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The classical view of type 1 diabetes assumes that the autoimmune mediated targeting of
insulin producing ß-cells is caused by an error of the immune system. Malfunction and
stress of beta cells added the target tissue at the center of action. The innate immune
system, and in particular islet-resident cells of the myeloid lineage, could function as a link
between stressed ß-cells and activation and recognition by the adaptive immune system.
We survey the role of islet-resident macrophages and dendritic cells in healthy islet
homeostasis and pathophysiology of T1D. Knowledge of islet-resident antigen presenting
cells in rodents is substantial, but quite scarce in humans, in particular regarding dendritic
cells. Differences in blood between healthy and diseased individuals were reported, but it
remains elusive to what extend these contribute to T1D onset. Increasing our
understanding of the interaction between ß-cells and innate immune cells may provide
new insights into disease initiation and development that could ultimately point to future
treatment options. Here we review current knowledge of islet-resident macrophages and
dendritic cells, place these in context of current clinical trials, and guide future research.

Keywords: macrophage, dendritic cell, islets of Langerhans, innate immunity, beta-cell stress,
autoimmune diseases
INTRODUCTION

Type 1 diabetes is characterized by the loss of insulin-producing ß-cells in pancreatic islets of
Langerhans leading to insulin shortage. This loss is caused by an autoimmune mediated attack, in
which ß cell specific CD8+ T-cells are the ultimate effectors. In past decades ß-cells were deemed
“innocent victims” of this autoimmune attack. Consequently, intervention therapies focused to
suppress the adaptive immune system, but showed limited success (1). Plausibly, the cause of T1D is
not only due to an erroneous immune system and involves additional pathophysiological reasons.
Research shifted toward ß-cells provoking autoimmunity, changing our view of T1D
immunopathogenesis in which stressed ß-cells trigger an autoimmune attack in a predisposing
genetic and immunological environment (2, 3). An important gap in knowledge is what kicks off
this process and what connects the adaptive immune system and ß-cells. Pancreatic islets are
complex micro-organs. Besides hormone releasing cells, resident antigen presenting cells (APCs) of
the myeloid lineage and innervating neurons are present. In spite of their footprint in islets, little is
still known about resident myeloid cells and whether these cells play any role in health or disease,
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alike the snowprint of Bigfoot, the mystical legend that most
scientist consider to be a misidentification. We propose that
myeloid APCs are the missing link between distressed ß-cells and
the adaptive immune system. We focused attention to islet-
resident myeloid cells and investigated their possible role as
connectors bridging ß-cells and adaptive immunity.
T1D AS A DISEASE OF THE ADAPTIVE
IMMUNE SYSTEM

T1D is a disease of the adaptive immune system (4). The best tool
to predict T1D onset is screening for islet autoantibodies. These
can be directed against a range of different islet antigens,
including insulin, glutamate decarboxylase, zinc transporter 8
and insulinoma antigen-2 (5). Their appearance follows
activation of T-cells and depends on poorly understood
interactions between the environment, genetic factors and the
immune system in a process that can range from months to years
before clinical manifestation of T1D. However, positive
autoantibody testing does not necessarily imply onset of
disease and proof of a direct role of islet autoantibodies in
beta-cell destruction is still lacking (6). Islet autoreactive CD4+

and CD8+ T-cells are present in islets, blood and lymph nodes
(7). Distressed islets of T1D patients display increased HLA class
I on the surface of endocrine cells, apparently preceding insulitis
and facilitating autoreactive CD8+ mediated ß-cell targeting.
Both islet autoantibodies and islet-autoreactive T-cells indicate
a break in immune tolerance and identify the adaptive immune
system as essential component in the autoimmune process
leading to loss of beta-cells.

Auto-reactive T-cells evade thymic education in both healthy
individuals and patients with T1D (8). Regulatory T-cells are
critical in maintaining tolerance and are present in similar
numbers in healthy and diseased individuals but display
reduced regulatory potential in patients (9). An imbalance
between immune regulation and activation in favor of islet
autoimmunity is evident in T1D (8). Yet, why T-cell becomes
activated and what role beta-cells and the innate immune system
may play in this imbalance remains largely unknown.
T1D AS A DISEASE OF THE BETA-CELL

The idea of T1D being a disease of the adaptive immune system
has become challenged in the past decade (4). Several
observations point toward additional key players. Research
shifted toward the ‘victim’ target tissue and increasing evidence
places ß-cells at the center of initiation.

