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ABSTRACT: Materials informatics is an emerging field that allows us to
predict the properties of materials and has been applied in various research
and development fields, such as materials science. In particular, solubility
factors such as the Hansen and Hildebrand solubility parameters (HSPs and
SP, respectively) and Log P are important values for understanding the
physical properties of various substances. In this study, we succeeded at
establishing a solubility prediction tool using a unique machine learning
method called the in-phase deep neural network (ip-DNN), which starts
exclusively from the analytical input data (e.g., NMR information, refractive
index, and density) to predict solubility by predicting intermediate elements,
such as molecular components and molecular descriptors, in the multiple-step
method. For improving the level of accuracy of the prediction, intermediate regression models were employed when performing in-
phase machine learning. In addition, we developed a website dedicated to the established solubility prediction method, which is
freely available at “http://dmar.riken.jp/matsolca/”.

■ INTRODUCTION
In recent years, the application of data-driven models has been
implemented in various research and development fields such
as materials science, biorefinery, cosmetic chemistry, and drug
discovery, especially at the industrial level. Sophisticated
machine learning techniques are now becoming ubiquitous
for the prediction of the physicochemical properties and
engineering parameters. In materials science, the increasing
availability of large amounts of data (both analytical and
computational) has been recently used to advance the tools
available for materials informatics (MI). It is known that a
variety of indexes are commonly used to describe the solubility
of substances. Among these, SP is defined by regular solution
theory proposed by Hildebrand and Scott,1 and Hildebrand
solubility parameters (HSPs) are trinomial components
proposed by Hansen2 that correspond to the dispersion energy
(dD), dipole interaction energy (dP), and energy of hydrogen
bonding (dH) between molecules. Log S is the base 10
logarithm of the solubility S [mol/L] in water. Log P is the
base 10 logarithm of the octanol−water partition coefficient
that indicates octanol solubility and therefore lipophilicity. In
particular, they are needed in various research and develop-
ment fields where solubility information of substances such as
materials, pharmaceuticals, and food is required.3−5

The calculation of the solubility values is mainly performed
using the conventional group contribution method, although
the machine learning method has also been attracting attention
in recent years owing to the artificial intelligence boom along
with the development of chemoinformatics and MI. In
addition, simulation methods are often used as complementary

techniques to the standard calculation of the solubility
values.6,7 The calculated solubility values by the group
contribution method are based on the aggregation energy of
the molecular structures (atoms, functional groups, etc.).8 The
group contribution method was developed in an early stage9,10

and has been improved in recent years.11−13 In addition, the
application of the predicted Log S values to the group
contribution method for drug delivery has also been
reported.14 The determination of the solubility values by
machine learning methods relies on the prediction of these
values by training known structural and physical properties on
information related to the solubility as descriptors. As an
example of prediction of Log S using machine learning, a
report described how to calculate the desired value using a
random forest to train the molecular descriptors of the CDK
tool,15 which is a chemoinformatic library in the Java
language.16 Another study predicted the Log S, Log P, melting
point, and toxicity with a convolutional neural network (CNN)
using the fingerprint of structural information as training data
with SMILES strings.17 Moreover, the prediction of SP, glass
transition point, density, and so forth was performed by the
Gaussian process regression (GPR) to train the molecular

Received: February 25, 2021
Accepted: April 28, 2021
Published: May 17, 2021

Articlehttp://pubs.acs.org/journal/acsodf

© 2021 The Authors. Published by
American Chemical Society

14278
https://doi.org/10.1021/acsomega.1c01035

ACS Omega 2021, 6, 14278−14287

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Atsushi+Kurotani"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Toshifumi+Kakiuchi"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jun+Kikuchi"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acsomega.1c01035&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c01035?ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c01035?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c01035?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c01035?goto=supporting-info&ref=pdf
http://dmar.riken.jp/matsolca/
https://pubs.acs.org/doi/10.1021/acsomega.1c01035?fig=abs1&ref=pdf
https://pubs.acs.org/toc/acsodf/6/22?ref=pdf
https://pubs.acs.org/toc/acsodf/6/22?ref=pdf
https://pubs.acs.org/toc/acsodf/6/22?ref=pdf
https://pubs.acs.org/toc/acsodf/6/22?ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acsomega.1c01035?rel=cite-as&ref=PDF&jav=VoR
https://http://pubs.acs.org/journal/acsodf?ref=pdf
https://http://pubs.acs.org/journal/acsodf?ref=pdf
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://acsopenscience.org/open-access/licensing-options/


structure, quantitative structure−property relationship
(QSPR)18 descriptors that were obtained from the RDKIT
tool,19 and molecular morphological information, such as the
side chain, distance between rings, and so forth.20 HSPs were
predicted using an improved MARS (multivariate adaptive
regression splines21) method to train the QSPR molecular
descriptors with the PaDEL tool22 using SMILES strings.23

