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Experimental autoimmune encephalomyelitis (EAE), the animal model of multiple sclerosis (MS), results
from an autoimmune attack of the central nervous system (CNS) by effector T helper (Th) 1 and Th17 cells.
Regulatory T cells (Treg) can control effector T cells and limit the progression of CNS autoimmunity.
Integrin alpha 4 (Itga4) is critical for the entry of Th1 but not Th17 cells into the CNS during EAE. Whether
Itga4 controls the homing of Tregs in the CNS and whether Tregs can limit Th17-mediated EAE has,
however, not been addressed. Through selective elimination of Itga4 in Foxp3-expressing cells, we show here
that Tregs can suppress Th17-mediated EAE and enter into the CNS independently of Itga4. Furthermore,
similarly to Th17 cells and in contrast to Th1 cells, Tregs depend on LFA-1 for their entry into the CNS in the
absence of Itga4. Therefore, these data suggest that the efficacy of Itga4 neutralization on MS progression
may be associated with the prevention of Th1 cells and the maintenance of Tregs migration into the CNS.

M
ultiple sclerosis (MS) is an inflammatory autoimmune disorder of the central nervous system (CNS). A
large part of its clinical and histological features can be modeled in experimental autoimmune ence-
phalomyelitis (EAE), an autoimmune disease of the CNS induced by immunization of mice with myelin

autoantigens or the transfer of myelin-specific CD41 T cells1. Experiments carried out in EAE demonstrated that
Th1 and Th17 cells are pathogenic cells1,2. Th1 and Th17 cells have been reported to induce distinct clinical signs,
histopathological changes and lesion distribution2,3. Foxp31 regulatory T cells (Treg)4 are believed to ameliorate
disease progression5,6 through the control of effector T cells6. To date, it is unresolved whether Th17-dominated
autoimmune responses can be controlled by regulatory T cells.

Homing of CD41 T cells from the periphery into the CNS during MS and EAE involves specific adhesion
molecules including integrin alpha 4 (Itga4)7. Based on this property, monoclonal antibodies targeting Itga4 have
been developed. In mice, they prevent the development of EAE7 and in MS patients Natalizumab is used as a
second line of disease modifying therapy8. While clinical trials showed a drastic reduction in the relapse rate, a
number of Natalizumab treated patients developed lethal progressive multifocal leukoencephalopathy (PML), a
serious opportunistic brain infection caused by a neurotropic strain of the JC virus8. Lack of CNS immune
surveillance is believed to account for the severe and often fatal CNS infection caused by this virus8. Despite
its long-term use in the clinic, knowledge of the biological effects of anti-Itga4 antibody on different immune cell
populations in vivo is still limited. Recent studies from our laboratory and others support the hypothesis that Itga4
blockade does not uniformly block lymphocyte homing and function9,10. Indeed, we have recently shown that
conditional deletion of Itga4 on T cells leads to a Th17-mediated form of EAE, because Itga4 is specifically
required for the homing of Th1 but not Th17 cells into the CNS9. Whether Itga4 blockade or elimination can
differentially modulate the homing of effector versus regulatory T cells in the CNS has not been addressed.

In this study, we determined that Tregs can limit Th17-driven EAE. We further established that conditional
deletion of Itga4 on Foxp31 T cells does not affect their homing into the CNS and/or their functions during EAE.
Therefore, Tregs can patrol and function in the CNS during Itga4 blockade or neutralization. Importantly, in the
absence of Itga4 we show that Tregs use LFA-1 (CD11a/CD18) to migrate into the CNS and control EAE
progression.
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Results
Tregs can control Th17-mediated EAE. The type of effector popu-
lation (Th1 vs Th17 cells) driving the immune response has been
proposed to determine the efficacy of Treg-mediated regulation11. To
understand the effects of Itga4 modulation on T cell populations and
in particular Treg populations during the course of CNS autoim-
munity, we used mice with selective deletion of Itga4 on T cells
(CD4Cre Itga4fl/fl). Consistent with our previous study9, we observed
milder EAE signs in CD4Cre Itga4fl/fl mice (Figure 1A) and limited
infiltration of Th1 cells into the CNS (Figure 1B), compared to
Itga4fl/fl mice. In contrast, there were similar numbers of Th17 cells
infiltrating the CNS of CD4Cre Itga4fl/fl and control mice. The milder
disease observed in CD4Cre Itga4fl/fl mice suggested that the CNS-
infiltrating effector population Th17 cells could be controlled by
regulatory T cells. To address this hypothesis, we deleted Tregs in
CD4Cre Itga4

