between their properties as individual CNTs and
those of their bundled aggregates—often a practical limitation for industrial use [152].

CNTs have attracted great interest although there are still challenges to overcome to
enable a wider commercial use of their unique properties [153]. Key areas of application
include various types of high-performing composite materials, where demands of con-
ductivity, robustness, flexibility, and mechanical resistance are high [154]. These include
artificial neuromuscular prostheses [155,156], and more generally nano-bioelectronics [157]
and wearable electronics [158], but also sensing [159] and imaging [160], orthopedic de-
vices [161], tissue regeneration and biomedical use [162–164], electroactive materials for
environmental and energy technology [165–171], electronics and computing [172,173], and
various forms of catalysis [174–179].

1.2.7. Graphene (G) and Graphene-Based Materials

In the last decade, the most popular carbon allotrope has been graphene (G), which
can be considered as a 2D layer of sp2-hybridized carbon atoms arranged in a honeycomb
lattice. It is worth noting that G can come in many forms, in terms of size, layers, level
of oxidation, etc. which will all affect its physico-chemical properties [180]. In particular,
graphene oxide (GO) [181,182] or its reduced form (rGO) [183,184] are often used for their
improved dispersibility, relative to pristine G. G properties have also been tailored through
topology [185], such as twists and nanoribbons [186]. Given the large heterogeneity in size,
number of layers and of defects of G flakes, the general term of graphene-based materials
is preferred over just G, to refer to this sub-class of CNMs [187].

Applications are similar to CNTs, and they include composite reinforcement [188],
wearable [189] and flexible electronics [190,191], including memory devices [192] and even
stretchable batteries [193], energy storage [194] and conversion [195–198], environmental
remediation [199,200], varying types of catalysis [201–204], and innovative uses in the
healthcare sector [205], such as regenerative medicine [206] and sensing [207,208]. In this
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case, large-scale, cost-effective production of high-quality G [209,210] and standardization
are key for the translation of G properties into commodity products at a global level [211].

1.3. Bibliometric Analysis of CNMs and Enzymes

A literature search for the term “enzyme” in conjunction with each one of the most
popular CNMs shown in Figure 2, in the title, abstract, or keywords, has revealed that
the vast majority of scientific articles pertain to CNTs (4.3 × 103 documents), followed
by G (3.4 × 103 documents). However, in the last decade (Figure 3), scientific works on
either one averaged about 300 per year, with a slight decrease for CNTs after 2017, opposed
to a continuous increase for G up to 2019, surpassing CNTs in 2015. This trend could be
related to concerns over CNTs’ toxicity, as suggested by the fact that scientific documents
on this topic peaked at nearly 300 in 2015, and since then held steady. However, given
their high innovation potential in medicine [212,213], and the high number of variables
that affect their biocompatibility [214,215], alarming generalizations to ban their use are
best avoided [216].
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(Source: Scopus 14 November 2021).

In comparison to CNTs and G, all the other CNMs lagged behind, each one reaching far
less than 100 in total—with two exceptions—and representing today a missed opportunity
for research. The first exception was fullerenes, possibly since they were the first to be
discovered and thus have had more years of related research, reaching just over 600 records.
The second exception was CNDs, which are among the most recent CNMs to be discovered.
Scientific papers on CNDs have been increasing steadily year after year, since the first ones
appeared in 2004. Therefore, it is foreseeable that CNDs will keep rising in popularity in
the immediate future, although there is still a long way ahead to approach the numbers
seen for CNTs and G.

In terms of applications, most studies pertain biosensing and biofuel cells (Table 1),
although biocatalysis and biomedical applications other than sensing have been pursued
with these systems. Interestingly, CNMs have also been envisaged as enzyme mimics,
inhibitors, or detectors. We will concisely cover the progress made over the last five years
on all these topics in the following sections.

Table 1. Scientific literature since 2017 on carbon nanomaterials and enzymes for various
applications. C60 = buckminsterfullerene. CNDs = carbon nanodots. CNFs = carbon nanofibers.
CNHs = carbon nanohorns. CNOs = carbon nano-onions. DHase = dehydrogenase. GO = graphene oxide.
rGO = reduced GO. MWCNTs = multi-walled CNTs. SWCNTs = single-walled CNTs.

CNM Type Conjugation Enzyme EC
Class Application Ref.

C60

Non-covalent Laccase 1 Water purification [217]

Covalent
Laccase 1 Water purification [217]

Tyrosinase 1 Biosensing [218]

C60, MWCNTs Non-covalent Endonuclease 3 Biosensing [219]
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Table 1. Cont.