HSPs were also predicted using GPR that trained the physical
properties of compounds, such as the surface area, volume, and
so forth, from molecular simulation data using SMILES string
information.24 As mentioned above, solubility-related predic-
tions have been reported using various training data. However,
the input data in these predicting methods require structure-
related information, such as atoms, rings, bonds, functional
groups, and molecular descriptors. The molecular descriptors
can be obtained using chemoinformatic tools, such as RDKIT,
CDK, and PaDEL, which demand at least one of the SMILES,
SMARTS, sdf format, mol format, and so on. Therefore, when
predicting the solubility of unknown substances with the
abovementioned methods, structure-related information is
required to be at least at the 2D level as input data.

In contrast, analytical data, such as NMR spectra, offer an
enormous amount of information regarding the local structure
and functional groups.25,26 In particular, 1H and 13C chemical
shifts can be used as information to predict the local structure
or the entire molecular structure with the aid of chemo-
informatics, even in the case of the primary stage analysis of a
complex mixture. Such NMR spectral information along with
the refractive index and density can potentially be obtained as
primary-stage analytical data.27−36

Therefore, we developed a special solubility prediction tool
using an in-phase DNN method, which is based exclusively on
analytical data as input and allows us to improve the accuracy
by regressing molecular information, including molecular
composition and molecular descriptors, as intermediate data
in a stepwise fashion (Figure 1 method3 and Figure S1b). In
addition, we developed a web tool (http://dmar.riken.jp/
matsolca/) to calculate mainly HSPs, SP, and Log P from the
analysis data, including the NMR information, refractive index,
and density, as input data. In addition, we confirmed the
applicability of this prediction tool to polymer data whenever
analytical data of a polymer are available. We believe that this
tool may accelerate the creation of novel designs and

Figure 1. Solubility prediction methods from analytical data. Method1 allows us to predict the solubility values by simply starting from analytical
data (shown as “Anal. Data”) as input data using DNN. “RI” in “Anal. Data” means the refractive index. The numbers in parentheses show the
number of the attributes for machine learning. Method2 is a 2-step DNN prediction method: In the first step, the molecular compositions (shown
as “Mol. Comp.”) and molecular descriptors (shown as “Mol. Disc.”) are predicted from analytical data and are selected according to a defined
threshold. Here, the molecular descriptors mean the data from RDKIT’s descriptors. In the second step, the solubility values are predicted from the
analytical data and selected molecular properties. Method3 is a 3-step DNN prediction method: In the first step, the molecular compositions are
predicted from analytical data and selected by a defined threshold. In the second step, the molecular descriptors are predicted from the analytical
data and selected molecular compositions. In the third step, the solubility values are predicted from the analytical data and selected molecular
properties. This solubility prediction method from analytical data using intermediate molecular properties in phase was named as the “in-phase
deep neural network (:ip-DNN)”, and the image is shown at the bottom.
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development of new materials since it allows us to predict the
solubility from analytical data without the need for obtaining
complete structural data.

■ MATERIALS AND METHODS

Dataset of Compounds, Solubility, and Analytical
Data. In this study, we prepared a dataset with 307 common
low-molecular weight compounds. In this dataset, the number
of C atoms in each compound ranged from 1 to 9, while the
number of compounds containing N, S, Si, halogen (F, Cl, and
Br), −OH, >CO, −CHO, −COOH, or aromatic groups was
48, 24, 4, 76, 33, 20, 11, 5, and 28, respectively (Table S1a−c).
Information regarding the solubility, analytical data, molecular
composition, and molecular descriptors of these compounds
was collected. The solubility data included HSP, SP, and Log P
values. The HSP values were obtained from the DIPPR
database,37 while the SP values were calculated from three
literature HSP values according to the formula:

= + +SP dD dH dP2 2 2 .38 The Log P values were derived
using Crippen’s computational Log P(s) also called as
MolLogP,39 which represents one of the molecular descriptors
of RDKIT and can therefore be obtained with the RDKIT tool.
The analytical data included 1D 1H NMR and 1D 13C NMR
spectral data and refractive index and density values. It should
be noted that the NMR spectral data were collected using the
SBDB (spectral database of AIST40) and KnowItAll spectros-
copy software (Bio-Rad Laboratories, Inc. 2018 version), while
the refractive index and density values were obtained with the
DIPPR database.37 To simplify 1D 1H NMR and 1D 13C NMR
spectral data, we converted the information regarding the
peaks in the NMR spectra to the assignment information using
the table of H/C-chemical shifts in organic compounds
provided by Bruker.41 The assignment information for 1D
1H NMR and 1D 13C NMR data is shown in Table S2a,b.
Finally, we prepared 60 pieces of analytical data per
compound, including 25 items of 1D 1H NMR, 33 items of
1D 13C NMR, a refractive index, and a density value.
Dataset of Molecular Compositions. We collected the

conceivable general 11 items of molecular composition from
chemical structural formula (H, C, N, S, Si, halogens, −OH,
−CHO, >CO, −COOH, and aromatics), which are shown in
Table S1b,c. Si, −COOH, and aromatics are excluded because
Si and −COOH represent a small amount of data for training,
and aromatics is included in the molecular descriptors of
RDKIT. Therefore, we selected eight items (Table S3) of
molecular composition as candidates for the feature value that
correspond to the number of H and C, and the existence/
absence of N, S, halogens, −OH, −CHO, and >CO is used as
effective training data. In addition, using the item selection of
eight molecular compositions from the DNN result, N is
excluded owing to the lack of evaluation values (see also the
DNN 2-step method in the Results and Discussion and Table
S5b). The remaining seven items are included in the cascade in
2-step and 3-step DNN predictions as intermediate models.
Dataset of Molecular Descriptors. In this study, we use

the molecular descriptors calculated with RDKIT derived from
SMILES strings of each compound. Among a total of 200
molecular descriptors of RDKIT,42 we selected 20 items
(Table S4: Chi0n, Chi0v, Chi1v, HallKierAlpha, Kappa3,
MaxPartialCharge, MinPartialCharge, MolMR, PEOE_VSA1,
SlogP_VSA12, SMR_VSA5, SMR_VSA10, TPSA, VSA_ES-
tate9, NHOHCount, NumAromaticRings, NumHAcceptors,

NumHDonors, NumHeteroatoms, and RingCount) as a
candidate for the feature value, which are the top 70%
between the highest and bottom level of the regression score,
by calculating important factors43 for the dD/dH/dP/SP
regression model with random forest using the 200 molecular
descriptors (Figure S2a−d). These items are generally used as
either training data or objective variables for prediction. For
the six molecular compositions based on −CHO, >CO, −OH,
halogens, S, and N and the six molecular descriptors of
RDKIT, that is, NHOHCount, NumAromaticRings, Num-
HAcceptors, NumHDonors, NumHeteroatoms and Ring-
Count, we did not use their number but rather their presence
or absence due to the fact that only few data correspond to
more numbers higher than 1. This method based on the
presence or absence of these items is indicated as presence/
absence prediction, while the other is called as numerical
prediction. In addition, using the item selection of 20
molecular descriptors considered from the DNN result, six
items (PEOE_VSA1, Chi0v, Chi1v, MolMR, TPSA, and
Kappa3) are excluded owing to the lack of evaluation values
(see also the DNN 2-step method in the Results and
Discussion and Table S5a). The remaining 14 items are
included in the cascade in 2-step and 3-step DNN predictions
as intermediate models.

Adjustment of Calculation Values. It should be noted
that the values of the presence/absence prediction were
adjusted to 0/1, while H and C were rounded to integers from
the calculated value.