ß-cells are highly specialized to produce large quantities of
insulin (10). This specialization is at expense of reduced defense
mechanisms and pronounced stress sensibility. Cellular stress
could result from constantly increased demand of insulin.
Pancreas sizes seem to matter in T1D (11). A smaller pancreas
implies reduced numbers of ß-cells, which subsequentially
increases the metabolic burden on islets (12). Beside reduced
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pancreas size, other factors such as viral infections or
inflammatory milieu have been suggested as stressors (13, 14).
Pancreata from T1D donors showed ß-cells under increased
intra-cellular stress during insulitis as indicated by markers of
endoplasmic reticulum stress, such as CHOP, BIP and XBP-1
(15). ß-cell stress may trigger adaptive immunity but this
requires involvement of the innate immune system, since
activation of islet auto-reactive T-cells only occurs following
priming by dendritic cells due to presentation of immunogenic
islet peptides (Figure 1). Research on stressed ß-cells revealed
various mechanisms for the generation of new auto-immune
peptides (neoantigens) not present during thymic education,
selection and formation of the immune system. Post-
translational modifications add to variety of the proteome and
modified peptides might be recognized as neo-epitopes (16–18).
Other neoantigens include so-called hybrid peptides joining
peptides fragments of two islet proteins, which stimulate T-
cells found in islets of T1D patients (19, 20). Neoantigens can
also occur by erroneous translation, leading to defective
ribosomal proteins (DRiP), or by alternative splicing (21–23).
DRiPs can be generated by ribosomal complex skipping of the
canonical start codon and instead initiation at a start codon
within an alternative reading frame. This whole set of ß-cell
released stressors points toward T1D being a disease of the
adaptive immune system as well as ß-cells, where distressed
ß-cells change their faces and prime the immune system.
THE INNATE IMMUNE SYSTEM AS A
CONNECTOR

Macrophages and dendritic cells are professional APCs and the
most extensively studied myeloid cells. They are present in islets
and accumulate there during disease progression (Figures 1, 2)
(24). One of two major classes of APCs are dendritic cells (DCs).
Immature DCs are tolerogenic (25). Conventional dendritic cells
(cDCs) are strong APCs that activate naïve T-cells once they
mature upon stimulation, while plasmacytoid dendritic cells
(pDCs) secrete large amounts of proinflammatory interferons.
DCs play a crucial role in maintaining immune tolerance and
preventing tissue-specific autoimmunity, which harbors great
therapeutic potential.

Macrophages can be divided into pro-inflammatory ‘M1’ and
anti-inflammatory ‘M2’ macrophages based on their phenotype
(26). However, this strict classification is changing into tissue and
microenvironment specific flavors. Based on their local
microenvironment, monocytes can differentiate into different
subtypes of macrophages and fully differentiated macrophages
are able to change their phenotype when transferred into other
tissues (27). Additionally, changes are observed in enhancer
landscape and gene expression profiles in different tissue-
resident macrophages (28).

Having auto-reactive T-cells on one side and stressed ß-cells
on the other raises the question how these two players interact.
APCs characteristically infiltrate and monitor different tissues.
They become activated upon recognition of pathogen- or
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danger-associated molecular patterns, resulting in different
responses, such as migration (29). DCs migrate after uptake of
antigen from tissue to draining lymph nodes for antigen
presentation and subsequent activation of antigen specific T-
cells (Figures 1 and 2) (30, 31). Therefore, DCs could function as
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physical activators of T-cells in T1D (Figure 2). Besides DCs,
macrophages play a crucial role in tissue homeostasis and
antigen presentation toward approaching T-cells (Figure 1).
The observation that transplantation of islets is more
successful upon APC depletion strengthens the idea that
A B D E