fl/fl mice prior EAE induction by injection of anti-CD25
specific antibody. Treatment of CD4Cre Itga4

fl/fl mice with anti-CD25
antibody prior to immunization led to a significant decrease in the
percentage of Tregs present in the blood of mice anti-CD25 treated
compared to mice treated with isotype control (9.6% 6 1.24 for anti-
CD25 treated mice vs 2.43% 6 0.39 for isotype treated mice,
Figure 1C and D). Importantly, the elimination of Tregs in CD4Cre

Itga4fl/fl mice led to exacerbated disease compared to CD4Cre Itga4fl/fl

mice receiving isotype control antibody (Figure 1E) and restored an
EAE course with severity similar to C57BL/B6 mice. This highlighted
the active role that Tregs play in controlling Th17-driven disease in
CD4Cre Itga4fl/fl mice (Figure 1) and indicated that Th17 cell-driven
pathology can be controlled by Tregs.

Generation of Tregs does not require Itga4. It is unclear whether
the control of effector T cell populations (Teff) occurs in the
peripheral organs or in the CNS. To address this question and look
at the specific effect of Itga4 on Tregs, we crossed Itga4fl/fl mice with
Foxp3Cre-YFP mice11,12. In these animals, Cre-mediated deletion of
Itga4 was efficient and specific to Foxp31 regulatory T cells
(Figure 2B), leaving intact Itga4 expression by effector T cells (data
not shown). Because Itga4 has been implicated in various processes
including T cell migration and activation13,14, we examined the effect
of Itga4 deletion on Treg distribution in lymphoid organs. Deletion
of Itga4 on Treg cells did not alter their thymic and peripheral
distribution (Figure 2A). We also investigated whether Itga4
deletion could modulate the phenotype of Treg cells and the
arsenal of surface molecules that they express. We observed similar
levels of CD103, CD25, CD11a, GITR, CD62L, Helios, CTLA4 and
CCR6 in Itga4-competent or -deficient (YFP1) Tregs (Figure 2B).
Next, we determined whether Itga4 could inhibit the function of
Tregs. To address this possibility, we compared the capacity of
Itga4-deficient or -competent Tregs to suppress the proliferation of
effector T cells in vitro. Both WT and Itga4-deficient Tregs were
equally effective at controlling the proliferation of Teff cells
(Figure 2C), indicating that Itga4 neutralization do not limit the
function of Tregs.

Itga4 is dispensable for the entry of Tregs in the CNS. Next, we
evaluated the effects of Treg specific deletion of Itga4 on EAE
development and Treg migration in the CNS. Foxp3Cre Itga4fl/fl and
control Foxp3Cre mice were immunized with MOG35–55 for the
development of EAE. Ninety six percent of the mice in the control
group developed classical EAE with appearance of ascending
paralysis between day 8 and 12 (Figure 3A). Interestingly, the
deletion of Itga4 on Tregs did not affect the onset, severity, and/or
the recovery of EAE (Figure 3A). We characterized Tregs present in
the CNS at the peak of the disease (day 18–20) and confirmed that
CNS-infiltrating Tregs in Foxp3Cre Itga4fl/fl mice were Itga4 deficient
(Figure 3B). We also observed similar numbers of Foxp31 regulatory
T cells infiltrating the CNS of Foxp3Cre and Foxp3Cre Itga4fl/fl mice,
both at the peak (Figure 3C) and during the recovery phase of the
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Figure 1 | Tregs control Th-17 mediated EAE. EAE was induced in

