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Abstract: Persistent organic pollutants (POPs) cause a significant public and environmental health
concern due to their toxicity, long-range transportability, persistence, and bioaccumulation. The US
Food and Drug Administration (FDA) has a program to monitor POPs in human and animal foods at
ultra-trace levels, using gas chromatography coupled with mass spectrometry (GC–MS). Stringent
quality control procedures are practiced within this program, ensuring the reliability and accuracy of
these POP results. Due to the complexity of this program’s quality control (QC), the decision-making
process for data usability was very time-consuming, upward of three analyst hours for a batch of
six extracts. We significantly reduced this time by developing a software kit, written in Python,
to evaluate instrument and sample QC, along with data usability. A diverse set of 45 samples were
tested using our software, QUICK (Quality and Usability Investigation and Control Kit), that resulted
in equivalent results provided by a human reviewer. The software improved the efficiency of the
analytical process by reducing the need for user intervention, while simultaneously recognizing a
95% decrease in data reduction time, from 3 hours to 10 minutes.

Keywords: persistent organic pollutants; quality control; data usability; gas chromatography–mass
spectrometry (GC–MS)

1. Introduction

Environmental contaminants that reach our food supply, such as persistent organic pollutants
(POPs) [1–6], are associated with many health concerns, such as hormone disruption, cancer,
cardiovascular disease, obesity, reproductive and neurological ailments, learning disabilities,
and diabetes [1,7,8]. The Stockholm Convention [9–11], an international regulation that requires
participating countries to eliminate or reduce the release of key POPs in the environment, was introduced
to help mitigate these health risks. Methods for the analytical determination of many of these compounds
require comprehensive quality control (QC), which results in increased turnaround times [12–15].
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There have been efforts focused on increased efficiencies (reduced turnaround time and cost)
over the years. Most of these, however, have involved investigating alternate instrumentation [16–20],
extraction techniques [9,10,21–25], and extract cleanup methodologies [26,27]. More recently, there have
been developments in data evaluation, such as evaluating patterns of large data sets [28]. Quality criteria
within the European Union (EU) regulation for polychlorinated dibenzo-p-dioxins, polychlorinated
dibenzo furans (D/Fs), and polychlorinated biphenyls (PCBs) uses the ratio between the lower bound
(LB) and upper bound (UB) toxic equivalency (TEQ), to assist in determining data acceptability [15].

Python scripting language has been widely used in the data analysis field because of its abundant
libraries and ease of use. Recently, some researchers have developed python-based tools to assist in
analyzing mass spectrometric data [29–31]. These implementations have proven to greatly increase the
efficiency by automating time-consuming data-processing actions. Therefore, to improve the efficiency
in detection of POPs using GC–MS systems, we developed a python-based customized software kit,
QUICK (Quality and Usability Investigation and Control Kit), to investigate the quality and usability
of data yielded from QC and target samples.

Multiple criteria are used for the determination of data usability within the FDA’s POPs program.
The determination of contaminants in food requires stringent quality assurance (QA) and quality
control (QC) procedures to help ensure data reliability [32]. Direct isotope dilution methods [12–15] are
used for the targeted analytes, thus allowing an internal standard recovery calculation. Additionally,
to reasonably accept results, detection limits, absolute responses, chromatography, lack of interferences,
and associated QC concerns, such as no elevated levels found in the method blanks and spiked
statistics, are evaluated. We have created a series of algorithms to convert our data coming from
multiple vendors into a format to compare the above criteria. The focus of our work includes the use
of LB/UB comparison to calculate a relative number, identified as a usability factor (UF), while adding
data quality objective (DQO) to assess the data quality of the analytical results.

2. Method

2.1. Study Design and Overall Workflow of QUICK

This study aims to automate the evaluation process of data quality and usability in POPs detection
by GC–MS so laboratory scientists (referred as human experts in this paper) do not need to manually
interpret data quality metrics for decision making. QUICK is expected to generate all metrics for
investigating quality and usability of GC–MS experimental data and to suggest decisions for human
experts to consider.

The process of experimentally generating data and assessing quality and usability of data is
depicted in Figure 1. Before a batch of target samples are subjected to GC–MS, some QC samples are
used to test and ensure instrument optimization and that extraction methods are adequate. The data
generated from QC and target samples are manually investigated by human experts to determine
GC–MS instrument stability and to evaluate the quality and data usability of target sample analysis.
This process is very time-consuming. Therefore, QUICK was designed to automate the investigation of
data quality and usability for QC of POPs detection. The overall workflow of QUICK is illustrated in
the gray box of Figure 1.