C

FIGURE 2 | Islets resident myeloid cells maintain tissue homeostasis and protect islets (A). In T1D, macrophages infiltrate islets and their ratio changes toward a
pro-inflammatory phenotype (B). Upon activation, islet-resident dendritic cells migrate to pancreatic draining lymph nodes and activate naïve T-cells (C). Activated T
cells infiltrate islets and CD4+ T cells scan for islet autoantigens taken up, processed and presented by macrophages and dendritic cells (D). Insulitic auto-reactive
CD8+ T cells target ß-cells (E). The missing link in (D, E) is the place of the elusive dendritic cells: are they still there, if so, how many and what do they look like?
Brown stands for activated myeloid cells.
FIGURE 1 | Antigen presenting cells are present in islets of Langerhans. These innate immune cells fulfill a wide range of tasks. Macrophages play a crucial role in
tissue homeostasis and physiology by expressing tissue remodeling cytokines. Due to constant sampling of the surrounding environment they clear apoptotic cell
debris, but also sense danger signals and tissue distress. Obtained granules are then trafficked to the blood. In case of invading pathogens macrophages and
dendritic cells are first line of defense. Dendritic cells are mainly involved in screening for danger signals and subsequent activation or regulation of the adaptive
immune system.
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resident APCs play contribute to onset (32, 33). If APCs are the
missing link between ß-cells and the innate immune system, it is
necessary to determine their individual role in a spatial manner.
MYELOID CELLS IN CIRCULATION IN
HEALTH AND DISEASE

Given that APCs play a crucial role in T1D onset by connecting
ß-cells to the adaptive immune system, it is worth to assess
differences in APCs between healthy individuals and T1D
patients. Studies in NOD mice indicate altered numbers of
DCs in blood and thymus compared to control mice (34, 35)
and a DC subtype analysis reported an imbalance toward CD8a-

DCs (36, 37). Several studies claim possible variation in humans.
Yet, whether DC numbers are increased, decreased, or remained
stable and whether this happens before, during, or after onset is
inconsistent (38–43). These inconsistences might relate to the
notion that most studies focused mainly on monocyte derived
DCs rather than bona fide DCs. Besides quantitative changes,
functional differences, such as reduced phagocytic capabilities or
increased HLA-DR expression in T1D have been reported (44).

Monocyte derived tolerogenic DCs (tolDcs) from patients
under sub-optimal glycemic control display reduced tolerogenic
capabilities compared to those from patients under optimal
control (45–48). However, this glycemia dependent difference
may not necessarily be a general difference between health and
disease, and could be a consequence, rather than causally related
to T1D immunopathogenesis. We recently showed that tolDCs
generated from T1D patients’ blood induce immune tolerance
indifferently from those from healthy individuals, proving that
they still possess their immune-regulatory capacity (47).
RESIDENT MYELOID CELLS IN HEALTH
AND DISEASE

Besides circulating APCs, the role of resident APCs must be
evaluated, especially since these are the first sensors of any
changes in islets (Figure 1) (49). Islets contain macrophages as
shownbystaining forCD68using imagingmass cytometry (50–52).
Theywerepresent in lownumbers andnumberswere greater before
and after onset of disease (52).However, it remains unclearwhether
infiltratingmacrophagesdiffer fromresident ones,whether resident
macrophages change, andwhether they affect, or are affected by, the
islet microenvironment in T1D.

Studies from NOD mice show that the vast majority (up to
98%) of APCs are macrophages, while inconsistencies exist about
the presence of other APCs, such as DCs (53–55). Analysis of
resident macrophages in NODmice classifies them as cells with a
mixed M1/M2 phenotype, polarizing toward M1, as indicated by
transcripts of IL1b and TNFa. During pancreas development
immature macrophages enter the islets and mature by week 4 of
age, as measured by MHC II (53). Afterward, they are self-
maintaining with low infiltration of immature macrophages or
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monocytes (53). The occurrence of mature APCs by week 4 is
particularly interesting, since NOD mice develop insulitis soon
after. NOD mice did not develop diabetes in absence of resident
macrophages (56). Depletion of islet-resident APCs at 8 weeks of
age resulted in a complete disappearance of lymphocytes from
the pancreas. Upon reappearance of DCs and macrophages,
lymphocytes reappeared (57). Ex vivo depletion resulted in a
reduced release of pro-inflammatory cytokines such as IL-6, IP-
10, and G-CSF (58). Interestingly, T-cells from macrophage-
depleted NOD mice were unable to induce diabetes upon
transfer into NOD.scid mice (59–61).