Itga4fl/fl (open circles) and CD4Cre Itga4fl/fl mice (filled circles). (A) Shown is

the mean clinical score for each group over time for 8 mice (6SEM). Data

are representative of 4 experiments with 20 mice per group. (B) At the peak

of the disease, CNS infiltrating mononuclear cells were collected and an

intracellular cytokine staining was performed. The plots show the

percentage of IL171 and IFNc1 cells gated on CD41 T cells. (C)–(E) CD4Cre

Itga4fl/fl mice were treated twice with anti-CD25 or rat IgG1 antibodies

prior immunization for EAE development. (C) The percentage of CD41

Foxp31 cells in the blood of each mouse was determined by flow cytometry

prior immunization. The plots show the percentage of CD41 Foxp31 T

cells. (D) Mean percentage of Foxp31 cells among CD41 T cells in the

blood for both groups (* p , 0.05). (E) EAE clinical course in rat IgG1

treated (open circles) and anti-CD25 treated (filled circles) CD4Cre Itga4fl/fl

mice is presented (n 5 7 mice per group).
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disease (data not shown), showing that Tregs could enter the CNS
independently of Itga4 (Figure 3 A–C). Importantly, Itga4-deficient
Tregs, similarly to Itga4 competent Tregs, were MOG specific as
shown by MOG38–49 I-Ab tetramer staining and upregulate CD103
and GITR in the CNS of mice during EAE (Figure 3D). Therefore,
Tregs are able to enter and function in the CNS when Itga4 is
neutralized or eliminated.

Itga4 deficient Treg cells use LFA-1 to control EAE development.
If Tregs could access the CNS in the absence of Itga4 expression,

which homing receptor did they use? To address this question, we
analyzed the expression of integrin alpha chains in Tregs isolated
from the LN of MOG35–55-immunized mice and observed that ItgaL
mRNA was one of the three integrin RNAs highly expressed by Tregs
(Figure 4A). Integrins are heterodimeric integral membrane proteins
composed of an alpha and a beta chain. ItgaL (CD11a) combines with
Itgb2 (CD18) to form the lymphocyte function-associated antigen-1
(LFA-1) which is expressed by all leukocytes. Interestingly, LFA-1
deficient mice have been shown to have fewer Treg in the spleen and
thymus and to be more susceptible to EAE upon immunization with
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MOG35–55 in comparison to WT animals15. This suggested that LFA-
1 could contribute to the migration of Tregs into the CNS. However,
because LFA-1 deficient mice have profound defects in many
immune cell populations15,16 and because the number of peripheral
Tregs is already low in LFA-1 deficient mice, the contribution of
LFA-1 in the migration of Tregs into the CNS during EAE has
been difficult to address using this model. Importantly, we
observed that CD11a (ItgaL) was significantly upregulated on
Tregs compared to Teffs (Figure 4B) after immunization with
MOG35–55. Therefore, we tested whether LFA-1 could be critical
for the entry of Tregs into the CNS. To test our hypothesis, we
treated Foxp3Cre Itga4fl/fl and Foxp3Cre control mice with anti-
CD11a or isotype control antibodies after the priming of
pathogenic CD41 T cells (starting at day 8 post-immunization). As
predicted, isotype control treatment (rat IgG2a) of Foxp3Cre control
and Foxp3Cre Itga4fl/fl mice led to a rapid disease development
followed by a recovery phase (Figure 4C). Consistent with the
previously reported blockade of Th17 cell migration into the CNS
by anti-CD11a antibody10, the blockade of CD11a in Foxp3Cre control
mice resulted in a delayed onset of EAE but did not affect the
recovery phase of the disease when Tregs play an important
immunosuppressive role (Figure 4C) suggesting that WT Tregs
can use alternative integrins to access the CNS. In contrast, disease
severity was significantly increased in Foxp3Cre Itga4fl/fl mice treated
with anti-CD11a and these mice reached a maximal clinical score
higher than anti-CD11a-treated Foxp3Cre mice (Figure 4C and D).
These results suggest that once Itga4 is blocked or eliminated, ItgaL is
critical for Tregs entry in the CNS during EAE. To establish that the
differences observed during the recovery phase of the disease were
due to defective Treg homing, we quantified the percentage of Tregs
present in the CNS of these different groups of mice using YFP

expression (Figure 4E and F). Whereas isotype-treated Foxp3Cre

Itga4fl/fl and Foxp3Cre mice had similar percentages of CNS-
infiltrating Tregs, anti-CD11a-treated Foxp3Cre Itga4fl/fl mice had
significantly fewer Tregs infiltrating the CNS than anti-CD11a
treated Foxp3Cre mice (Figure 4E and F). These data indicate that
upon blockade or in the absence of Itga4, Tregs use ItgaL to enter the
CNS and control disease progression. Therefore, while Itga4
blockade did not significantly impair the migration and function of
Tregs in the CNS, CD11a blockade in association with Itga4
elimination profoundly restricted Treg entry into the CNS and
their control of EAE recovery.