2.2. QC Samples

Two types of samples are analyzed for detection of POPs: (1) QC samples to determine data
quality and usability and (2) target samples for POPs determinations. There are four types of QC
samples. The first, Daily Standard (termed as Standard hereafter), is a standard solution ready to inject
into the instrument and used for instrument preparedness. The Standard contains known amounts
of each congener. The congener concentrations are equal to the midlevel standard of the 5-point
calibration curve. This Standard solution is analyzed prior to a sample batch (other QC samples and
target samples), every 24-hours, and used to verify instrument suitability. Many quality criteria are
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verified from this injection, including response factors, absolute retention times, relative retention
times, and absolute responses to determine instrument reliability [33,34]. The second QC sample is the
method blank (termed as Blank hereafter). Blank, a 1 g aliquot of corn oil, is used to verify that levels
detected are below reporting limits. This Blank oil is treated identically to target samples extracted
in the same batch, including exposure to all glassware, equipment, solvents, reagents, and internal
standards. Blank is used to demonstrate that the system (laboratory, reagents, glassware, etc.) is free of
contaminants and ensure that the extraction process is under control. Method Spike (termed as Spike
hereafter) is the third type of QC samples. Spike is similar to Blank but contains a known amount of
all method analytes and is used for ongoing accuracy calculations. The final QC sample is Duplicate,
which is an extracted and analyzed target sample replicate and used to determine method precision.Int. J. Environ. Res. Public Health 2019, 16, x 3 of 16 
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Target data are used to report QA (Quality Assessment) results. 
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Figure 1. The process of experimentally generating data and assessing quality and usability of data.
Dashed lines indicate optional procedures. Samples include both QC (Quality Control) samples
(Standard, Blank, Spike, and Duplicate) and Target samples. Samples are injected into GC–MS (Gas
Chromatography–Mass Spectrometry) to generate the corresponding data. The overall workflow of
QUICK (Quality and Usability Investigation and Control Kit) is illustrated in the grey box. Standard
Data are compared with Standard Reference to generate QC report. Blank, Spike, Duplicate, and Target
data are used to report QA (Quality Assessment) results.

Standard is analyzed first to determine instrument suitability. If Standard passes QC criteria,
extraction batch QC and target samples are analyzed. Blank is extracted and analyzed with every batch,
while Spike and Duplicate are extracted and analyzed monthly, at minimum. If data from Standard
fails to meet the quality criteria, instrument maintenance may be needed and Standard reanalyzed.

2.3. Reference Data

Human experts evaluate current QC data against 100 historically obtained reference QC data
points to verify that QC samples are compliant. All QC results should be statistically similar, within
± 3SD of the historical reference data, except blank results, which should be within ± 2SD of the
blank reference data. QUICK was designed to rapidly evaluate these criteria. Some reference data
(Blank and Spike reference for PCBs/PBDEs) were collected by human experts and manually compiled.
This type of reference data requires extra maintenance and upkeep. Other reference data (Standard and
Spike reference for dioxin/furan), were compiled with the help of preprocessing packages (TargetLynx
and ChromaTOF). QUICK follows the same pattern used by the human experts in their manual
evaluation process.
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2.4. Standard Data Quality

Before evaluating data quality, including Standard, Blank, Spike, Target, and Duplicate, all results
must be in the format requested by QUICK; otherwise, QUICK is unable to interpret these data.
This will result in output warnings, causing QUICK to halt the data quality evaluation. When the
format is correct, QUICK assesses the quality of MS data.

Prior to analyzing any extracted QC or target sample, instrument calibration is performed to
demonstrate instrument stability. Standard is analyzed and preprocessed using the vendor-provided
software package (TargetLynx or ChromaTOF). The concentration of each congener is compared to the
concentrations of the same congener of the samples in Standard Reference to verify quality. Human
experts examine data quality by using a control charting method from TargetLynx for dioxin/furan
congeners. The control chart graphically displays the concentration for each of the dioxin/furan
congeners in Standard Data, with the control limits, mean ± 3 standard deviations (SD) in Standard
Reference. The human experts manually check the control chart to determine instrumental acceptability.
However, a similar function does not exist with ChromaTOF, causing human experts to manually check
the concentration output for both Standard Data and Standard Reference, to determine if the instrument
is performing optimally. Only when Standard Data demonstrate that all congener concentrations are
in the allowed range defined by Standard Reference, human experts continue to work on QC and
target samples. Otherwise, intervention is required and then Standard is reinjected. QUICK was
designed to automate the investigation of Standard Data quality. It reports the detailed quality metrics
and recommends QC action (pass or fail) to human experts (Figure 1). QUICK also compares the
Standard Data with the Standard Reference to determine if the Standard Data should be included in
the Standard Reference.

2.5. Blank Data Quality

A Blank is extracted with every sample batch, consisting of Target Data and potentially Spike
and Duplicate Data. Blank Data is compared to the Blank Reference of previously tested oil that
demonstrates no detected levels greater than accepted blank limits. Blank Data are used for verifying
that no contamination occurred during the sample preparation process. In the laboratory, Blank sample
is analyzed to generate the corresponding Blank Data. Since Blank contains little to no analytes of
interest, the amounts of analytes identified should be below the blank limit, which is the mean + 2SD
determined by Blank Reference. The criterion used for Blank Data quality investigation is that the
concentration of a congener should be lower than the corresponding blank limit. QUICK was designed
to compare the concentration of each analyte with the blank limit. In the same way, for Standard Data
quality, QUICK flags the congener in this step if the detected amount is greater than its blank limit.

2.6. Spike Data Quality

Spike is tested to measure the accuracy of the experimental procedure and is extracted and
analyzed on a monthly basis, at minimum. The evaluation of Spike Data quality is very similar
to investigating Standard Data quality. Human experts use control charts to check the quality of
dioxin/furan data and manually compare Spike Data with Spike Reference for PCB/BDE. QUICK was
designed to automate the quality assessment of Spike Data in a similar way to Blank Data quality.
It compares Spike Data with the data in Spike Reference to determine whether the concentrations
of analytes were within the range of mean ± 3SD of Spike Reference. If the amount of an analyte is
outside the range, QUICK flags the congener in its report to users.

