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Abstract
Deforestation and conversion of native habitats continues to be the leading driver of biodi-

versity and ecosystem service loss. A number of conservation policies and programs are

implemented—from protected areas to payments for ecosystem services (PES)—to deter

these losses. Currently, empirical evidence on whether these approaches stop or slow land

cover change is lacking, but there is increasing interest in conducting rigorous, counterfac-

tual impact evaluations, especially for many new conservation approaches, such as PES

and REDD, which emphasize additionality. In addition, several new, globally available and

free high-resolution remote sensing datasets have increased the ease of carrying out an

impact evaluation on land cover change outcomes. While the number of conservation eval-

uations utilizing ‘matching’ to construct a valid control group is increasing, the majority of

these studies use simple differences in means or linear cross-sectional regression to esti-

mate the impact of the conservation program using this matched sample, with relatively few

utilizing fixed effects panel methods—an alternative estimation method that relies on tempo-

ral variation in the data. In this paper we compare the advantages and limitations of (1)

matching to construct the control group combined with differences in means and cross-sec-

tional regression, which control for observable forms of bias in program evaluation, to (2)

fixed effects panel methods, which control for observable and time-invariant unobservable

forms of bias, with and without matching to create the control group. We then use these four

approaches to estimate forest cover outcomes for two conservation programs: a PES pro-

gram in Northeastern Ecuador and strict protected areas in European Russia. In the Russia

case we find statistically significant differences across estimators—due to the presence of

unobservable bias—that lead to differences in conclusions about effectiveness. The Ecua-

dor case illustrates that if time-invariant unobservables are not present, matching combined

with differences in means or cross-sectional regression leads to similar estimates of pro-

gram effectiveness as matching combined with fixed effects panel regression. These results

highlight the importance of considering observable and unobservable forms of bias and the
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methodological assumptions across estimators when designing an impact evaluation of

conservation programs.

Introduction
Land cover change continues to be a leading cause of biodiversity and ecosystem service loss.
There is relatively weak empirical evidence on how well conservation policies and programs—
such as protected areas or payments for ecosystem services (PES)—slow or halt these land
cover changes. However, the conservation field has started to emphasize the need for more rig-
orous evaluation of conservation approaches [1,2]. Evaluation is fairly common in the medical
sciences, and increasingly in rural development and agricultural programs, and the attention in
conservation is especially relevant for the new wave of conditional, incentive-based approaches
that fall under the term PES, as well as the UN’s proposed Reducing Emissions from Deforesta-
tion and Degradation (REDD) program, which both emphasize additionality of land cover out-
comes. While there are alternative approaches to evaluation, the use of quasi-experimental
designs that establish a counterfactual outcome in order to evaluate effectiveness of a program
or policy have arguably become some of the most promoted methods [1,3,4].

Quasi-experimental approaches are designed to correct for the fact that conservation pro-
grams are not randomly allocated across the landscape. This non-random allocation of where
a conservation program is targeted and who enrolls in a conservation program influences the
estimate of changes in land cover outcomes; this means that conventional methods of com-
paring changes, such as simple linear cross-sectional regression or differences in means tests,
can be biased [5]. A clear example of this non-random targeting is illustrated by the place-
ment of protected areas: most protected areas are located in places unsuitable for other eco-
nomic activities, so much so that they are often given the nickname ‘rock and ice’ [6]. This
remoteness reduces the impact that most protected areas have on preventing deforestation
because they are much less likely to have forest cover change in the first place; of course, this
does not account for any future benefits that protecting that forest today might have. One of
the first studies to highlight the magnitude of the bias that arises when the non-random place-
ment of conservation approaches is ignored was a study of the impact of Costa Rica’s pro-
tected areas on deforestation; the researchers found that cross-sectional regressions that
ignore the non-random placement of protected areas overestimated the impact of parks by as
much as 65% [7].

To counter these biases, quasi-experimental methods rely on the construction of a valid
‘control’ group to estimate the impact of the conservation program or policy (the ‘treatment’),
where the control group is made up of observations that did not receive the conservation pro-
gram. While some quasi-experimental designs utilize program rules to create the control group
—for example, regression discontinuity designs and instrumental variables—the more com-
mon approaches in the conservation literature are matching and fixed effects panel methods.
Matching is a statistical approach that constructs a counterfactual group based on observable
variables thought to influence receiving the treatment and the outcome of interest [3]. The
researcher constructs a control group that is as similar as possible to the treatment group—sim-
ilarity is based on what data can be collected and is tested by comparing average values of
covariates. With the matched sample of treatment and control observations, the researcher can
then estimate the impact of the program using a variety of estimators, but the most common
methods include a simple t-test on difference in means, or cross-sectional regression. Since the
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evaluation of protected area effectiveness in Costa Rica [7], the combination of matching with
difference in means or cross-sectional regression has been used in a number of conservation
evaluations of protected area effectiveness [8–28], and less extensively, in evaluations of PES,
decentralization, land tenure, land zoning, and integrated conservation and development pro-
grams on land cover outcomes [28–38]. Reviews of conservation evaluations that use matching
can be found in [39–41].