Discussion
Recent work supports the hypothesis that Itga4 elimination or neut-
ralization does not uniformly block lymphocyte extravasation but
instead acts via selective modulation of its cellular target17,18. We
and others have previously reported that elimination of Itga4 on T
cells selectively blocks the entry of Th1 but not Th17 cells in the
CNS9,10. Here, we have determined the effects of Itga4 elimination
on Treg function and EAE development.

Natalizumab, a monoclonal humanized antibody (mAb) targeting
the alpha-4 chain of a4b1 and a4b7 integrins on the surface of
leukocytes has beneficial therapeutic effects in MS patients8,17. In rare
cases, however, Itga4 neutralization has led to the development of
PML, a severe infection of the CNS caused by the JC virus, which
might be the result of poor immune-surveillance of the CNS by T
cells and/or the presence of an immunosuppressive environment in
the CNS. Despite the long-term use of Itga4-neutralizing antibody in
MS, little is known about the cell-specific effects of Itga4 neutraliza-
tion or elimination. Regulatory T cells accumulate in the CNS of mice
during the progression of EAE and can ameliorate disease progres-
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sion in mice through the control of effector T cells19–21. Unfor-
tunately, regulatory T cells have been shown to be defective in MS
patients22. Itga4 exhibits multiple biological effects ranging from cell
migration to modulation of T cell polarization and activation13,23.
Itga4 has also been proposed as a marker to identify T cells with
suppressive activity24, and Itga41 Treg cells have been reported to
be less effective25. In this report, we observed that Tregs express
similar levels of CD103, GITR and CTLA4, regardless of their
expression of Itga4 (Figure 2B and 3D). Tregs were also present in
similar numbers in the thymus, spleen, LN and mesenteric LN of
Itga4fl/fl and Foxp3Cre Itga4fl/fl mice (Figure 2A). Furthermore, Tregs
were capable of suppressing the proliferation of effector T cell res-
ponses regardless of their expression of Itga4 (Figure 2C). Together,
these data demonstrate that the blunting of Itga4 signaling in Tregs
does not compromise their development, distribution, and suppress-
ive function at steady state. However, Tregs with less suppressive
function may coincidentally downregulate the expression of Itga4
and explain previous report25. In this report, we have established that
Itga4-deficient Tregs were capable of suppressing T cell responses

in vivo during CNS inflammation, since their removal led to the
development of exacerbated EAE (Figure 1E). The fact that elimina-
tion of Itga4 on Tregs does not impact their suppressive functions
under inflammatory conditions supports earlier experiments show-
ing that Natalizumab does not alter the suppressive capacity of Treg
cells24.

While both Th1 and Th17 cells can induce EAE development2 and
are present in active MS plaques, the efficacy of certain disease-
modifying therapies has been shown to correlate with the prevalence
of each Teff population26. Importantly, it is still unclear whether
different forms of disease mediated by either Th1 or Th17 cells can
be efficiently controlled by Tregs. There was speculation that Th17-
mediated diseases might not be controlled by Tregs. We have shown
that CD4Cre Itga4fl/fl mice develop a disease dominated by Th17 cells
(Figure 1B)9. We further addressed whether Th17-mediated EAE in
CD4Cre Itga4fl/fl mice could be controlled by Tregs. Depletion of Tregs
by injection of anti-CD25 antibody led to exacerbated EAE indi-
cating that Tregs control Th17 cells and EAE severity in these mice
(Figure 1E). Therefore, while Tregs from MS patients have been
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shown to be defective22, our data suggest that both Th1 and Th17-
mediated forms of MS can be controlled by enhancing the function of
Tregs.