CNM Type Conjugation Enzyme EC
Class Application Ref.

CNDs

Covalent Galactosidase 3 Biosensing [220]

Quinolinate phosphoribosyl transferase 2 Biosensing [221]

Non-covalent

Adenylate kinase 2 Biocatalysis [222]

Endonucleases 3 Biosensing [223]

Glucose oxidase 1 Biosensing/therapy [224–227]

Glucose oxidase, peroxidase 1 Biosensing [228]

Laccase,
NAD+-dependent DHase,

alcohol DHase, aldehyde DHase,
formate DHase

1 Biofuel cell [229]

Lactate oxidase 1 Biosensing [225]

Maltase 3 Therapy [230]

Old yellow enzyme 1 Biocatalysis [231]

Uricase 1 Biosensing [225]

CNFs
Covalent Laccase 1 Biosensing [232]

Non-covalent Tyrosinase 3 Biosensing [233]

CNHs
Covalent Glutamate oxidase 1 Biosensing [234]

Non-covalent Peroxidase 1 Biosensing [235]

CNOs
Covalent

Alkaline phosphatase 3 Biosensing [236]

Glucose oxidase 1 Biosensing [236,237]

Peroxidase 1 Biosensing [236,238]

Non-covalent Adenylate kinase 2 Biocatalysis [222]

GO

Covalent Laccase 1 Biosensing [239]

Non-covalent

Choline oxidase/acetylcholine esterase 1/3 Biosensing [240]

Rhamnosidase 3 Biocatalysis [241]

Adenylate kinase 2 Biocatalysis [222]

Glucose Oxidase 1 Biosensing/fuel cells [242]

Lipase 3 Biocatalysis [243]

GO, MWCNTs Non-covalent Lactate oxidase 1 Biosensing [244]

rGO Non-covalent
Acetylcholine esterase 3 Biosensing [245]

Thrombin 1 Biosensing [245]

MWCNTs

Covalent

Choline Oxidase 1 Biosensing [246]

Glucose oxidase 1 Biosensing/fuel cells [247–251]

Glucose oxidase 1 Cancer therapy [252]

Laccase 1 Biofuel cells [253]

Laronidase 3 Therapy [254]

Lipase 3 Biofuel cells [255]

Peroxidase 1 Sensing/membranes [256,257]

Pyranose oxidase 1 Biosensing/fuel cells [258,259]

Tyrosinase 3 Biosensing [218,260]

Uricase 1 Biosensing [261]

Xanthine oxidase 1 Biosensing [262]

Non-covalent

Alcohol dehydrogenase 1 Biosensing [263,264]

Alcohol oxidase 1 Biosensing [265]

Amino acid oxidase 1 Biosensing [265]

Amylase, lysozyme 3 Biocatalysis [266]

Bilirubin oxidase 1 Biosensing/fuel cells [267,268]

Choline oxidase 1 Biosensing [265]

Glucose dehydrogenase 1 Biosensing/fuel cells [269]

Glucose oxidase 1 Biosensing/fuel cells [247,270–275]

Glucose oxidase/catalase 1 Biofuel cells [276]

Glucose oxidase, laccase 1 Biosensing/fuel cells [277]

Glutamate oxidase 1 Biosensing [278]
Laccase 1 Biosensing [279]

Lactate oxidase 1 Biosensing [280]

Lipase 3 Biosensing/biocatalysis [263,264,281–283]

[NiFeSe]-hydrogenase 1 Biofuel cells [284]

Oxalate decarboxylase 4 Biofuel cells [285]

Peroxidase 1 Biosensing/fuel cells [286,287]

Pyranose oxidase 1 Biosensing/fuel cells [258,265]

SWCNTs
Covalent Tyrosinase 1 Biosensing [288]

Non-covalent Choline oxidase 1 Biosensing [265]
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2. CNMs for Enzyme Mimicry, Inhibition, or Monitoring
2.1. CNMs for Enzyme Mimicry

A plethora of works describe the use of CNMs as nanozymes, meaning nanostruc-
tures that mimic enzymes as they display catalytic activity [289]. Research in this area
is intended to overcome some of the common limitations of enzymes, particularly, the
limited physico-chemical resistance against solvents and changes in temperature, pH or
other experimental conditions [290]. Potential applications range from various biomedical
applications [291], including innovative therapy [292] biosensing [293,294], and disinfec-
tion [295], to environmental monitoring and remediation [296]. In particular, peroxidase
mimicry by CNMs (Figure 4) has been widely studied [297], especially for the develop-
ment of glucose biosensors [298], although hydrolase mimicry is also attracting increasing
interest [299].
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Figure 4. CNMs typically used for peroxidase mimicry (left) and a possible reaction mechanism that
ultimately generates hydroxyl radicals for the oxidation of colorless 3,3′,5,5′-tetramethylbenzidine
(TMB) to a colored product (oxTMB). Reprinted with permission from [300], Copyright © 2022,
American Chemical Society.