Calculation with Machine Learning. The training data
were normalized with total data as preparation. DNN
calculations with a fivefold cross-validation were performed
using Keras-Tensorflow, which is a neural network library of
python programs. The order of layers of the model is as
follows: an input layer, hidden layer, activated layer, hidden
layer, and output layer. The setting parameters at the time of
the model calculation were the number of neurons of hidden
layers (30−60), number of intermediate layers (fixed to 2),
dropout rate (fixed to 0.5), activated layers (sigmoid, tanh, and
relu), optimizer (adam and adagrad), learning rate (0.001−
0.1), number of epochs (10−200), and batch size (32−64).
The optimal values of the abovementioned parameters were
determined using the Bayesian optimization method. For all
other parameters reported as a range of values, the optimal
items were determined using the all search (grid search)
method. Random forest calculations were performed with a
fivefold cross-validation using the caret package, which is a
machine learning package of the R program.44 XGBoost
calculations were also performed with a fivefold cross-
validation using Python’s XGBRegressor library. The setting
optimal parameters of XGBoost for the learning rate, max
depth, subsample, and colsample by the tree were determined
using the Bayesian optimization method.

Test Data and Training Data for Machine Learning.
Among all 307 compounds, 31 compounds for the prediction
evaluation test were randomly selected, which correspond to
1/10 of the total compounds, while the remaining 276 were
used for training. In the first step of the 2-step DNN prediction
method as descriptor selection, two more datasets, which are
not duplicate in each set of prediction evaluation data, were
prepared from the 307 compounds (Figure S3). The reason for
preparing two more datasets in this case is to increase
reliability in the descriptor selection and because the result of
descriptor selection is used in the first step of the 3-step DNN
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prediction method. The evaluation of descriptor selection was
confirmed with a total of three sets.
Model Performance Evaluation. For the presence/

absence prediction in descriptor selection, we checked the
evaluation [e.g., positive predictive value (PPV), negative
predictive value (NPV), recall, and specificity] to determine
whether its minimum value is more than 50% of the cutoff. For
numerical prediction in descriptor selection, we checked the
evaluation of R2, whether the value is more than 0.5 as the
cutoff. For the model evaluation of solubility prediction, we
checked R2 and root mean squared error (RMSE).
Confirming Exploration Performance for the Dataset.

As dataset evaluation of exploration, we tried leave-one-cluster-
out cross-validation45 (LOCO CV), for which the test data are
selected by k-means clustering, while the training data are
other clusters; the test and training data are changed k times,
alternatingly. In this study, the k of k-means clustering was set
to 5, and a random forest algorithm with fivefold cross-
validation was used. We performed LOCO CV with shuffled
and normalized 276 data, which is the same as the
abovementioned training data, including 60 analytical data,
seven molecular compositions, and 14 molecular descriptors as
all explanatory variables in our model. Then, we compared
model performance with each clustered test data and 31 test
data, which is the same as the abovementioned test data used
in our DNN model.
Dataset of Polymer Compounds. In this study, we tested

our HSP prediction models against a total of 23 polymers
belonging to seven different skeleton classes, with regard to
density, refractive index, 1D 1H NMR, and 1D 13C NMR data.
The polymers included six polyacrylates [poly-n-butylacrylate
(PBA), polymethylmethacrylate (PMMA), polyethylmethacry-
late (PEMA), poly-n-butylmethacrylate (PnBMA), polymethy-
lacrylate (PMA), and polyethylacrylate (PEA)], six polyolefins
[polyethylene (PE), polypropylene (PP), polybutadiene,
polyisoprene, polychloroprene, and poly-1,1-dimethylethy-
lene], four polyethers [polyethyleneoxide (PEO), polypropy-
lene oxide (PPO), cellulose triacetate (CTA), and poly-
ethersulfone (PES)], two polyesters [polyethyleneterephtha-
late (PET) and polycaprolactone (PCL)], two polyvinyls
[polyvinylacetate (PVAc) and polyvinylchloride (PVC)], two
polystyrenes [polystyrene (PS) and polybutadiene-co-styrene],
and polysiloxane of polydimethylsiloxane (PDMS). In
particular, we tested 22 polymers except polyethylene for dD
and dH and 22 polymers except cellulose triacetate for dP
based on the data available in the literature. Overall, the
literature HSP values were obtained from the “Polymer
Handbook”46 and “PolyInfo Database”,47 while those for
PnBMA and PET were obtained from other papers.48,49 The
analytical data relative to the refractive index and density were
obtained from the “Polymer Handbook” and “PolyInfo
Database”, while the spectral 1D 1H NMR and 1D 13C
NMR values were derived from the “Proton and Carbon NMR
Spectra of Polymers”50 and “PolyInfo Database”.