2.7. Target Data Usability without Duplicate Data

If unexpected results (amounts detected or limits of detection (LOD)) are discovered for congeners,
Target Data usability is problematic, and human experts may need to re-extract and reanalyze the
target sample.
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Before evaluating data usability, Target Data are preprocessed using vendor software. If the ion
ratio is deemed acceptable via preprocessing, no change is made by QUICK. If the ion ratio fails,
however, the concentration is set to zero, thus elevating the LOD to an Estimated Maximum Possible
Concentration. At any point, a concentration that is greater than a Blank Reference is changed to zero
by QUICK, the corresponding LOD is elevated to the amount found. If the concentration of a congener
in Blank Data is larger than the blank limit from Blank Reference and the concentration in Target Data is
smaller than five times of the concentration in Blank Data, this congener is labeled as non-detect and the
LOD is elevated to the amount found [25]. If the concentration of the congener in Target Data is smaller
than the blank limit from Blank Reference, this congener is labeled as non-detect and the concentration
is set to zero by QUICK. For dioxin and furan, a congener is labeled as non-detect and its concentration
is set to zero if its relative retention time is not within the EPA limits [12] or if the signal-to-noise
ratio is less than five. Otherwise, no change is made to the concentration. Concentrations are set
to a value of zero rather than non-detect, to allow the calculation of lower bound and upper bound
concentrations/toxic equivalency (TEQ). A sum of all concentrations/ TEQs are used to calculate the
lower bound concentration/TEQ of a sample, whereas, if the concentration/TEQ is zero, the LOD is
used in the place of concentration/TEQ to calculate the upper bound concentration/TEQ. Therefore,
this gives a best-case scenario (lower bound) assuming zero found were truly zero found, while the
upper bound is a worst-case scenario that suggests the LOD was detected and included into the
calculation. If the upper bound (worst-case) is less than the level of interest, CUB, then the data are
useable, as shown in the first step of Figure 2. The CUB is a variable concentration that is dependent
upon the assignment and data quality objectives.
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The preprocessed concentrations and LODs are used to calculate data quality metrics, such as the
lower bound and upper bound, usability factor, and congener contribution. The usability factor (UF) is
calculated by Equation (1):

Usability Factor =
∑

i Upper Bound−
∑

i Lower Bound
2
∑

i Blank Limit +
∑

i Lower Bound
(1)

The TEQ is used to express the toxicity of a sample, and it is calculated by the product of the
concentration and toxic equivalency factor (TEF) [35] values of each congener. The PBDEs and marker
PCBs do not have related TEF values and are thus calculated with upper bound and lower bound
concentrations. Blank limit is calculated from Blank Reference data. It is either TEQ or concentration,
depending on the congener type.

The congener contribution (CC) is calculated based on the congeners that have concentrations of
zero and LOD > blank limit, using Equation (2):

Congener Contribution =

∑
i LOD∑

i Upper Bound
(2)



Int. J. Environ. Res. Public Health 2019, 16, 4203 6 of 15

Using the same strategy as human experts, QUICK determines the usability of Target Data as
depicted by the flowchart shown in Figure 2. The objectives for the usability factor (CUF) and congener
contribution (CCC) are variables chosen by experts depending upon the data quality objective of the
assignment and target samples being analyzed. If the usability factor shown in Figure 2 is less than
0.5, that means that congeners were detected with minimal elevated detection limits. If the usability
factor is greater than 0.5, then some elevated detection limits were reported for the sample. Again,
depending upon the assignment, CUF values between 0.5 and 0.65 are commonly used. The CCC

identifies the percentage of problem analytes if the usability factor is greater than 0.5. A CCC value of
0.1 is commonly used, indicating less than 10% of the congener contribution can come from elevated
detection limits. Table 1 shows examples of objective values for various matrices and analyte types
(for the matrix not listed in Table 1, the objective of sample upper bound is set to zero for all congener
types). As illustrated in Figure 2, if the sample upper bound is lower than its objective, CUB, target
data are usable. If not, the usability factor of Target Data is compared with the corresponding objective.
Target Data are usable when the usability factor is smaller than the objective; otherwise, QUICK checks
the congener contribution. If the congener contribution is smaller than the objective, Target Data are
usable; otherwise, Target Data are not usable. In other words, the Target Data must fail all three tests to
be considered unacceptable.

Table 1. Objectives of sample upper bound.

Congener Type TDS Sample Chicken Egg Sample Whole Milk Sample Unit

Dioxin/Furan 0.1500 0.1800 0.0298 TEQ pg/g
mono PCB 0.0030 0.0037 0.0005 TEQ pg/g

marker PCB 500 437 40.68 pg/g
PBDE 150 150 150 pg/g

TDS: total diet study; PCB: polychlorinated biphenyls; PBDE: polybrominated diphenyl ethers; TEQ: toxic
equivalency; pg: picogram; g: gram.

2.8. Target Data Usability with Duplicate Data

Duplicate Data are generated from a replicate aliquot of target sample, monthly at minimum.
It is performed to measure the precision of the test procedures and usability of Target Data. QUICK
calculates two relative percent difference (RPD) values to evaluate the quality of Duplicate Data and
usability of Target Data.

