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Abstract 

Protein kinase D3 (PRKD3), a serine/threonine kinase, belongs to protein kinase D family, which contains 
three members: PRKD1, PRKD2, and PRKD3. PRKD3 is activated by many stimuli including phorbol 
esters, and G-protein-coupled receptor agonists. PRKD3 promotes cancer cell proliferation, growth, 
migration, and invasion in various tumor types including colorectal, gastric, hepatic, prostate, and breast 
cancer. Accumulating data supports that PRKD3 is a promising therapeutic target for treatment of 
cancer. This review discusses the functions and mechanisms of PRKD3 in promoting tumorigenesis and 
tumor progression of various tumor types as well as the latest developments of small-molecule inhibitors 
selection for PRKD/PRKD3. 
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Introduction 
Protein kinase D (PRKD) family consists of three 

highly conserved members in human: PRKD1, 
PRKD2, and PRKD3. PRKD1 was the first identified 
PRKD family member [1, 2]. Two other PRKD 
members have since been identified, PRKD2 [3] and 
PRKD3 [4]. PRKD family members are effectors of 
diacylglycerol signaling and are activated down-
stream of protein kinase C by a variety of stimuli 
including growth factors and hormones [5]. PRKD 
family share similar structural features such as the 
highly conserved N-terminal regulatory domain 
containing two cysteine-rich DAG-binding C1 
domains and an auto-inhibitory pleckstrin homology 
domain (Figure 1) [6, 7]. Despite high structural 
homology among the PRKD isoforms, some structural 
variability exists and to a certain extent can help to 
explain the different effects of each PRKD isoforms. 
For example, PRKD1 and PRKD2 contain a c-terminal 
PDZ binding motif, while PRKD3 does not [8]. The 
c-terminal PDZ binding motif allows PRKD1 and 

PRKD2 to regulate Kidins220 localization at the 
surface of neural cells and its trafficking between the 
plasma membrane and trans-golgi network, while 
PRKD3 do not have these functions [9]. In addition, 
PRKD1 is mainly localized within the cytosol in 
resting cells [10], but upon stimulation can be found 
in other cellular structures such as the golgi [11], 
nucleus [12], or mitochondria [13]. Like PRKD1, 
PRKD2 is mainly cytoplasmic in unstimulated cells 
[14]. However, PRKD3 is localized in the cytoplasm 
and nucleus without stimulation [15]. PRKDs have 
many cellular targets and have been implicated in a 
variety of biological effects such as cell growth [16, 
17], invasion [18-20], angiogenesis [21], protein 
transport [22], transcriptional regulation [23], and 
epithelial to mesenchymal transition [24, 25]. Due to 
lack of an autophosphorylation site at its C terminus 
and the alanine- and proline-rich region at PRKD3 N 
terminus, PRKD3 exhibits diverse biological effects 
and molecular signals from other PRKD isoforms in 

 
Ivyspring  

International Publisher 



 Journal of Cancer 2021, Vol. 12 

 
http://www.jcancer.org 

736 

cancer. In this review, we focused on discussing 
PRKD3 in the context of cancer. 

Oncogenic functions of PRKD3 in breast 
cancer 

Breast cancer is the most heterogeneous disease 
in females [26]. PRKD1 is expressed and active in the 
normal breast ductal epithelial cells but its expression 
is lost during tumorigenesis. Analyses of human 
breast cancer specimens have shown that PRKD1 
expression is completely lost in some of the most 
highly aggressive tumors [18, 27]. However, PRKD2 
and PRKD3 are only weakly expressed in the normal 
breast tissues while PRKD2 is generally weakly 
expressed, but PRKD3 has been reported to be 
up-regulated in breast cancer [28, 29]. 