Tregs exercise their immunomodulatory role both in lymphoid
and non-lymphoid tissue. In lymphoid tissues, they can limit T cell
expansion and differentiation27, but once the effector response is
established, they regulate local inflammation in target tissue28,29.
However, whether Itga4 can control the migration of Tregs in the
CNS has not been investigated. Using both CD4Cre Itga4fl/fl mice and
Foxp3Cre Itga4fl/fl mice, we determined that regulatory T cells migrate
into the CNS independently of Itga4, since both strains had equival-
ent numbers of Tregs in the CNS (Figure 3C and data not shown). It
will be of interest in the future to determine whether similar accu-
mulation of Tregs over effector T cells is observed in MS patients
treated with Natalizumab. Indeed, an increase in the number of Tregs
over Teff in the CNS of Natalizumab-treated patients could explain
in part the efficacy of such treatment. Treg cells secrete inhibitory
cytokines, such as IL-10 and TGF-b, that limit effector T cell res-
ponses involved in viral clearance. Therefore, the prevalence of Tregs
over Teffs in the CNS upon elimination of Itga4 might also have
major implications for the surveillance of the CNS and could provide
clues for the pathogenesis of CNS infections in Natalizumab-treated
patients30.

The presence of a low but significant number of lymphoid cells in
the CSF of MS patients treated with Natalizumab24,31 in conjunction
with our data showing that regulatory T cells can traffic to the CNS
independently of Itga4, suggested that there are some compensatory
or alternative mechanisms allowing regulatory T cells to enter the
CNS. During the comparison of the expression levels of adhesion
molecules between effector and regulatory T cells, we observed high
expression of ItgaL (which together with Itgb2 form LFA-1) on Treg
cells compared to effector T cells. This differential expression
prompted us to investigate whether ItgaL could drive the entry of
Treg cells into the CNS in the absence of Itga4. Using anti-CD11a
neutralizing antibodies after the induction of EAE, we demonstrated
that Itga4-deficient Tregs used LFA-1 to migrate into the CNS and
control disease development, since Foxp3Cre Itga4fl/fl mice treated
with anti-CD11a failed to recover and had exacerbated EAE com-
pared to Foxp3Cre Itga4fl/fl mice treated with isotype control antibody
(Figure 4C and D). This differential expression of ItgaL between
effector and Treg cells is reminiscent of our observation that Itga4
is differentially regulated between Th1 and Th17 cells9. Indeed, Th17
and Treg cells share common homing molecules (i.e.CD11a) for their
migration into target organs during the development of autoimmu-
nity. Our observations also extend previous publications showing
that genetic ablation of CD11a in mice results in higher susceptibility
to EAE than control mice15 and a decrease in the numbers of Tregs
present in the CNS of these mice15,32. Finally, these findings expand
previous reports suggesting an inhibitory role of CD11a in CNS
inflammation through its expression, its activity on other non-
effector T cell subsets33, and with previous reports showing an
important role of CD11a in Treg homeostasis15.

Conclusions
In this study, we have shown that Tregs can control Th17-mediated
EAE in mice with specific deletion of Itga4 on T cells. Importantly
Itga4 elimination does not modulate the activity of Treg cells and
does not limit their migration into the CNS during EAE. We further
identify LFA-1 as a key molecule, in the absence of functional Itga4,
for Treg entry into the CNS during EAE. Therefore, the efficacy of
Itga4 blockage in preventing disease progression might not only
result in the inhibition of Th1 cell migration in the CNS, as we and
others have previously reported9,10, but also results in the mainten-
ance of Treg migration into the CNS, which allows for the effective
control of pathogenic Th17 cells.

Methods
Mice. All mice are on the C57BL/6 background. Itga4

fl/fl mice and Foxp3Cre-YFP were
described12,34. All animals were bred and maintained under specific pathogen-free
conditions at the Benaroya Research Institute (Seattle, WA). All experimental
protocols and procedures were approved by the Institutional Animal Care and Use
Committee of the Benaroya Research Institute. Animal care and experimental
procedures were carried out in accordance with the guidelines of the Institutional
Animal Care and Use Committee of the Benaroya Research Institute and the National
Institutes of Health Guide for the Care and Use of Laboratory Animals.

Isolation of CNS mononuclear cells. Mice were sacrificed at the peak of disease and
perfused through the left cardiac ventricle with cold 13 PBS. Brain and spinal cords
were isolated and digested for 30 min at 37uC with Collagenase D at a concentration
of 2.5 mg/ml (Roche). Mononuclear cells were isolated over a 37%/70% Percoll
gradient (VWR), washed twice with complete medium and collected in medium for
further analysis.