■ RESULTS AND DISCUSSION
DNN Solubility Prediction 1-Step Method Using

Analytical Data as Explanatory Variables. Recently,
solubility prediction tools were reported that used structural
descriptors or molecular compositions and descriptors, such as
RDKIT, CDK, and PaDEL, as training data.20,23,24 Namely, the
input data were based on the chemical formulas, SMILES
strings, and so forth; thus, the molecular structure was mostly

understood at the linear level. Therefore, this study aimed to
predict the solubility (dD, dH, dP, SP, and Log P) of
substances using only analytical data as input data (Figure 1
Method1, hereinafter called as the “1-step DNN method”).
Subsequently, we tried to predict dD, dH, dP, SP, and Log P
using the DNN with the analytical data as training. However,
the results were not sufficiently accurate ranging from 0.35 to
0.53 in R2 (Figure 2a).

DNN Solubility Prediction 2-Step Method. On the basis
of previous studies, the prediction accuracy is expected to
improve if the molecular information of a substance, such as
the molecular composition and molecular descriptors, is used
as training data. In this study, our aim was to predict the
solubility using only analytical data as input data. Therefore,
we attempted to develop a 2-step DNN solubility prediction
method, which allows us to predict the solubility from
analytical data and predicted intermediate data of molecular
composition and molecular descriptors (Figure 1 Method2 and
Figure S1a, hereinafter called as the “2-step DNN method”).
Concretely, in the first step, we predicted a total of 28 items,
namely eight items of molecular composition (described in the
Materials and Methods) and 20 items of selected molecular
descriptors (described in the Materials and Methods), using
the analytical data as training. In these predictions, we used
three datasets of test and validation data. One was the same
dataset used in the 1-step DNN method. The others were two
additional datasets prepared to avoid duplicates in the test set
data (described in the Materials and Methods sections; see also
Figure S3). Then, we validated a total of three sets in order to

Figure 2. Results of R2 and RMSE with test data of each prediction
models. (a) Bar chart of each R2 value of solubility predictions, which
are for Hansen’s solubility parameters (dD, dH, and dP), SP, and Log
P, with the algorithms of the 1-step DNN method, 2-step DNN
method, 3-step DNN method, 3-step random forest method, and 3-
step XGBoost method. (b) Bar chart of each RMSE value.
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ensure reliability for descriptor selection. According to these
results, we extracted available items, for each of which the
average value of R2 in the three sets was higher than 0.5 for the
numerical prediction, and the average of the lowest values of
the PPV (%), NPV (%), recall (%), and specificity (%) in the
three sets was more than 50% for the presence/absence
prediction. As a result, a total of seven items, namely, a
molecular composition N item and six molecular descriptor
items (PEOE_VSA1, Chi0v, Chi1v, MolMR, TPSA, and
Kappa3), were excluded from the training data in the next
step of the prediction since they were below the cutoff value as
defined above. On the other hand, the remaining 21 items,
which comprise the seven molecular composition items, that is,
H, C, S, halogens, −OH, −CHO, and >CO and the 14
molecular descriptor items, including NumHeteroatoms,
Chi0n, MaxPartialCharge, MinPartialCharge, SlogP_VSA12,
SMR_VSA5, SMR_VSA10, HallKierAlpha, VSA_EState9,
NumAromaticRings, NumHAcceptors, NumHDonors, Ring-
Count, and NHOHCount, were selected for use in the next
step (Table S5a,b). In the second step, we predicted the
solubility associated with dD, dH, dP, SP, and Log P using a
combination of analytical data, the selected seven molecular
compositions, and the selected 14 molecular descriptor items
as explanatory variables. In this prediction, we used the same
breakdown of the dataset of test and training data as that of the
compounds used in the 1-step DNN method. Overall, the
values of R2 and RMSE were improved compared to those of
the 1-step DNN method, although the values did no exhibit yet
satisfactory accuracy except for dD, for which R2 was 0.75
(Figures 2, S4).
DNN Solubility Prediction 3-Step Method. As shown in