QUICK calculates the RPD based on the concentration for PBDE and marker PCB, using Equation (3):

RPDCon
i =

(
CDUP

i − CTAR
i

)(
CDUP

i + CTAR
i

)
/2
× 100% (3)

where RPDCon
i is the RPD based on concentration for congener i; CDUP

i is the concentration (pg/g) of
congener i in Duplicate Data; and CTAR

i is the concentration (pg/g) of congener i (pg/g) in Target Data.
For the remaining congeners, QUICK computes RPD based on TEQ for each congener, using

Equation (4):

RPDTEQ
i =

(
TEQDUP

i − TEQTAR
i

)(
TEQDUP

i + TEQTAR
i

)
/2
× 100% (4)

where RPDTEQ
i is the RPD based on TEQ for congener i; TEQDUP

i is the TEQ of congener i in Duplicate
Data; and TEQTAR

i is the TEQ of congener i in Target Data.
If more than five congeners (a parameter set by human experts) have RPD values larger than 25%,

the Target Data and Duplicate Data are considered low quality. QUICK reports all calculated RPD values,
marks the congeners with an RPD larger than 25%, and makes data-quality assessment conclusions.
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2.9. Implementation

QUICK was developed in Python 3.6 (http://python.org) (Python Software Foundation, Beaverton,
OR, USA). Some extra modules, such as tabular and PyPDF2, were added to the anaconda environment
to help input PDF files. The graphical user interface was built with the Qt5 framework bound via
PyQt5. The source code and Windows executable files are available upon request.

3. Results

After implementation, QUICK was integrated into the routine FDA POPs laboratory and tested
for several months. To evaluate the performance, human experts repeated the QA/QC process, and the
results were compared with those from QUICK. The testing results revealed that QUICK produced
very similar QA/QC results to those obtained from human experts. Furthermore, QUICK reports
more detailed QA/QC metrics and suggestions on QC action. With QUICK, the data evaluation time
for POPs detection using GC–MS drops dramatically. Testing results from QUICK are reported and
compared with the results obtained by human experts and are discussed below.

3.1. Standard Data Quality

During evaluation of Standard Data quality for the testing cases, QUICK yielded very similar QC
metric values to those generated by the human experts. Here, the standard sample P180629-CS3A
(tested on 29 June 2018 in FDA Dioxin lab) was taken as an example to show the performance of QUICK.
The data quality metrics of the standard sample P180629-CS3A calculated by QUICK are shown in
Figure 3, where the congener numbers on the x axis are given in the first column of Supplementary
Table S1. The standardization scaling transformed concentrations of the 40 congeners depicted on
the y axis are used for assessing quality of the Standard Data. The concentrations of all congeners
are within the allowed range (mean ± 3SD), indicating the instrument worked properly. Human
experts confirmed the Standard Data of sample P180629-CS3A are acceptable, as they found that all 40
congeners are within 3SD in the 40 control charts. As an example, the control chart for 13C-OCDD
used by the human experts is shown in Supplementary Figure S1. The concentration of 13C-OCDD is
within 2–3 SD from both QUICK (the red bar in Figure 3) and the human experts (the rightmost point
in Supplementary Figure S1), indicating that QUICK replicated the QC result of the human experts.

3.2. Blank Data Quality

Blank results play an important role in assuring that no contribution is made from the experimental
method and assist in assessing the usability of Target Data. To show the performance of QUICK,
the results of six Blank Data sets are presented here. QUICK sets concentrations to zero if the qualitative
criteria for signal to noise ratio, ion ratio, relative retention time are not met (detailed in the method
section). Upper bound concentrations of the 40 congeners detected in the 6 Blank samples from QUICK
are compared with those obtained from the human experts in Figure 4. The correlation between the
two results is very good with a correlation coefficient > 0.997. The relative difference in concentrations
between the human expert and QUICK was calculated for each of the 40 congeners, using Equation (5):

XQUICK − XHuman Expert

(XQUICK + XHuman Expert)/2
(5)

where XQUICK and XHuman Expert represent the concentrations for congener X from QUICK and human
experts, respectively. The relative difference values are <0.5% for all the congeners and samples,
indicating that QUICK can reproduce the QA results from human experts.

http://python.org
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Figure 4. Comparison between the upper bound from QUICK (y axis) and upper bound from the
human expert (x axis) for congeners of six Blank Data sets (solid red circles: data from Blank 18115;
solid green down triangles: data from Blank 18167; solid orange right triangles: data from Blank 18173;
solid purple left triangles: data from Blank 18177; solid black squares: data from Blank 18178, solid
blue diamonds: data from Blank 18181). If a data point is on the diagonal line, the concentrations from
QUICK and the human expert are the same for the congener.
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3.3. Spike Data Quality

In the assessment of Spike Data quality, QUICK compares the concentration of each congener
with Spike Reference. Spike XS180905 is shown as an example to demonstrate quality assessment
result for Spike Data using QUICK. The concentrations of the 40 congeners in standardization scale
were plotted in Figure 5. The solid lines represent the region that meets quality requirement that is the
mean ± 3SD, determined by Spike Reference. There are 13 congeners whose concentrations are out of
acceptance criteria. QUICK identifies “failed” congeners with a pop-up window to warn that data
quality of Spike is out of control. Using control charts, the human expert confirmed the Spike Data for
sample XS180905 are not of good quality because the control charts for the same 13 congeners showed
their concentrations are outside of acceptable limits. For example, control chart results for congener
1234789-HpCDF used by the human expert is presented in Supplementary Figure S2. Comparing
concentrations of this congener from QUICK (red bar in Figure 5) and human expert (the rightmost
data point in Figure S2) indicates that QUICK yielded the similar quality metrics and the same quality
assessment as the human expert, revealing the software kit is reliable for Spike Data quality assessment.
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Figure 5. Concentrations of congeners in Spike Data. The differences in concentrations of the 40 congeners
between Spike Data and corresponding mean concentrations in Spike Reference are transformed by
standardization scaling to the standard deviations calculated from Spike Reference and are plotted at the
y axis. The x axis indicates the congener numbers that are given in Supplementary Table S1. The dashed
lines give the region within two standard deviations, and the solid lines depict the region within three
standard deviations. The red bar represents the scaled concentration of congener 1234789-HpCDF.