In particular, CNDs have been functionalized with Fe (III) to mimic peroxidases and
exert antimicrobial activity through generation of hydroxyl radicals [301]. In contrast, no
hydroxyl radicals were generated when they were derivatized with glucose or cyclodextrin
to mimic peroxidases, indicating a different mechanism [302]. The peroxidase mimicry
activity can be correlated to the phosphorescence quantum yield and can inhibit bacterial
growth under light irradiation, an activity that was envisaged for photodynamic antimicro-
bial chemotherapy applications [303]. Alternatively, the use of light could trigger radical
oxygen species generation by the CND nanozymes, in an effort to mimic nuclease activity
and cleave DNA [304].

Chemical functionalization has been successfully employed to attain CNDs with
switchable fluorescence too. In this case, the fluorescence of amino-derivatized CNDs can
be quenched by chelation with Fe(II) ions as nanozymes, and restored upon treatment with
hydrogen peroxidase with a concomitant shift from yellow to green [305]. Furthermore,
addition of other divalent metal cations can lead to additional advantages. For instance,
Mn(II) extends the peroxidase mimicry by CNDs to neutral pH values, which is otherwise
rather uncommon [306]. Despite the fact that mimicking enzymes’ enantioselectivity is a
grand challenge, recent reports are demonstrating it is possible, in topoisomerase mimicry,
for example [307]. Heteroatom-doped CNDs have been developed for theranostics as well,
thanks to nanozyme activity [308]. Many other examples of nanozymes based on CNDs
have been reported, through addition of other components, such as hemin [309], metal
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nanoparticles (NPs) [310,311], co-doping with various elements [312–314], MOFs [315],
carbon nitride [316], and metal oxides [317].

Both graphene oxide (GO) and its reduced derivative (rGO) have also demonstrated
peroxidase mimicking ability, which has been ascribed to the presence of carbonyl groups
on the surface of the nanomaterial that get activated by hydrogen peroxide as a key step in
the catalytic cycle [318]. Interestingly, rGO co-doping with N and B allowed development
of nanozymes for the selective mimicry of peroxidases (but not oxidases) with enhanced
catalytic performance for the development of biosensors [319].

Analogously, oxidized CNTs demonstrated peroxidase-like activity, which was envis-
aged for the treatment of bacterial infections [320]. Different oxygen-bearing functional
groups exert competing interactions with hydrogen peroxide (Figure 5), and thus control
over oxidation is important [320]. Combination of CNTs with other chemical components
is a popular strategy to tailor nanozyme activity to the intended application. In a recent
example, SWCNTs have been functionalized with a nickel complex for the biomimicry
of oxidase for H2 oxidation, and subsequent integration in fuel cells [267]. Alternatively,
MWCNTs were coated with polypyrrole to introduce N-based ligands for Fe to be used
in single-atom catalysis as peroxidase mimics [321]. CNTs were combined with hemin for
peroxidase mimicry also [322,323]. They have been derivatized with polyoxometallate-
based metal-organic frameworks (MOFs) for the selective sensing of cysteine [324], or with
copper complexes [325], MOFs [326], and NPs [327] to develop nanozymes. For this type
of application, many types of metal NPs have been used [328–330], as well as polymers to
mimic phosphodiesterases [331].
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Figure 5. (a) Optimized binding modes between hydrogen peroxide and CNTs either in their pristine
form (p-CNTs) or with different oxygen-bearing functional groups. (b) Binding energies between
hydrogen peroxide and the various CNT types shown in (a). (c) Schematic illustration of peroxidase
mimicry by oxidized CNTs. Reprinted with permission from [320], Copyright © 2022 American
Chemical Society.

CNTs can be further assembled into macroscopic materials, such as carbon nanofibers
(CNFs), which find many uses, especially in high-performance composites and energy
devices [332–336]. In this case, they have been decorated with Fe(III) complexes to mimic
oxidases [337], peroxidases, and catalases for sensing and environmental technology [338].
Analogously to CNTs, CNFs can be oxidized, although gas-phase methods are preferable
to the liquid-phase methods typically used for CNTs, to preserve the CNF macroscopic
morphology, with the additional advantage of being virtually waste-free [339].