previous studies, solubility predictions based on molecular
descriptors have already been investigated.20,23,24 In this study,
the prediction with a 2-step DNN method based on analytical
data and predicted values of molecular compositions and
molecular descriptors as training was found to be superior than
that with the 1-step DNN method using only the analytical
data as training. However, the prediction accuracy was not
adequate. Therefore, we opted for an alternative 3-step DNN
solubility prediction method (Figure 1 Method3 and Figure
S1b, hereinafter called as the “3-step DNN method”). In the
first step, we predicted the selected seven molecular
composition items (described in the DNN solubility prediction
2-step method, Table S5a,b), including the number of H and C
and the presence or absence of S, halogens, −OH, −CHO, and
>CO, using these analytical data as training data. In the second
step, we predicted the selected 14 molecular descriptor items
(described in the DNN solubility prediction 2-step method,
Table S5a,b) using a combination of analytical data and
predicted molecular composition. In the third step, we
predicted the solubility associated to dD, dH, dP, SP, and
Log P with a combination of analytical data, predicted
molecular composition, and 14 predicted RDKIT descriptor
items. In this prediction, we used the same breakdown of the
dataset of test and training data as that used in the 1-step DNN
method. The results showed that the R2 values for dD, dH, dP,
SP, and Log P were 0.81, 0.61, 0.61, 0.58, and 0.69,
respectively, which were enhanced values for all items
compared to those of the 2-step DNN method (Figures 2,
S4). The results of R2 values for them with the random forest
using the same 3-step method were 0.84, 0.53, 0.50, 0.54, and
0.61, respectively. In addition, the results of R2 values for them
with XGBoost using the same 3-step method were 0.83, 0.40,

0.55, 0.53, and 0.64, respectively. Hence, in this study, these
results with the DNN were mostly better than those of random
forest and XGBoost algorithms. As same as R2, the results for
the RMSE values improved for all items. In particular, the
predicted dD, which indicates the dispersion energy, showed a
relatively high accuracy. It was assumed that this was due to
the use of the experimental refractive index value as training
data, which is closely related to the weight per unit volume,
density, and dD.51 Actually, the refractive index is the most
important factor in the case of the dD prediction (Figure 3,

Table S6a). The dispersion energy dD is a weak intermolecular
force that acts even for non-polar molecules, unlike the dipole
moment dP. In general, larger molecules exhibit greater
intermolecular forces. In other words, the greater the weight
per unit volume, the stronger the intermolecular force.
Therefore, it can be suggested that a strong relationship
occurs between dD and the refractive index. Due to their
importance for the dH prediction (Figure 3, Table S6b), the
OH-, NH-, and H-related factors are at higher ranks. We
believe that these results can be expected due to hydrogen
bonding formation. In the case of the dP prediction (Figure 3,
Table S6c), the partial charge, H, and number of heteroatoms
are at higher ranks of importance. Since dP reflects the
polarization rate, it can be assumed that the partial charge gives
a large contribution to the dP prediction, and the lightest H
atom and heteroatoms with unpaired electrons also have a
great effect on the permanent dipole. As the accuracy of all R2

and RMSE obtained with the 3-step DNN method is higher
than that of the 2-step DNN method and the values of all R2

are >0.5 (Figures 2, S4), it can be concluded that the solubility
prediction of various substances using the 3-step DNN method
based only on analytical data as input in the first step is
effective. Although we prepared general compounds as a
dataset, our models are built from a small dataset, and the

Figure 3. Importance of the solubility prediction. As the results of the
determination of factor importance for certain attributes, the bar chart
shows factors sorted by their importance ranking for each solubility.
The checking calculations are performed using the random forest
algorithm, which is the same program used in descriptor selection
(see also the Materials and Methods section). The descriptors of
NHOHCount, NumHAcceptors, NumHDonors, and NumHeteroa-
toms are the number of −NH and −OH, the number of hydrogen
bond acceptors, the number of hydrogen bond donors, and the
number of heteroatoms, respectively. The descriptors of Chi0n,
MaxPartialCharge, MinPartialCharge, SlogP_VSA12, and
SMR_VSA5 are the atomic valence connectivity index, maximum of
molecular charge, minimum of molecular charge, MOE-type
descriptor of Log P and surface area, and MOE-type descriptor of
molar refractivity and surface area, respectively.
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prediction performance of our models is not high. Therefore,
we re-checked the entire dataset tendency using the LOCO
CV method45 (see the “Confirming Exploration Performance
for Dataset” in the Materials and Methods section).
Specifically, in this test, we confirmed the availability of our
dataset for each solubility prediction using the random forest
with the cross-validation method using cluster data as the test
data prepared with the k-means method. As a result, the
prediction performance using our test data was stable for
clusters, as a whole; however, in some cases, there were lower
values than clustered data (Figure S5). In particular, it seems