3.4. Target Data Usability without Duplicate Data

Three quality metrics (upper bound, usability factor, and congener contribution) are calculated
for Target Data and compared to the objectives of quality metrics in QUICK. The 69 Target Data
sets from the most recently tested 26 samples were used to show Target Data usability assessment
in QUICK. The quality metrics (sample upper bound, usability factor, and congener contribution)
calculated by QUICK, using Equations (1) and (2) for the 69 Target Data sets are compared with
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their objectives. The results are plotted in Figure 6 as differences between quality metrics and their
objectives for data upper bound (red bars), usability factor (blue bars), and congener contribution
(green bars). The data usability decision flow shown in Figure 2 indicates that, when all three quality
metric values of a Target Data set are larger than their objectives, the Target Data are considered
problematic; otherwise, the Target Data are assessed as high quality. None of these 69 Target Data sets
had all three quality metrics values larger than the corresponding objectives. QUICK reported them as
high quality. The human experts assessed the same 69 Target data sets and concluded all data were
acceptable, indicating QUICK is a reliable tool for the assessment of Target Data usability.Int. J. Environ. Res. Public Health 2019, 16, x 11 of 16 
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sets. The x axis gives the order of the 69 Target Data sets. For the same dataset, if all three bars are
above zero, the dataset is not usable; otherwise, it is assessed as usable. #: Data Set.

3.5. Target Data Usability with Duplicate Data

Duplicate samples are tested monthly to evaluate precision. In evaluation of Target Data usability
with Duplicate Data, relative percent difference (RPD) is used to measure consistency between Target
Data and Duplicate Data provided from the same sample. The consistency is used as a quality metric
of Target Data. QUICK uses the criterion of RPD less than 25% to determine the usability of Target
Data. Sample S01 is used to demonstrate the performance of QUICK. Data usability for the Target Data
and the Duplicate Data were evaluated separately, using the data quality decision flow in Figure 2.
The result shown in Figure 7 indicates that both the Target Data and the Duplicate Data are usable
regarding dioxin/furan, mono PCB, marker PCB, and PBDE data. However, the comparison between
the Target Data and the Duplicate Data found they are not consistent in terms of RPD criteria. Figure 8
shows that 25 of the 42 congeners (including dioxins/furans, PCBs and PBDEs) for Sample S01 have
unacceptable RPD values, greater than 25%. The elevated RPDs indicate that duplicate data need
further investigation by human experts to resolve the difference. The RPD values of individual
congeners calculated by the human experts, shown on the x axis in Figure 8, and the QUICK results,
shown on y axis in Figure 8, demonstrate acceptable agreement between the two methods.
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Figure 8. Comparison of relative percent difference (RPD) between human expert (x axis) and QUICK
(y axis) for different congeners. Each circle represents a congener. If a circle is located on the solid
diagonal line, the congener has the same RPD from QUICK and the human expert. The dashed lines
represent the threshold at 0.25 and divide the plot into two regions. The bottom left region has 17
congeners that meet the criterion of RPD < 0.5, while the upper right region contains 25 congners that
do not meet the criterion.
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4. Discussion

Although it is a very complex and time-consuming process, quality control in POPs detection at
the laboratory level is critical in determining instrument performance and data usability. To improve
efficiency, we developed QUICK to automate and execute the FDA’s quality control protocol. Results
obtained from QUICK were consistent with results from expert analysts. The tests confirmed that QUICK
gave equivalent results to the human reviews and provided reliable QA/QC results. Furthermore,
QUICK reduces the data evaluation time from three human-expert hours to less than 10 minutes for
a sample batch (typically six samples). QUICK greatly speeds up evaluation of the quality control
procedure. In the development of POPs detection in labs, much attention is focused on improving
the preparation and extraction methods and less attention is given to improving data evaluation.
This software greatly improves the efficiency of reporting POPs in human and animal foods. QUICK
allows analysts to work on more samples and provides reliable QA/QC results. The introduction
of QUICK to the laboratory dramatically reduced the time for QA/QC of GC–MS data for POPs
detection, improving FDA surveillance of POPs in human and animal food, thus, better protecting the
public health.

The data input for QUICK are produced from the vendor’s software system; thus, all QA/QC
results from QUICK are based on the original, preprocessed data from the GC–MS systems. The QA/QC
issues for generation of the original data are not within the scope of the current version of QUICK.
Our results for data usability with Duplicate Data show that both Target Data and Duplicate Data
would be in good quality if evaluated separately (Figure 7). However, comparisons of the two data
sets show that they are not consistent for most of the congeners (Figure 8). Therefore, the Target Data,
Duplicate Data, or both are problematic. The current version of QUICK cannot determine the cause of
the problem, because the original data may have quality issues in generation that are not detectable.
Current practice using Duplicate Data periodically not only increases the cost but also the time required
for POPs detection. However, the Duplicate Data are an essential portion of thoroughly assessing the
quality system, and our results warrant more frequent analysis of duplicate QC samples. The QA/QC
generation of the original GC–MS data could help the downstream data quality assessment, thus
deserving further investigation for the next version of QUICK.