Beside their function asAPCs,macrophagesplay a critical role in
tissuedevelopment and remodeling (Figure1),where theypromote
proliferation of ß-cells by creating a favorable microenvironment
and upregulation of SMAD7 (62–65). During pancreas
development in mice macrophages were present at increased
numbers that declined until weaning (66). Curiously, lymphocyte
infiltrates consisting of T-cells with some macrophages and DCs
were observed in human fetal and neonatal pancreata (67). Lack of
macrophages as in osteopetrotic op/op mice (CSF1-/-), or due to
chemical or antibody depletion, resulted in reduced pancreas size
and vasculature, supporting a crucial role of resident macrophages,
given that T1Dpatients also display reduced pancreas sizes (11, 68).
With regards to vascularization, human islets from T1D patients
display lower levels of vascular endothelial growth factor-A (VEGF-
A) (58). VEGF-A is produced by ß-cells and seems to play a role in
the development of islet vasculature, in ß-cell function, and in
macrophage mediated ß-cell proliferation (69–71). Since resident
macrophages are located in close contact to vasculature it seems
plausible that some crosstalk between ß-cells, macrophages, and
vasculature exist (72). However, this interplay remains elusive and
warrants further studies. Macrophages might also directly induce
beta-cell destruction by the synthesis of proinflammatory cytokines
and reactive oxygen species, which lead to the so-called
‘Copenhagen model’ that put macrophages at the heart of islet
inflammation and beta-cell destruction (73). While support of
cytokine-mediated beta-cell toxicity was obtained in rodents, this
did not hold for human beta-cells that proved far more resistant to
cytokines (requiring a 100-fold larger dose than is not even feasible
pathologically) and much better at dealing with oxygen radicals
than rodents (74).

Inmarked contrast tomice,macrophages in humans onlymake
for half or less of residentAPCs and their phenotypewas reported to
be mixed M1/M2 (TNF, IL1b, IL6, IL10, with release of additional
tissue remodeling cytokines MMP2, MMP9) (51, 75). Alike
macrophages from other tissues that maintain tissue homeostasis
by sensing hyperosmolarity, metabolic stress, hypoxia and ECM
components, islet-residentmacrophages sense their surroundingby
detecting extracellular ATP concentrations via purigenic receptors,
resulting in an increased concentration of intracellular Ca2+ levels
(72, 75). Since ATP concentrations correlate with insulin levels,
macrophages can sense ß-cell function.

In addition to microenvironment sensing, resident APCs
constantly probe their surroundings. Islet-resident macrophages
engulf vesicles released from ß-cells, a process taking place over a
short distance, process and present these (76–78). Importantly,
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these granules contain immunogenic peptides, which can be
recognized by auto-reactive T-cells that had escaped thymic
education (79–82). Such peptides can be taken up by DCs and
their presence in draining lymph nodes is confirmed, which can
result in activation of the innate immune system (Figure 2).
Subsequent, targeting of immunogenic peptide presenting APCs
by autoreactive CD4+ T-cells supports this process of initiation and
strengthens macrophages’ potential role in onset (83, 84).

But where is ‘Bigfoot’, the dendritic cell in human islets?
While mouse studies suggest that the myeloid compartment in
islets is up to 98% consisting of macrophages, the rare studies on
human islets pointed that 50% of leukocytes at best were
macrophages, while the other 50% was ignored. We contend
that islet DCs are important candidates to be identified and
characterized, given their key role in regulating immune
activation and modulation (Figure 2). Curiously, studies in
both mice and men thus far have been biased to either
macrophages or DCs. This leaves a significant opportunity to
study the role of islet DCs in health and disease.
CHICKEN OR EGG

The above presented data point toward differences in myeloid
cells between mice and men, between health and T1D, between
different individuals and between neighboring islets. Even
though genetic differences in the myeloid lineage exist,
phenotypic alterations might not necessarily be present from
the beginning (48). Instead, they might appear only in an altered
microenvironment, such as in inflamed islets or hyperglycemia.
The microenvironment plays a crucial role for macrophages,
since these cells possess high microenvironment-dependent
plasticity, which results in change of their phenotype (27). A
stressed microenvironment caused by distressed ß-cells due to
infection or other perturbations (metabolic, inflammatory) could
lead to genetically prone malfunctioning of macrophages, or
indeed be caused by these innate immune cells. Subtle changes in
the microenvironment could occur over years that have skipped
attention. The role of the microenvironment on macrophage
phenotype is supported by recent findings showing that
microenvironment alters infiltrating macrophages after
diabetes onset (85). Such changes might also occur in healthy
individuals but be better compensated.

Another question arising is whether APCs engulf, process,
and present antigen in a different way in diabetes prone subjects.
Building on our scenario, changes might even relate to healthy or
inflamed microenvironment.