PRKD3 is involved in all aspects of oncogenic 
signaling. Many researches have confirmed that 
PRKD3 is overexpressed in invasive breast cancer cell 
lines [28-30]. Moreover, the mRNA and protein level 
of PRKD3 increased in triple negative breast cancer 
(TNBC) [28, 29]. PRKD3 appears to have typical 
oncogenic effects in breast cancer. Depletion of 
PRKD3 attenuated cell proliferation by up to 40% in 
the TNBC cell line MDA-MB-231 [31]. In other TNBC 
cell lines (MDA-MB-468 and HCC1806) and in the 
ER-/HER2+ cell line (HCC1954), the same effect on 
cell proliferation was also observed [28]. One of the 
possible mechanisms is that PRKD3 promotes TNBC 
cell proliferation via contributing to mammalian 
target of rapamycin complex 1/ribosomal protein S6 
kinase B1 pathway activation [29]. Other researchers 
suggest that PRKD3 promotes the proliferation of 
breast cancer cells by activating the mitogen-activated 
protein kinase 3/MYC proto-oncogene axis or ELAV 
like RNA binding protein 1 [32, 33]. The RhoGEF 
GRF-H1 is claimed to activate PRKD3 for the 

maintenance of TNBC stem cells [34]. Besides 
functioning in proliferation of breast cancer cells, 
PRKD3 also promotes the motility, spreading, and 
migration of breast cancer. Basal PRKD3 activity 
promotes breast cancer migration via regulating 
cofilin phosphorylation status and activation of P21 
(RAC1) activated kinase 4/LIM domain kinase 1 [35]. 
GIT arfGAP 1 phosphorylation on serine 46 by 
PRKD3 regulates paxillin trafficking and cellular 
protrusive activity [36]. Knockdown of PRKD3 
decreased the migration of ER- breast cancer cells 
with increased cell spreading and altered F-actin 
organization [28]. 

PRKD3 participates in cell growth, 
invasion and secretion in prostate cancer 

Besides breast cancer, increased levels of PRKD3 
were detected in human prostate cancer specimens 
when compared to normal prostate specimens. In 
addition, there was a strong correlation between 
increasing prostate tumor grade and PRKD3 nuclear 
localization [37]. PRKD3 promotes the growth and 
survival of prostate cancer cells through AKT 
serine/threonine kinase 1 and mitogen-activated 
protein kinase 1 signaling pathway [37]. Interplay of 
PRKD3 with  sterol regulatory element binding 
transcription factor 2 also contributes to the growth of 
prostate cancer cells via upregulating lipogenesis [38]. 
Inducible silencing of PRKD3 inhibits secretion of 
tumor-promoting factors (matrix metallopeptidase 9, 
Interleukin 6, C-X-C motif chemokine ligand 8, and 
C-X-C motif chemokine ligand 1) in prostate cancer 
[39]. Snail activated the lncRNA PCA3 expression 
could inhibit PRKD3 protein translation via 
competitive miR-1261 sponging to promote the 
invasion and migration of prostate cancer [40]. 
PRKD3 promotes the invasion of prostate cancer cells 

 

 
Figure 1. The molecular architecture of protein kinase D family members: PRKD1, PRKD2 and PRKD3. 
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by modulating nuclear factor kappa B subunit 1- and 
histone deacetylase 1-mediated expression and 
activation of plasminogen activator, urokinase [41]. 

 

PRKD3 promotes cancer progression in 
other cancer type 

PRKD3 acts as an important role as well as 
diagnostic criteria in gastric, melanoma, and 
hepatocellular cancer. In gastric cancer, PRKD3 
promotes the development of cancer through RELA 
proto-oncogene, NF-KB subunit/6-phosphofructo-2- 
kinase/fructose-2,6-biphosphatase 3 activation of 
glycolysis [42]. In melanoma cells, PRKD3 sensitizes 
RAF inhibitor RAF265 by preventing reactivation of 
mitogen-activated protein kinase 1 signaling [43]. The 
expression of PRKD3 promotes the progression of 
hepatocellular carcinoma and predicts a poor 
prognosis in the patients with hepatocellular 
carcinoma after hepatectomy [44]. 