Peroxidase mimicry can be exerted by other CNMs as well, and for various uses.
CNHs have been used as peroxidase mimics for the detection of drug traces as environmen-
tal pollutants [340]. They have been combined with nanosized ceria to detect hydrogen
peroxide in commodity products, such as washing liquids and milk [341]. In the case of
CNOs, nitrogen doping has been successfully applied to improve their catalytic perfor-
mance in the electrochemical generation of molecular oxygen from hydrogen peroxide [342].



Materials 2022, 15, 1037 10 of 33

Boron and nitrogen co-doped CNOs showed great performance as electrocatalysts for the
oxygen reduction reaction [95]. Interestingly, in the case of NDs, they were envisaged for
redox-enzyme mimicry, with an activity that could be selectively tailored depending on
the pH. At acidic pH, NDs catalyzed the reduction of molecular oxygen and hydrogen
peroxide. At alkaline pH, they catalyzed the dismutation decomposition of hydrogen
peroxide to produce molecular oxygen. It was proposed that the molecular mechanism of
their peroxidase-like activity is electron-transfer acceleration, the source of which is likely
derived from oxygen-containing functional groups on their surface [343].

Finally, besides peroxidases, and, generally, redox-active enzymes, which represent
the vast majority of nanozyme mimicry studies on CNMs, hydrolases have started to
attract scientists’ attention. In a recent report, fullerene derivatives were applied to this end
through the presentation of multiple functional groups inspired from the natural enzymes’
catalytic sites [344]. Analogously to the other CNMs, fullerenes could also act as peroxidase
mimics at acidic pH, and were thus envisaged for the eradication of Helycobacter pylori
in vivo [345].

2.2. CNMs as Enzyme Inhibitors

Fullerene derivatives have been envisaged for the inhibition of a variety of enzymes,
including recent examples of HIV-1 protease [346], ribonuclease A [347], glycosidases [347],
ubiquitin-activating enzyme 1 [348], and acetylcholinesterase [349]. Their size, hydrophobic
nature, and spherical morphology appear very suitable for hydrophobic interactions with
lipophilic sites on the target enzymes (Figure 6), whilst C60 functionalization can add
hydrophilic appendages for more specific interactions.
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Figure 6. Front-view (A) and vertical section (B) of the surface of the active pocket of acetyl-
cholinesterase, with the peripheral anionic site (PAS) giving access, through a narrow gorge, to
the catalytic active site (CAS). (C) Fullerene (brown sphere) can interact with the PAS through
hydrophobic interactions with the enzyme surface, whose lipophilic potential (LP) is color-coded
from brown (highest hydrophobicity) to blue (highest hydrophilicity). Reproduced with permission
from [349], Copyright © 2022, American Chemical Society.
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CNDs have been used to inhibit tyrosinase for cosmetic and food applications, thanks
to hydrophobic interactions between the CNDs and the enzymatic surface, as well as
chelation by the CND COOH groups of the enzyme copper ions. Tyrosinase is involved in
the browning process of fruits and vegetables, and its overexpression has been linked to
skin pigmentation disorders and tumorigenesis. Therefore, its inhibition could find several
useful applications [350]. Furthermore, CNDs were found to tune glucose oxidase activity,
depending on their functionalization type [224], and inhibit maltase, an effect that was
envisaged as an innovative means to control physiological glucose levels [230].

Enzyme inhibition has been studied for CNTs also. SWCNTs demonstrated the ability
to act as competitive inhibitors for proteases, such as chymotrypsin, thanks to hydrophobic
interactions between the curved CNT surface and a morphologically complementary
crevice on the enzyme surface, without alteration of the enzyme secondary structure or
active site [351].

2.3. CNMs for Enzyme Monitoring

CNMs can be engineered to monitor enzymatic activity. Several examples have been
reported especially using CNDs, whose fluorescence is initially quenched through interac-
tion with a second component, and then restored upon a chemical transformation triggered
by the activity of the target enzyme [352–354]. To this end, graphene CNDs have been
functionalized with a cobalt derivative to allow for redox-dependent fluorescence that can
be used to detect alkaline phosphatase activity, in serum, through the dephosphorylation
of a substrate on the CNDs that releases ascorbic acid, which restores fluorescence [352].
Through a similar principle, silver NPs have been applied to quench the fluorescence
of CNDs, so that, in the presence of enzymatic activity that generates hydrogen perox-
ide as a byproduct (e.g., through an oxidase), the silver NP structure decomposes, and
fluorescence is restored. Applications in the health sector were envisaged, in particular
for the monitoring of relevant biomolecules, such as glucose or cholesterol that could act
as substrates for the corresponding oxidase [353]. Alternatively, glycosidases could be
monitored through a similar principle, by functionalizing the CNDs to favor interaction
with p-nitrophenol, which is generated through enzymatic activity on a glycosylated deriva-
tive [354,355]. Another target enzyme was thioredoxin reductase, overexpressed in many
cancer cells [356].