In summary, cells of the myeloid lineage display genetic,
qualitative, and quantitative changes in T1D. Yet, it remains
unclear towhat extend these differences contribute to onset of T1D.
THERAPEUTIC OPPORTUNITIES

While a main goal of T1D research is to understand loss of
immune tolerance, another objective is to restore tolerance in
Frontiers in Endocrinology | www.frontiersin.org 5
affected patients. Different therapeutic strategies aim on
modulating cells of the myeloid lineage using granulocyte
colony-stimulating factor (G-CSF) or granulocyte-macrophage
colony-stimulating factor (GM-CSF). In presence of GM-CSF,
cDCs can induce Treg proliferation, while G-CSF increases levels
of cDC2s and shifts the cytokine profile from TH1 toward TH2 in
healthy individuals (86–88). Furthermore, G-CSF has an
immune-regulatory effect, as indicated by increased levels of
tolerogenic DCs (89, 90).

Clinical trials in T1D using colony-stimulating factor focused
mainly on G-CSF, based on findings that G-CSF prevents
diabetes in NOD mice by recruiting pDCs and functional
CD4+CD25+Tregs. Obtained Tregs protected against diabetes
onset when transferred into NOD.scid mice (91). G-CSF
treatment combined with anti-thymocyte globulin (ATG)
reversed diabetes in NOD mice (92). In the clinic, ATG
together with G-CSF preserved ß-cell function in T1D patients
up to one year after treatment (93). However, a consecutive study
indicated ATG as the main factor, because G-CSF alone increases
numbers of circulating neutrophils, while C-peptide level or
insulin needs remained unaffected. In addition, CD4:CD8 and
naïve:memory T-cell ratios did not change upon G-CSF
treatment (94). If anything, G-CSF even seemed to reduce the
benefits of ATG. Patients treated either with ATG/G-CSF, or
ATG alone had reduced conventional and regulatory CD4+ T-
cell numbers after 2 weeks, with stable CD8+ T-cell
numbers (95).

Since targeting myeloid hematopoiesis does not seem to offer
major benefit to patients, other myeloid strategies might be more
successful (96, 97). As discussed above, monocyte derived tolDCs
do not differ between healthy and diseased individuals (98).
Given their role as connectors and immune modulators, it seems
plausible to use patients’ tolDCs to restore immune tolerance
(99–101). In a recent clinical trial, tolDCs generated from
monocytes by vitaminD3 followed by dexamethasone and
loaded with proinsulin peptide C19-A3 were tested to restore
immune tolerance in long-term T1D patients, demonstrating
feasibility, safety, tolerability and mechanistic efficacy of this
novel therapeutic intervention strategy engaging innate
immunity (47). This strategy will next be tested for its capacity
to delay disease progression and preserve endogenous beta-
cell function.
CONCLUSION

A myeloid footprint exists in pancreatic islets, irrespective of
insulitis. Resident myeloid immune cells play a key role in islet
morphology, physiology and function and are essential for tissue
homeostasis and clearance of cell debris. These innate cells are
intrinsic components in dialogue between islets and the immune
system. Their role in diabetes seems clear in rodent models of
autoimmune diabetes, but remains ignored, vague, inconsistent
and inconclusive for human T1D. While limited information on
residing myeloid cells in human islets is available after disease
onset, our knowledge on these moderators before and during
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onset is even scarcer. Genetic variation and phenotypic
differences in myeloid cells have been linked to T1D, but
causality remains unclear. Subtle differences between health
and disease can be largely attributed to dysglycemia, and may
be a consequence, rather than causative, diabetogenic feature.
Islet-resident myeloid immune cells conceivably prime the
adaptive immune system, but with reason, as they are
equipped to sense danger and tissue distress, and play a crucial
role in tissue sensing, spatial antigen presentation, and tissue
remodeling, in addition to immediately responding to ß-cell
stress, changes in the microenvironment, or invading pathogens.
Their failure in this process could predispose or trigger T1D.
Dendritic cells can function as both sensors and connectors to
the adaptive immune system. Adaptive immunity needs these
cells to present islet autoantigens to the immune system so it is
conceivable that they are involved in propagating the
autoimmune response, while they could equally contribute to
restoring/repairing islet tissue homeostasis, as well as restore
immune tolerance! We contend that the innate immune system
and myeloid cells in particular are connecting the dots in T1D.
Their footprint in healthy islets underscores their essence and
warrants more investigation. Therefore, it is critically important
to learn more about changes between benign leukocyte residency
Frontiers in Endocrinology | www.frontiersin.org 6
and infiltration into pathogenic footprint and what causes these,
to turn this knowledge into novel therapeutic intervention
modalities and strategies. Engaging myeloid immune cells
holds great promise as future treatment options.
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