A second quasi-experimental approach to impact evaluation is to use fixed effects panel
methods. This approach assumes that where a conservation program is targeted or who enrolls
in it, as well as the outcome of interest, is based on observable and unobservable variables [3].
Panel data—data with multiple years of observation on the same cross-sectional units—must
be available before and after the conservation program is implemented for the method to be
used. By collecting data over time on the same observation, any time-invariant unobservable
covariate is controlled through the use of fixed effects for each cross-sectional unit; the ability
to control for limited forms of unobservable bias is the main advantage over cross-sectional
methods. Fixed effects panel methods are a generalization of the DID method in program eval-
uation, where the latter use aggregate data [42]. In program evaluation, this method is some-
times referred to as a ‘before-after-control-intervention’ design. Fixed effects estimation, or
DID, can be used with the full sample of treatment and control observations, or after treatment
observations are ‘matched’ to a more similar control group.

In addition to controlling for time-invariant unobservables, fixed effects can be advanta-
geous to estimation if data on observable time-invariant covariates are difficult to obtain. For
example, it can be difficult to find local datasets on soil quality or rainfall that are of the same
resolution as land cover data—even though coarser globally available datasets may exit. If these
characteristics influence the likelihood of a conservation program or land cover change out-
come, then in a fixed effects panel model they would be implicitly controlled for through the
fixed effects for each cross-sectional unit. Parcel fixed effects capture all time-invariant parcel
factors—observed and unobserved—that affect land cover change. In a cross-sectional study,
all unobserved time-invariant parcel variables would be omitted from estimation. Similarly, if
data correspond to a specific landowner, the fixed effects would control for any time-invariant
household motivations to participate in the conservation program or to deforest the land. If
these unobservable variables are not important (i.e. correlated with conservation variables),
then cross-sectional and fixed effects methods will provide similar estimates of the impact of
conservation programs on land cover outcomes. But, if they are important, then cross-sectional
methods will lead to biased results, and fixed effects will move us closer to the ‘true’ estimate of
impact. A comparison of experimental with quasi-experimental impact estimates for a water
conservation program found that combining matching with fixed effects panel regression
comes closest to replicating experimental results [43], suggesting that this might be the most
robust way to estimate the impact of a conservation program when randomization is not possi-
ble. Yet, only a handful of studies that we know of use matching combined with DID or fixed
effects panel methods to estimate the impacts of conservation programs on land cover out-
comes [27,28,30,31,33,34].

The purpose of this paper is to highlight the potential of using fixed effects panel methods
to control for time-invariant unobservables in impact evaluations of conservation programs on
land cover change outcomes. There are a number of good overview papers on using quasi-
experimental impact evaluation designs and the use of matching to construct a valid control
group in the conservation field [1,3,44–46], but none of these emphasize the use of fixed effects
methods or compare and contrast panel methods with cross-sectional analysis. Our focus on
how to use fixed effects to evaluate conservation programs is particularly important given the
development of new global panel datasets on forest loss; for example, the development of a
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global database that tracks forest status on 30-meter by 30-meter pixels annually beginning in
2000 [47]. These data would provide access to the outcome variable of interest in many conser-
vation evaluations—land cover change. Paired with the fact that many places where we want to
do impact evaluations are data constrained, the use of fixed effects methods could be a rela-
tively easy and more robust method of conducting an evaluation of the impact of conservation
policies and programs on land cover change outcomes versus cross-sectional methods, since
they can control for observable and time-invariant unobservable sources of bias.

After briefly reviewing quasi-experimental impact evaluation methods in Section 2, we com-
pare impact estimates using matching to construct a control group combined with difference
in means and cross-sectional regression to fixed effects regression with and without matching
to create the control group for two conservation programs: a national PES program in North-
eastern Ecuador and strict protected areas in European Russia. We discuss whether these meth-
ods lead to differences in statistical significance or the magnitude of the conservation outcome
—conclusions that affect the policy implications of these conservation programs on land cover
change. Our overall goal is to provide additional guidance on how the choice of quasi-experi-
mental design can affect estimated program outcomes and suggest when attention to observ-
able versus unobservable variables is important in estimating treatment effects.