that the prediction performance of dH is comparatively low.
We consider that it is better to use these models to understand
solubility tendency. In contrast, we tried creating solubility
prediction models with only molecular descriptors, which are
the same 14 items of RDKIT’s descriptors in this study based
on SMILES. The method used the same DNN described in the
Materials and Methods section. The R2 of dD, dH, dP, SP, and
Log P is 0.82, 0.88, 0.91, 0.85, and 0.94, respectively (Figure
S6), the performance of which is higher than that of the 3-step
DNN for all models. Of note, this approach has been already
reported23,24 and requires SMILES information. As the

Figure 4. Scatter plots of the HSP literature and prediction values for various polymers. Application of our HSP solubility prediction models to 23
common polymers. Here, seven polymer classes are shown using different colors.

Figure 5. Positive cycle of solubility prediction in the materials science industry linked by the MI tool. A positive cycle in the materials science
industry linked by an effective MI tool is performed as follows: (1) Due to the development of materials, measurement information of chemical
substances is accumulated. (2) The accumulated measurement information is utilized for creating prediction models of chemical properties. (3) MI
tools are created using the prediction models. (4) Using the prediction models or MI tools for the development of new materials and technologies,
predictive technology is growing. Eventually, the development of predictive technology leads to the effective development of new materials and
technologies and further accumulation of measurement information. (a) Visualization function of the “nearest HSP search” on the web tool. The
orange circle is a predicted location with HSPs. Other blue symbols are literature locations with HSPs. Evaluation of the solubility among two
substances uses the HSP distance. (b) Visualization function of the “nearest SP search” on the web tool. The orange circle is a predicted SP value.
Other blue symbols are theoretical SP values. (c) Function of similar analytical data search on the web tool. First, the fingerprints of the analytical
data of the user’s input data (top) and literature data (database) are prepared. Second, the Hamming distances as evaluation of affinity among two
substances are calculated. A substance having a low Hamming distance against the user’s input data can be dissolved with a substance of the input
data.
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difference from our approach, which is prediction from
analytical data, we consider that our models are more effective
in the research stage such as without SMILES information.
Moreover, in this study, creating prediction models step by
step successfully increased the performance. This approach is
similar to the intermediate supervision deep learning
algorithm, which has been frequently used in the image-
processing field in recent years.52,53 Therefore, it is possible to
adjust this method to our models. In addition, our stepwise
method of DNNs in this study obtained models separately.
Creating models with the all-in-one method, such as the
abovementioned intermediate supervision deep learning,
allows us to obtain an effective system and may improve
model performance using interlocking models.
Application of the HSP Prediction Model to Polymer

Data. The development of novel functional polymeric
materials is an important research field that has been actively
investigated from several viewpoints, such as the function,
environment, and cost reduction. In recent years, a few reports
have described solubility prediction approaches, such as
machine learning methods using molecular structures,
molecular descriptors, and so forth,24 and molecular dynamics
simulations.6,7 On the other hand, our prediction model differs
from other approaches as it exploits only four pieces of
analytical data as input, that is, density, refractive index, and
top values of the peaks in the 1D 1H NMR and 1D 13C NMR
spectra. Therefore, it can also predict the solubility parameters
from polymer data if these four pieces of analytical data and
solubility values are available as inputs and objective variables,
respectively. Therefore, we decided to apply our prediction
model to polymer data. In this study, we decided to employ
only the previously developed HSP (dD, dH, and dP) models
as HSP parameters are the most commonly used factors to test
the solubility of substances. We prepared a dataset of 23
common polymers including seven classes for testing, the
details of which are mentioned in the Materials and Methods
section. Upon predicting dD, dH, and dP, R2 was found to be
0.34, 0.45, and 0.38, respectively (Figure 4, Table S7). The
result obtained for dH was better than that of dD and dP. It
was suggested that dH well reflected the chemical shift since
the molecular composition and functional group features for
dH were comparatively more important factors than for dD
and dP (Figure 3, Table S6). In conclusion, the application of
our prediction model to polymers is overall less accurate than
for low-molecular weight compounds; however, we believe that
it can offer a good estimate of solubility.
Development of a Web tool and Potential Applica-