Flow cytometry. Cell suspensions from CNS and spleen were prepared as previously
described9. Anti-CD4 (GK1.5), anti-CD103 (2E7), anti-CD25 (PC61), anti-IL17
(TC11-18H10.1), anti-IFNc (XMG1.2), anti-CD49d (R1-2), anti-GITR (YGTIR765),
anti-CTLA4 (UC10-4B9), anti-CD11a (M17/4) and anti-Helios (22F6) antibodies
were purchased from Biolegend and eBioscience. The mouse MOG38–49 I-Ab
tetramer was supplied by the National Institute of Health Tetramer Core Facility to
identify the MOG-specific CD41 T cells. For tetramer staining, cells were stained for
2 hours at 37uC. Labeled cells were acquired on LSRII (BD Biosciences), and data
were analyzed with FlowJo software.

EAE induction and antibody treatment. Active EAE was induced by subcutaneous
immunization of mice with an emulsion of 10 mg of MOG35–55 peptide in CFA
supplemented with 40 mg of M. tuberculosis extract H37 Ra (Difco). In addition, the
animals received 200 ng of pertussis toxin (List Biological Laboratories) i.p. on day 0
and 2 after immunization. Animals were monitored daily for development of EAE
according to the following score: 0, no signs of disease; 1, loss of tail tone; 2, hind limb
paresis; 3, hind limb paralysis; 4, front and hind limb paralysis. To compare EAE
susceptibility between groups, mean clinical score was calculated and plotted daily for
each group of mice. To analyze the severity of EAE, the maximal clinical score was
determined, corresponding to the highest score reached by a mouse developing EAE.
For the treatment of the animals, anti-CD11a (clone M17/4), anti-CD25 (clone
PC61), and isotype antibodies were purchased from BioXcell. ItgaL-treated and
control mice were treated with 100 mg of antibody administered i.p. 3 times per week
starting at day 8 after immunization. For Treg depletion in vivo, mice were treated at
day 23 and 21 before immunization with 500 mg of anti-CD25 i.p.

Suppression Assay. Tregs cells (CD41 CD25high) and effector (CD41 CD252) were
sorted from naı̈ve WT and CD4CreItga4Fl/fl mice. 2.5 3 104 effector T cells were co-
cultured with different ratios of Tregs and 105 irradiated syngenic splenic cells in the
presence of anti-CD3 (2.5 mg/ml) for 72 h. Cells were pulsed with 1 mCi of [3H]
thymidine during the last 16 h and [3H] thymidine incorporation was measured using
a b-counter.

Real-time PCR. RNA was extracted from splenic Treg cells using RNeasy Mini Kit
(Qiagen). RNA was quantified using a NanoDrop 2000 spectophotometer (Thermo
Sicentific). cDNA was transcribed with the RevertAid First Stand cDNA Synthesi Kit
(Thermo Scientific) and qPCR was performed using a 7500 Real time PCR machine
(Applied Biosystems). The total amount mRNA was normalized across samples
according to endogenous b-actin mRNA. The primers sequence (forward and reverse
respectively) were as follows: for Itga1 GCCCAGCGATATAGAGCACATC and
TCTTGCTTCTTACTTGGGTTACACA; for Itga2 CTATGATAACCCCTG-
TCGGTACTTC and TGAGGAAAATGCTGTCACGATT; for Itga3 GCCTT-
CTGCCTCTTAGCTTCATA and ATCATCCTCCTCTTGTGGAAGTG; for Itga4
TGTGCAAATGTACACTCTCTTCCA and CTCCCTCAAGATGATAAGTTG-
TTCAA; for Itga5 GCTAAGGTTGATGCAGGACACA and CTGCCAGCGCA-
TCTCTCA; for ItgaV GCTGAAGCTGTTCTCTTTCTTGCT and ATTTGTAA-
TGTACAGGATGGGCTTT; for ItgaL GCAGGCGACCTTGAAACTGT and
GCAGAAACACGGAGTCAAGCT; for ItgaM TGTTCACCAGCTGGCTTAGATG
and GGGTCATTCGCTACGTAATTGG; for ItgaE TCCCATCCATGTCGATA-
TCCA and TTTGTGCGACGGATAGAAGGA and for b-actin ATGGTGCT-
AGGAGCCAGAGC and CATTGCTGACAGGATGCAGAA.

Statistical analysis. The Two-Way Anova was used for statistical comparison of
clinical EAE scores. The One-Way Anova was applied for statistical analysis of all the
other experiments (*p , o.o5; **p , 0.01; #,0.005).
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