SWCNTs have been applied to enzyme biosensing. Recently, SWCNTs were coated
with a peptide to develop a biosensor for trypsin detection in urine samples, exploiting
variations in CNT near-infrared photoluminescence upon enzymatic degradation of the
peptide coating [357]. In another example, CNTs were envisaged for applications in cancer
diagnostics, through the detection of matrix metalloproteinase-7, which is overexpressed
in cancer cells [358]. Finally, CNT-fibers have been used to develop highly sensitive
(54 µA·cm−2·mM−1) photoelectrodes for the detection of NADH, which is a key cofactor in
many biocatalytic processes; its quantification correlates to specific enzyme activity [359].

3. Applications of CNM-Enzyme Conjugates
3.1. Biosensing

Biosensors typically comprise three elements, which are: (1) an element for biological
recognition, such as an enzyme; (2) a transducer, to convert energy from the biorecognition
event into another form (electrical, thermal, optical, etc.); (3) a signal processing system for
the response readout and/or recording [360]. Biosensors often rely on enzyme inhibition,
thus being ideal to monitor inhibitors that are relevant to human health, such as drugs or
pollutants [361]. Enzymes are ideal components for biosensing, thanks to high sensitivity,
specificity, low cost, and accessibility [360]. Coupling a semiconductor to enzymes can be
exploited in photobiocatalysis, which is inspired by natural photosynthesis, but does not
necessarily involve light for activation [362]. In general, inclusion of nanomaterials allows
for better performance in a variety of analytical parameters, such as sensitivity, detection
limit, stability, and response rate [363].
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In particular, CNMs are ideal supports especially for biosensors that require multiple
layers of enzymes, but also for providing a good electronic contact through the layers
and with the electrodes [364]. CNMs can be good active supports for oxidoreductases as
they may facilitate electron transfer to enhance catalysis, whilst offering a high surface
area for high-level loading of enzymes [365]. However, the occurrence of direct electron
transfer (DET) is a matter of ongoing debate, depending on the type of enzymes under
consideration, the accessibility of their redox-active site to the CNMs, and the type of direct
or indirect contact between CNMs and enzymes [265]. The electronic properties of CNMs
render them attractive building blocks for electrochemical biosensors, besides the more
traditional optical alternatives [366,367].

Graphene is one of the most studied CNMs for a variety of biosensing devices
(Figure 7) thanks to its exceptional electronic and mechanical properties, as recently re-
viewed in detail elsewhere [368]. Other less studied CNMs, such as CNOs, can also make
attractive electrode components for the development of low-cost, simple to use, and highly
sensitive sensors [237,369]. CNOs (mean size of 30 nm) were employed as electrochemical
sensors by covalently immobilizing the glucose oxidase enzyme (GOx) on their surface via
carbodiimide chemistry. GOx selectively catalyzed the oxidation of glucose, giving a sensor
with high sensitivity and selectivity. However, the catalytic activity of GOx on the sensor
electrode was highly sensitive to environmental conditions such as temperature, pH and
humidity. Furthermore, the performance of the sensor was limited by enzymatic stability.
Thus, an enzyme-free glucose sensor was designed, using Pt-decorated CNOs (Pt@CNOs)
that outperformed many other CNMs previously studied for the same application [237].
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In 2020, Cumba et al. [369] described the preparation of the first ink that was based on
CNOs to produce cheap and disposable electrodes, yielding sensors with elevated perfor-
mance (Figure 8). Careful selection and optimization of all the components was a key step to
attain a suitable formulation for the ink to be screen-printed. They included the conducting
nanocarbons (i.e., graphite (GRT) and CNOs), the polymer binder, the plasticizer, and the
organic solvent. The electrodes were screen-printed and they consisted of a conducting net-
work of interconnected CNMs with a uniform distribution. The system displayed a hetero-
geneous electron transfer rate constant corresponding to 1.3 ± 0.7 × 10−3 cm·s−1 and also
a current density that was higher than the ferrocene/ferrocenium coupled to a GRT screen-
printed electrode that was commercially available. Furthermore, the CNO/GRT electrode
allowed for the detection of dopamine in micromolar concentration (i.e., 10.0–99.9 µM),
and with a 0.92 µM detection limit. The analytical sensitivity thus revealed a notable
4-fold increase relative to the commercial reference electrode based on GRT. Overall, this
study opened the way to the use of CNO-based electrodes for high-performance sensing,
electrocatalysis and battery research [369].
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As can be seen from Table 1, the vast majority of CNM-enzyme conjugates have
been studied for biosensing applications. The most popular target molecule is glucose
for biometric health monitoring (Table 2) [224,227,228,237,249,269,271,273]. However,
biosensors have been developed to detect many other bioactive compounds too, such
as cholesterol [312,370,371] and triglycerides [282], lactose [220] and lactate [225,280], neu-
rotransmitters [234,240,246,278,279,372] and hormones [239], various disease biomark-
ers [244,257,261], microRNAs [223], drugs [218,287], pathogens [219] and toxins [221], xan-
thine [262] and caffeic acid [373], p-coumaric acid [232], ferulic acid [233], trace metals [274],
and oxygen [268].
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Table 2. Comparison of recent reports (since 2017) that described CNMs-based sensors for glucose detection.