QUICK does not have limits on number of samples that can be processed in a batch. It can
simultaneously assess data from as many samples as needed. This means that once GC–MS data are
obtained and all QA/QC parameters are set, QUICK can evaluate the usability of all data at one time,
in a single, run without user intervention. This feature is very useful since it reduces the possible errors
in data entry and saves analysts time.

Much of the QA/QC for POPs detection (as well as many other programs) are based upon samples,
matrices, and instrumentation. For example, in the evaluation of data usability, the values of three
quality metric objectives, upper bound objective, usability factor objective and congener contribution
objective are dependent upon the matrix and assignment of the sample. With QUICK, users input the
expert-determined parameters for the sample to conduct the QA/QC process. Therefore, the current
version of QUICK is not a 100% automated process. Integration of machine-learning algorithms with
huge amounts of data generated in the laboratories in the future may allow QUICK to automatically
recognize the type of sample and matrix and determine QA/QC parameters, further improving the
efficiency for POPs detection.

5. Conclusions

To conclude, QUICK has improved the efficiency of the analytical process by reducing the need
for user intervention while simultaneously recognizing a 95% decrease in data reduction time, from
3 hours to 10 minutes. There is a total of 75 dioxins, 135 furans, 209 PCBs, and 209 PBDEs. Only 7
dioxins, 10 furans, 18 PCBs, and 7 PBDEs are targeted for detection at the FDA POPs laboratory using
GC–MS because of their toxicological significance. The current version of QUICK was developed
specifically to facilitate detection of these toxicologically significant POPs; however, it can be modified
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to automate the QA/QC process of using GC–MS and liquid chromatography–MS for the detection of
other environmental, food, and feed contaminants, like polyaromatic hydrocarbons and perfluoroalkyl
substances. The complexity of environmental matrices also requires comprehensive QA/QC procedures
to ensure the reliability of the data. QUICK can help automate this process with valid QA/QC criteria.
In addition to human and animal food matrices, the incorporation of different POPs and QA/QC
procedures will make QUICK a powerful tool for detection of POPs in the environment.

Supplementary Materials: The following are available online at http://www.mdpi.com/1660-4601/16/21/4203/s1,
Table S1: Congener Number and its name. Figure S1: Trend plot for 13C-OCDD in Standard Data. Figure S2:
Trend plot for 1234789-HpCDF in Spike Data.

Author Contributions: H.H., J.A., R.F., and W.G. conceived of and designed the study; W.G. developed the
software; J.A., M.M. (Morgan Moore), J.B., and M.M. (Michelle McLain) curated the experimental data; W.G., J.A.,
M.M. (Morgan Moore), J.B., M.M. (Michelle McLain), S.S., W.Z., L.A.B., and A.A. contributed to the validation;
W.G. and H.H. wrote the first draft of the manuscript. All authors contributed to writing the manuscript and
approved the manuscript.

Funding: This research received no external funding.

Acknowledgments: This research was supported in part by an appointment to the Research Participation Program
at the National Center for Toxicological Research (Wenjing Guo), administered by the Oak Ridge Institute for
Science and Education through an interagency agreement between the US Department of Energy and the US Food
and Drug Administration.

Conflicts of Interest: The authors declare no conflicts of interest.

Disclaimer: The views presented in this article do not necessarily reflect those of the US Food and Drug
Administration.

References

1. Ashraf, M.A. Persistent organic pollutants (POPs): A global issue, a global challenge. Environ. Sci. Pollut.
Res. Int. 2017, 24, 4223–4227. [CrossRef]

2. Gaur, N.; Narasimhulu, K.; PydiSetty, Y. Recent advances in the bio-remediation of persistent organic
pollutants and its effect on environment. J. Clean Prod. 2018, 198, 1602–1631. [CrossRef]

3. El-Shahawi, M.S.; Hamza, A.; Bashammakh, A.S.; Al-Saggaf, W.T. An overview on the accumulation,
distribution, transformations, toxicity and analytical methods for the monitoring of persistent organic
pollutants. Talanta 2010, 80, 1587–1597. [CrossRef]

4. Jones, K.C.; de Voogt, P. Persistent organic pollutants (POPs): State of the science. Environ. Pollut.
1999, 100, 209–221. [CrossRef]

5. Beyer, A.; Mackay, D.; Matthies, M.; Wania, F.; Webster, E. Assessing long-range transport potential of
persistent organic pollutants. Environ. Sci. Technol. 2000, 34, 699–703. [CrossRef]

6. Kelly, B.C.; Ikonomou, M.G.; Blair, J.D.; Morin, A.E.; Gobas, F.A. Food web-specific biomagnification of
persistent organic pollutants. Science 2007, 317, 236–239. [CrossRef]

7. Alharbi, O.M.L.; Basheer, A.A.; Khattab, R.A.; Ali, I. Health and environmental effects of persistent organic
pollutants. J. Mol. Liq. 2018, 263, 442–453. [CrossRef]

8. Wilson, N.K.; Chuang, J.C.; Lyu, C. Levels of persistent organic pollutants in several child day care centers.
J. Expo. Anal. Environ. Epidemiol. 2001, 11, 449–458. [CrossRef] [PubMed]

9. Tang, H.P.-O. Recent development in analysis of persistent organic pollutants under the Stockholm Convention.
Tractrends Anal. Chem. 2013, 45, 48–66. [CrossRef]

10. Xu, W.; Wang, X.; Cai, Z. Analytical chemistry of the persistent organic pollutants identified in the Stockholm
Convention: A review. Anal. Chim. Acta 2013, 790, 1–13. [CrossRef]

11. Vallack, H.W.; Bakker, D.J.; Brandt, I.; Brostrom-Lunden, E.; Brouwer, A.; Bull, K.R.; Gough, C.; Guardans, R.;
Holoubek, I.; Jansson, B.; et al. Controlling persistent organic pollutants—What next? Environ. Toxicol.
Pharmacol. 1998, 6, 143–175. [CrossRef]

12. EPA. EPA Method 1613 Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution HRGC/HRMS; US
EPA Office of Water: Washington, DC, USA, 1994.