tions. In order to allow for an effective use of our prediction
models, we developed a freely accessible MI web tool (http://
dmar.riken.jp/matsolca/) using the abovementioned regres-
sion models, which provides the calculated values of HSPs, SP,
and Log P as solubility information and the calculated
substances with approximate HSPs, SP, and analytical data as
solubility-related information. In general, the closer the HSP,
SP, and analytical data information among two substances is,
the easier they are to dissolve. Therefore, this tool provides not
only the solubility prediction values, but also three pieces of
additional solubility-related information: (1) the nearest HSPs
(Figure 5a), which is the information of the substances with
literature HSPs close to the predicted HSPs using the HSP
distance,54 (2) the nearest SP (Figure 5b), which is the
information of the substances with a theoretical SP close to the
predicted SP using the SP distance that is the absolute value of

the difference between two SP values, and (3) similar analytical
data (Figure 5c), which is the information of the substances
with a similar fingerprint of analytical data between their own
database and the user’s input data using the Hamming
distance.55

Herein, we wish to discuss the versatility of this method
since the solubility application range is wide. In this study, we
succeeded in predicting the solubility features using only
analytical information as input data. As for the process, it was
not possible to obtain sufficient accuracy using only the
analytical data as training data. However, the accuracy was
improved using a 3-step DNN method, which utilizes selected
and predicted molecular compositions and molecular descrip-
tors in phase as intermediate data for training. Furthermore, we
tried to apply this MI tool based on the HSP prediction
models to polymer data. By judging from the R2 and scatter
plots, the results did not show high accuracy, but a good
correlation occurred between literature and prediction values
(Figure 4). Therefore, the use of low-molecular weight
compounds as training data was sufficient to determine the
tendency of solubility of polymers.
Furthermore, we created an efficient and user-friendly MI

web tool as a solubility calculator based on our prediction
models for users of several fields including industry dealing
with solubility-related studies (Figure 5). Commonly, Log P is
used as a hydrophobicity index for determining the solvent
selection, bioaccumulation, and biodegradability,56−58 while
HSPs and SP are used for applications based on the solubility
of two substances, such as solvent selection/combination,
coating techniques, polymer research, and drug develop-
ment.49,59,60 Notably, although HSPs are convenient indices
for establishing the degree of solubility between two
components, the components can be used even in mixtures.
For example, a study revealed that the solubility between an
insecticide’s solvent as a single component and a cockroach’s
body surface as a mixture could be evaluated according to the
HSPs.4 Thus, these solubility-related values are widely
applicable. In addition, it can be expected that this solubility
prediction tool will be used in the biorefinery area, such as
biomass recycling, processing, and molding, and in the blue
carbon field, including research and development of sea
sediments composed of microalgae and seaweeds as a source of
CO2 absorption.61−63 These land-based and water-based
biomasses such as polysaccharides and lignin polymers are
generally of low solubility;64−66 therefore, a solubility
prediction approach is useful to extend the industrial
application in biorefinery processes. Recently, solubility
predictions with several machine learning methods were
developed and used.17,23,24,67 However, in comparison with
these predictions, our prediction models of solubility have an
application advantage since they feature only analytical
information as input data. Therefore, it can be expected that
our models will find further application in several research and
development fields where the solubility of compounds is
important. In recent years, the accuracy of the NMR analysis
and simplification of related measurements have been
improved;68−70 therefore, it can also be expected that more
simple measurements will contribute to the prediction of
physical properties such as solubility parameters. Furthermore,
it is also anticipated that the creation of an efficient MI tool
may lead to the sustainable development of the materials
science industry via a positive cycle (ecosystem) including the
accumulation of measurement data of chemical substances,

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.1c01035
ACS Omega 2021, 6, 14278−14287

14284

https://pubs.acs.org/doi/suppl/10.1021/acsomega.1c01035/suppl_file/ao1c01035_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsomega.1c01035/suppl_file/ao1c01035_si_001.pdf
http://dmar.riken.jp/matsolca/
http://dmar.riken.jp/matsolca/
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.1c01035?rel=cite-as&ref=PDF&jav=VoR


utilization of the data for creating an MI tool of chemical
properties, and development of materials science with the data
and then again accumulation of measurement data.
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