CNM Type Conjugation Linear Range Detection Limit Sensitivity Ref.

CNDs
Non-covalent

250–3000 µM n.a. n.a. [224]

0.1–500 µM 65 µM 21.6 µA·mM−1·cm−2 [227]

Covalent 0.1–500 µM 0.04µM n.a. [228]

CNOs Covalent 1000–10,000 µM 210 µM 26.5 µA·mM−1·cm−2 [237]

CNTs

Covalent
100–6000 µM 9.01 µM n.a. [249]

n.a. n.a. 0.27–3.7 µA·mM−1·cm−2 [258]

Non-covalent

1000–20,000 µM n.a. 0.198 µA·mM−1·cm−2 [269]

1–5000 µM 0.36 µM n.a. [271]

0–5000 µM 50 µM 289 µA·mM−1·cm−2 [273]

3.2. Biofuel Cells

Biofuel cells are electrochemical devices that typically use redox enzymes as sustain-
able catalysts for the conversion of chemical energy into electrical energy (Figure 9); they
consist of two-electrode cells that are separated by a proton-conducting medium. At the
bioanode, fuels are oxidized, freeing electrons that flow to the biocathode through the
external electrical circuit. At the biocathode, oxidants such as oxygen or peroxide are
reduced to water [374]. Redox-active enzymes have attracted great interest for their use
in the electrochemical production of fuels as sustainable alternatives in the field of clean
energy, such as water splitting reactions [375].
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Conjugation with CNMs allows for high-performance devices. They have been coupled
to enzymes to serve as anodes [248,251,258,259,269,285], cathodes [253,267,276,277,286], or
both [247,284].

An electrochemical reaction of particular interest is the molecular oxygen reduction
(ORR) at the cathode. In this case, use of CNT-laccase as biocathode allowed reaching
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current densities >1.8 mA·cm−2, a direct electron transfer efficiency as high as 70–100%,
and a turnover frequency of 5.0·103 s−1 [253]. When bilirubin oxidase was used coupled
to CNTs at the cathode, a maximum current density of 5.5 mA·cm−2 was found, and a
power density of 1.85 mW·cm−2 at 0.6 V was attained, relative to 2.46 mW·cm−2 at 0.32 V
with Pt/C as counter electrode [267]. Addition of catalase to a glucose oxidase (GOx)-
CNT conjugate was thought to be another convenient strategy for ORR. In this case, GOx
catalyzes the oxidation of glucose to gluconolactone with the concomitant consumption of
molecular oxygen to produce hydrogen peroxide, which is then converted by the catalase
into water and molecular oxygen that feeds back into the GOx reaction. As a result, this
type of catalyst reached a maximum power density of 0.18 mW·cm−2 and a current density
of 59 µA·cm−2 [276]. Another additive that can assist with catalytic performance in ORR is
2,2′-azino-di-(3-ethylbenzthiazoline sulfonic acid) or ABTS, which is a common substrate
for hydrogen peroxidase and acts as an efficient electron transfer mediator between the
enzyme and the electrode surface. With ABTS, a maximum power density of 1.12 mW·cm−2

at 0.45 V was obtained, which after two weeks had decreased just to 0.928 mW·cm−2,
indicating good stability over time [277].