13. EPA. EPA Method 1668, Revision A: Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue by
HRGC/HRMS; US EPA Office of Water: Washington, DC, USA, 1999.

http://www.mdpi.com/1660-4601/16/21/4203/s1
http://dx.doi.org/10.1007/s11356-015-5225-9
http://dx.doi.org/10.1016/j.jclepro.2018.07.076
http://dx.doi.org/10.1016/j.talanta.2009.09.055
http://dx.doi.org/10.1016/S0269-7491(99)00098-6
http://dx.doi.org/10.1021/es990207w
http://dx.doi.org/10.1126/science.1138275
http://dx.doi.org/10.1016/j.molliq.2018.05.029
http://dx.doi.org/10.1038/sj.jea.7500190
http://www.ncbi.nlm.nih.gov/pubmed/11791162
http://dx.doi.org/10.1016/j.trac.2013.01.005
http://dx.doi.org/10.1016/j.aca.2013.04.026
http://dx.doi.org/10.1016/S1382-6689(98)00036-2


Int. J. Environ. Res. Public Health 2019, 16, 4203 14 of 15

14. EPA. EPA Method 1614A: Brominated Diphenyl Ethers in Water, Soil, Sediment, and Tissue by HRGC/HRMS; US
EPA Office of Water: Washington, DC, USA, 2010.

15. EU. Commission Regulation (EU) No 709/2014 of 20 June 2014 amending Regulation (EC) No 152/2009.
Offic. J. Eur. Commun. 2014, 27, 1–18.

16. Ten Dam, G.; Pussente, I.C.; Scholl, G.; Eppe, G.; Schaechtele, A.; van Leeuwen, S. The performance of
atmospheric pressure gas chromatography—Tandem mass spectrometry compared to gas chromatography—
High resolution mass spectrometry for the analysis of polychlorinated dioxins and polychlorinated biphenyls
in food and feed samples. J. Chromatogr. A 2016, 1477, 76–90. [CrossRef] [PubMed]

17. Portoles, T.; Sales, C.; Abalos, M.; Saulo, J.; Abad, E. Evaluation of the capabilities of atmospheric pressure
chemical ionization source coupled to tandem mass spectrometry for the determination of dioxin-like
polychlorobiphenyls in complex-matrix food samples. Anal. Chim. Acta 2016, 937, 96–105. [CrossRef]
[PubMed]

18. Garcia-Bermejo, A.; Abalos, M.; Saulo, J.; Abad, E.; Gonzalez, M.J.; Gomara, B. Triple quadrupole tandem
mass spectrometry: A real alternative to high resolution magnetic sector instrument for the analysis of
polychlorinated dibenzo-p-dioxins, furans and dioxin-like polychlorinated biphenyls. Anal. Chim. Acta
2015, 889, 156–165. [CrossRef]

19. Ochiai, N.; Ieda, T.; Sasamoto, K.; Takazawa, Y.; Hashimoto, S.; Fushimi, A.; Tanabe, K. Stir bar sorptive
extraction and comprehensive two-dimensional gas chromatography coupled to high-resolution time-of-flight
mass spectrometry for ultra-trace analysis of organochlorine pesticides in river water. J. Chromatogr. A
2011, 1218, 6851–6860. [CrossRef]

20. Hayward, D.G.; Archer, J.C.; Andrews, S.; Fairchild, R.D.; Gentry, J.; Jenkins, R.; McLain, M.; Nasini, U.;
Shojaee, S. Application of a high-resolution quadrupole/orbital trapping mass spectrometer coupled to a gas
chromatograph for the determination of persistent organic pollutants in cow’s and human milk. J. Agric.
Food. Chem. 2018, 66, 11823–11829. [CrossRef]

21. Dimpe, K.M.; Nomngongo, P.N. Current sample preparation methodologies for analysis of emerging
pollutants in different environmental matrices. Tractrends Anal. Chem. 2016, 82, 199–207. [CrossRef]

22. Capriotti, A.L.; Cavaliere, C.; Colapicchioni, V.; Piovesana, S.; Samperi, R.; Lagana, A. Analytical strategies
based on chromatography-mass spectrometry for the determination of estrogen-mimicking compounds in
food. J. Chromatogr. A 2013, 1313, 62–77. [CrossRef]

23. Farré, M.; Barceló, D.; Barceló, D. Analysis of emerging contaminants in food. Tractrends Anal. Chem.
2013, 43, 240–253. [CrossRef]

24. Archer, J.C.; Jenkins, R.G. Automated milk fat extraction for the analyses of persistent organic pollutants.
J. Chromatogr. B 2017, 1041, 70–76. [CrossRef] [PubMed]

25. Kim Halbert, M.; Archer, J.C. Dioxin and furan contamination of deodorizer distillates and natural vitamin E
supplements. J. Food Compos. Anal. 2007, 20, 506–514. [CrossRef]

26. Focant, J.F.; Pirard, C.; De Pauw, E. Automated sample preparation-fractionation for the measurement of
dioxins and related compounds in biological matrices: A review. Talanta 2004, 63, 1101–1113. [CrossRef]
[PubMed]

27. Ortiz, X.; Marti, R.; Montana, M.J.; Gasser, M.; Margarit, L.; Broto, F.; Diaz-Ferrero, J. Fractionation of
persistent organic pollutants in fish oil by high-performance liquid chromatography on a 2-(1-pyrenyl) ethyl
silica column. Anal. Bioanal. Chem. 2010, 398, 985–994. [CrossRef]

28. Archer, J.C.; Moore, M.; Guo, W.; Bruce, J.; McLain, M.; Fairchild, R.; Hong, H. Quality control algorithm for
determining data acceptability. Organohalogen Compounds 2018, 80, 269–272.