PRKD3 inhibition in cancer therapy 
The emergence of PRKD3 as a potential 

therapeutic target for various cancers has encouraged 
the development of potent, selective, and small- 
molecule inhibitors. Several small-molecule inhibitors 
such as 2,6-naphthyridine and bipyridyl and analogs 
[45-47], CID755763 and analogs [48], 3,5-diarylazoles 
[49], pteridine [50], CRT5 [51], and CRT0066101 [52] 
were reported to inhibit PRKD in various cell lines. 
An issue with most of these chemical compounds is 
that although they are effective in blocking cell 
growth, and migration in vitro [53], they are quickly 
metabolized when administered to xenograft mouse 
models. Among all these compounds only 
CRT0066101 has been used successfully in xenograft 
mouse models of colorectal [52], pancreatic [54], and 
breast cancer [55]. In mice with TNBC, CRT0066101 
significantly inhibited tumor growth without 
showing side effects [55]. More importantly, the 
similar results were obtained with specific inhibition 
of PRKD3 suggesting that PRKD3 is CRT0066101’s 
main target in TNBC cells [28]. It is however possible, 
since CRT0066101 is administered orally, that some of 
the additional anti-cancer effects observed in the 
xenograft mouse model treated with CRT0066101 
could be due to systemic inhibition of PRKD- 
mediated angiogenesis [56]. CRT0066101 seems to be 
a promising candidate since no harmful effects have 
been observed in all the tested models. For breast 
cancer treatments that do not express PRKD1, pan- 
inhibitors of PRKD could be even more effective if 
used in combination with PRKD2 or PRKD3’s current 
chemotherapeutic agents have been associated to 

mediate multi-drug resistance [43, 57]. A potential 
problem with using pan-inhibitors is the management 
of detrimental off-target effects and to combat this 
problem the specificity of each compound must be 
fully investigated. 

Alternative methods to chemical inhibition could 
include systemic delivery of siRNA or nucleic 
acid-based therapies that could allow to specifically 
target PRKDs [58, 59]. Such strategies have been 
successfully used suggesting that the therapeutic 
applications could be very promising in humans [60]. 
Last but not least, it would be promising to apply the 
new emerging proteolysis targeting chimera 
(PROTAC) for development of new drugs against 
PRKD3 for cancer treatment. 

Conclusion and perspectives 
There is a lot of evidence that PRKD3 is involved 

in the regulation of various signaling pathways, as 
well as in the integration of extracellular signals that 
promote migration, invasion, proliferation, and 
growth of cancer cells. This review summarized the 
various functions of PRKD3 in human tumors (Figure 
2 and Table 1). Although many studies have 
confirmed the previously unknown mechanisms of 
PRKD3, it is still need for a better understanding of 
activation of different isoforms, isoform-specific 
functions, differential kinase expression and 
molecular cross-signaling. Delineation of potential 
compensatory effects between different PRKD 
subtypes in a specific cancer will help to improve the 
therapeutic prospects of PRKDs in a successful 
combinatorial molecular therapy approach. 

 

Table 1. The table shows the cancer-related functions of PRKD3 
in a specific tumor type 

Tumor 
type 

Cancer-related 
function 

Activation/regulation Reference 

Breast Proliferation TORC-S6K1/ERK1-c-MYC [29, 32] 
  ELAVL1 [31, 33] 
 Migration GIT1/PAK-LIMK-Cofilin [34, 35] 
   SSH1L-Coffilin [36] 
Prostate Growth AKT/ERK1/2/SREBP1-FASN [37, 38] 
  SREBP1-ACLY/IL-6/IL-8 [39] 
  GROα  
 Invasion P65/NF-ΚB-uPA/HDAC1-uPA [40, 41] 
   MMP9/PAI-2 
Gastric Proliferation P65-PFKFB3 [42] 
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Figure 2. PRKD3 is involved in the regulation of various signaling pathways. Separate circuits show the ability of PRKD3 to promote cancer progression of gastric (green), breast 
(red), and prostate (blue). 
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