Wearable CNT-based biofuel cells were developed on a cotton textile that allowed
illumination of an LED on the cloth [376]. Amongst the CNMs that have been used with
enzymes in biofuel cells as summarized in Table 1, CNTs are certainly the mostly stud-
ied [247,248,251,253,258,259,267,269,276,277,284–286]. Recently, scientists are recognizing
innovation opportunities also in other types of CNMs, such as CNDs [229], GO [242] or
rGO [275], although reports in this direction are still very limited.

3.3. Biocatalysis

Thanks to great progress on biotechnology and protein engineering, biocatalysis
has emerged as a green solution to increase the efficiency of industrial processes in a
sustainable way [377]. Its importance and societal impact has been recognized through
the Nobel Prize in chemistry in 2018 to Arnold, who pioneered the directed evolution that
enabled development of resistant enzymes of industrial interest [378].

CNMs can be envisaged as active supports to immobilize enzymes and facilitate their
recycling [379]. Besides, their electronic properties may favor the catalytic performance
of redox-active enzymes. To this end, enzymes have been coupled to CNTs to enable
asymmetric hydrogenation in flow [380]. Furthermore, bioelectrocatalysis involving direct
electron transfer (DET) can benefit from the use of CNMs as active supports for redox
enzymes, and the role played by their surface functionalization in the process has recently
been reviewed [381].

3.4. Water Remediation and Environmental Monitoring

Enzymes supported on nanomaterials can be very convenient to detect pollutants
for environmental monitoring through the development of sensitive sensors, but also for
their removal from polluted waters [382]. For example, CNMs coupled to enzymes can
be applied for the electrochemical monitoring of chromium [383]. CNDs’ fluorescence
has also been envisaged for the optical detection of organic pesticides through coupling
with an enzymatic reaction [384]. In addition, rGO has been envisaged for the detection
of pesticides through the immobilization of an esterase on a biocomposite containing
fibrin and thrombin, which was assembled taking inspiration form the blood coagulation
process [245]. Finally, CNOs were coupled to a peroxidase in a cyclodextrin polymer matrix
for the detection of herbicides, as tested in soil and river water samples [238].

3.5. Innovative Therapy and Theranostics

The rise of smart materials that can respond and adapt to stimuli and changes in the
local microenvironment has opened new avenues that are enabling great progress especially
in the biomedical field [385]. Enzymes can be used as convenient stimuli for the design of
responsive materials [386], with great potential in the development of combined therapy
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and diagnosis, for instance through activation on a target pathological site characterized by
the selective overexpression of certain enzymes [387]. The coupling of enzyme-responsive
materials with nanostructures can be convenient to develop photodynamic therapies for
cancer treatment [388].

Alternatively, enzymes can be supported onto CNMs for combined chemodynamic
therapy (CDT). For example, MWCNTs were functionalized with Fe3O4 and glucose ox-
idase, so that the enzyme could convert glucose into gluconate and hydrogen peroxide.
Conversion of the latter through the iron oxide-mediated Fenton reaction into hydroxyl
radicals induces tumor cell death, and the reaction is favored by the lowered pH of the
local microenvironment due to gluconate production. Finally, near-infrared (NIR) light
irradiation can further boost the overall process at the target pathological site through
generation of hyperthermia [252].

With the rise of biologics, enzymes have found applications also as therapeutic agents.
As an example, laronidase can be used as replacement therapy for a type of mucopolysac-
charidosis that is associated with deficiency of the natural enzyme, which hydrolyses
glucosaminoglycans, causing their pathological accumulation in lysosomes. MWCNTs
were thus envisaged as vectors for laronidase, which was covalently conjugated onto the
CNMs [254]. There are clearly many unexplored opportunities in this research area that are
worth future investigation.

4. Enzymatic Biodegradation of CNMs

The possibility of biodegrading CNMs through enzymatic activity is very appealing
for various reasons, including lowering their persistence in the environment after use, but
also avoiding or reducing their bioaccumulation in living organisms. Furthermore, the
breaking down of larger CNMs, such as GO, into smaller components, can be envisaged as
a green production method of graphene quantum dots (Figure 10) [389].
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In general, the aromatic nature of CNTs renders them persistent in the environment,
with little or no degradation by microorganisms [390], yet their oxidized forms appear to
be biodegradable by microorganisms, whose enzymes are likely to use hydroxyl groups on
the CNT surface as attackable sites that can be processed through enzymatic activity [391].
Various peroxidases have been found to be able to biodegrade CNTs and G derivatives, as
recently reviewed [392]. They are mainly horseradish peroxidase (HRP), myeloperoxidase
(MPO), manganese peroxidase (MnP) and lignine peroxidase (LiP). These four enzymes
require hydrogen peroxide to participate in the degradation of CNMs. In the enzymatic
degradation process of CNMs, molecular docking technology is used to predict possible
binding sites, which helps to understand the degradation mechanism [393]. Recently,
oxidases were reported to biodegrade MWCNTs [394], CNDs [8,395], and fullerenes [396].
It is not surprising to see that nanozymes are being developed for the same purpose, for
instance as applied to the degradation of GO [397].