29. Yunker, L.P.E.; Donnecke, S.; Ting, M.; Yeung, D.; McIndoe, J.S. PythoMS: A Python framework to simplify and
assist in the processing and interpretation of mass spectrometric data. J. Chem. Inf. Model. 2019, 59, 1295–1300.
[CrossRef]

30. Röst, H.L.; Schmitt, U.; Aebersold, R.; Malmström, L. pyOpenMS: A Python-based interface to the OpenMS
mass-spectrometry algorithm library. Proteomics 2014, 14, 74–77. [CrossRef]

31. O’Callaghan, S.; De Souza, D.P.; Isaac, A.; Wang, Q.; Hodkinson, L.; Olshansky, M.; Erwin, T.; Appelbe, B.;
Tull, D.L.; Roessner, U.; et al. PyMS: A Python toolkit for processing of gas chromatography-mass spectrometry
(GC-MS) data. Application and comparative study of selected tools. BMC Bioinform. 2012, 13, 115. [CrossRef]

32. Wright, C. Analytical methods for monitoring contaminants in food—An industrial perspective.
J. Chromatogr. A 2009, 1216, 316–319. [CrossRef]

http://dx.doi.org/10.1016/j.chroma.2016.11.035
http://www.ncbi.nlm.nih.gov/pubmed/27894695
http://dx.doi.org/10.1016/j.aca.2016.06.038
http://www.ncbi.nlm.nih.gov/pubmed/27590550
http://dx.doi.org/10.1016/j.aca.2015.07.039
http://dx.doi.org/10.1016/j.chroma.2011.08.027
http://dx.doi.org/10.1021/acs.jafc.8b03721
http://dx.doi.org/10.1016/j.trac.2016.05.023
http://dx.doi.org/10.1016/j.chroma.2013.06.054
http://dx.doi.org/10.1016/j.trac.2012.12.003
http://dx.doi.org/10.1016/j.jchromb.2016.12.005
http://www.ncbi.nlm.nih.gov/pubmed/28012381
http://dx.doi.org/10.1016/j.jfca.2007.02.010
http://dx.doi.org/10.1016/j.talanta.2004.05.025
http://www.ncbi.nlm.nih.gov/pubmed/18969540
http://dx.doi.org/10.1007/s00216-010-3941-z
http://dx.doi.org/10.1021/acs.jcim.9b00055
http://dx.doi.org/10.1002/pmic.201300246
http://dx.doi.org/10.1186/1471-2105-13-115
http://dx.doi.org/10.1016/j.chroma.2008.10.055


Int. J. Environ. Res. Public Health 2019, 16, 4203 15 of 15

33. Camino-Sanchez, F.J.; Zafra-Gomez, A.; Perez-Trujillo, J.P.; Conde-Gonzalez, J.E.; Marques, J.C.; Vilchez, J.L.
Validation of a GC-MS/MS method for simultaneous determination of 86 persistent organic pollutants in
marine sediments by pressurized liquid extraction followed by stir bar sorptive extraction. Chemosphere
2011, 84, 869–881. [CrossRef]

34. Focant, J.-F.; Eppe, G.; Scippo, M.-L.; Massart, A.-C.; Pirard, C.; Maghuin-Rogister, G.; Pauw, E.D.
Comprehensive two-dimensional gas chromatography with isotope dilution time-of-flight mass spectrometry
for the measurement of dioxins and polychlorinated biphenyls in foodstuffs. J. Chromatogr. A 2005, 1086, 45–60.
[CrossRef] [PubMed]

35. Van den Berg, M.; Birnbaum, L.S.; Denison, M.; De Vito, M.; Farland, W.; Feeley, M.; Fiedler, H.; Hakansson, H.;
Hanberg, A.; Haws, L.; et al. The 2005 World Health Organization reevaluation of human and Mammalian
toxic equivalency factors for dioxins and dioxin-like compounds. Toxicol. Sci. 2006, 93, 223–241. [CrossRef]
[PubMed]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.chemosphere.2011.06.019
http://dx.doi.org/10.1016/j.chroma.2005.05.090
http://www.ncbi.nlm.nih.gov/pubmed/16130655
http://dx.doi.org/10.1093/toxsci/kfl055
http://www.ncbi.nlm.nih.gov/pubmed/16829543
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Method 
	Study Design and Overall Workflow of QUICK 
	QC Samples 
	Reference Data 
	Standard Data Quality 
	Blank Data Quality 
	Spike Data Quality 
	Target Data Usability without Duplicate Data 
	Target Data Usability with Duplicate Data 
	Implementation 

	Results 
	Standard Data Quality 
	Blank Data Quality 
	Spike Data Quality 
	Target Data Usability without Duplicate Data 
	Target Data Usability with Duplicate Data 

	Discussion 
	Conclusions 
	References