It is worth noting that besides the type of CNM, the level and type of functionalization
is one of the factors playing a key role in determining the CNM biodegradation. Whilst
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it is accepted that oxidation generally favors biodegradation [150], other types of func-
tionalization can have the opposite effect. In particular, chemical reduction of GO [398]
and/or coating with bovine serum albumin or polyethylene glycol [399] rendered the CNM
resistant to peroxidase-mediated biodegradation.

CNM biodegradation mediated by bacteria typically involves electron-transfer pro-
cesses, which lead to the breaking of C–C covalent bonds. As a result, numerous pores
arise on the surface of CNMs which lose structural integrity. Electrons can flow in either
direction at the CNM-bacteria interface. In particular, cationic and anionic CNMs act as
electron acceptors and donors, respectively [400]. Furthermore, oxygen interference can
occur at the point of electron transfer between bacteria and CNMs [401]. In general, the
functionalization of CNMs with anionic species on the surface of CNMs favors the electro-
static interaction with enzymes, which often display cationic amino acids on their surface,
but also the catalytically-active heme group in redox-active enzymes plays a role in the
interaction with CNMs. Clearly, pristine CNMs may be more challenging to degrade, and
defect sites offer typical locations for the beginning of their structural deterioration [402].

Currently, fullerene biodegradation is still a largely unexplored research topic. It is
known that this nanocarbon is challenging to degrade when exposed to soil bacteria [403].
However, the situation is notably improved in the case of organics-rich clay, such that
more than half of the fullerene present can be mineralized just over two months, and even
more so in the case of functionalized fullerol. Its structural deterioration can be notably
accelerated through the combination of biodegradation with photochemistry, which likely
mediates the destruction of the stable aromatic core [404]. Likewise, C60 photodegradation
using UV light was facilitated by hydroxylation [405]. In another study, fullerene aggregates
decreased in volume upon exposure to bacteria, with occurrence of hydroxylation, although
the structural deterioration of the nanocarbon was slow and no significant production of
carbon dioxide from C60 was noted, using isotope labelling [406]. In general, the efficiency
of photodegradation can be relatively high, but it should be noted that only UV light can
degrade CNMs. In natural environments, CNMs will react with other substances too, and
their degradation by UV light will be affected by all these factors. There is still a knowledge
gap in the detailed understanding of biodegradation of several CNMs, especially in realistic
experimental conditions pertaining to those found in the environment, including soil
and water.

5. Conclusions and Future Perspectives

Combining CNMs and enzymes requires a diverse skill set that is rare to find and rep-
resents a multidisciplinary research area that bears many technical and scientific challenges.
However, a growing number of scientists are trying to innovate in this exciting field. The
focus of our review has been to provide a concise overview from which it is evident how
most studies have been focused on CNTs and, more recently, on graphene-based materials
and CNDs, for applications in biosensing and biofuel cells. Nonetheless, CNMs offer far
more benefits, and the multivarious members of the nanocarbon family still present today
a valuable innovation opportunity that is worth exploring. Among other aspects that
deserve further examination is their environmental fate, especially how biodegradation
and photodegradation processes can improve the efficiency of CNM degradation.

Further research potential can be found in the development of computational methods
to enhance enzymatic performance and robustness [407], including machine learning for
enzyme engineering [408], potentially coupled to directed evolution approaches [409].
The range of enzymatic activity can be further expanded through the incorporation of
unnatural amino acids [410], thanks to the emergence of robust methods for their genetic
encoding [411]. Higher levels of complexity for the development of the next-generation
devices can be attained with the incorporation of multienzymatic cascade reactions [412],
also in confined environments [413], in an attempt to mimic, or go even beyond, the mes-
merizing performance of biochemical cascades in living organisms. To this end, advancing
electrochemical techniques for the characterization of enzymes at the electrode interface
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will be key [414], especially to leverage the unique electronic properties of CNMs and their
application to further enhancing enzymatic activity. In particular, an attractive area is the
development of wearable, flexible bioelectronics for the harvesting of bioenergy and its use
in self-powered biosensing for health monitoring [415].
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