Quasi-Experimental Impact Evaluation Methods

Matching
Amajor emphasis in the conservation evaluation literature has been the non-random place-
ment of many conservation interventions, which lead to selection bias in estimation [44]. As a
result, the use of matching to construct a control group that is ‘as similar as possible’ to the
observations that receive the conservation program has been emphasized. Using observable
data, treatment observations are ‘matched’ to their most similar control observations and then
this new sample is used to estimate the effect of the conservation policy or program on the land
cover outcome [5,44,48–50]. The process of finding the most similar control observations and
then estimating the treatment effect with this new sample reduces the bias present in estimating
the treatment effect using all the possible control observations, many of which are very differ-
ent from the places or households that receive conservation programs. There are a number of
matching algorithms and estimators available [51–53]. Some of the more popular matching
algorithms include propensity score matching and covariate matching. In propensity score
matching, the researcher estimates a probability of receiving the treatment for each observa-
tion, and then matches units in the treatment group to those outside the program that have the
closest propensity score [54]. In covariate matching, treatment observations are matched to
those that did not receive the program based on individual covariates using a multivariate dis-
tance metric [53]. Many matching algorithms can be implemented using pre-programmed
codes in Stata or R. The new, matched, sample of treatment and control observations can then
be used to calculate the treatment effect with a variety of estimators. The simplest method
would be to take the average of the differences in means across the matched treatment and con-
trol observations.

Combining Matching with Cross-Sectional Regression
It is highly recommended that matching to produce the control group be combined with post-
matching cross-sectional regression to estimate the treatment effect [5,50,54]. This is because,
in many cases, the matching algorithm will not have balanced all of the observable covariates
across treatment and control observations, and so additional balancing is necessary. Some
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estimators have built-in bias-adjustment options that automatically implement a post-match-
ing cross-sectional adjustment [53].

The major assumption made when using a difference in means test or cross-sectional
regression after matching the sample is that there are no unobserved characteristics associated
both with potential outcomes and treatment that could bias the estimation; this is known as the
unconfoundedness assumption [5]. While there are options to test the sensitivity of results
from matching estimators to hidden bias—through tests such as Rosenbuam bounds—these
tests cannot explicitly tell whether hidden bias is actually present or not [54].

Fixed Effects Panel Regression
As applied to the land-cover change setting, fixed effects panel regression uses repeated tempo-
ral observations of land cover change on the same plot or parcel of land. Rather than relying on
the statistical construction of a control group as in matching, panel techniques use the tempo-
ral dynamics of the data—observing the treatment and control observations before and after
treatment—along with cross-sectional variation in treatment status across plots to construct
the counterfactual outcomes. The key dependent variable indicates land cover change (LCC)
for plot i in time t, denoted LCCit. For example, suppose plot i was deforested in time t = 4 over
a 5-year panel. Then, LCCi4 = 1 while LCCit = 0 for t = 1, 2, 3, and the plot is dropped in t = 5
since the parcel is no longer forested (assuming binary measure of forest/non-forest). A generic
fixed effect panel regression equation is constructed as follows:

LCCit ¼ aþ b1Xit þ b2Gi þ b3Cit þ b4Yt þ ai þ εit; ð1Þ

Where Xit denotes time-varying covariates of land cover change for plot i (e.g. distance to forest
edge), Gi denotes time-invariant covariates of land cover change (e.g. slope), Cit indicates the
time-varying conservation status of plot i, Yt indicates time fixed effects, and ai + εit is the com-
posite unobservable. In panel data analyses, the model unobservable is decomposed into a
time-invariant component (ai) and a time-varying component (εit). The primary goal of esti-
mation is to obtain a consistent estimate of the treatment effect of conservation, β3.

If all observable covariates (Xit, Gi, Cit) are independent of the composite unobservable (ai +
εit), then cross-sectional regression will generate a consistent estimate of β3. Omitted variable
bias arises most directly if conservation status Cit is correlated with (ai + εit). For example, sup-
pose conservation is targeted at forest types with low timber value but data do not exist on for-
est type. Then since forest types are likely time-invariant over reasonably short panels, and
since forest types of low timber value are less likely to get harvested than types of high timber
value, Cit would be correlated with ai and cross-sectional estimation of β3 would be biased. The
conservation status of plot i is confounded by the unobserved type of forest stand that exists on
plot i. If Cit is not correlated with (ai + εit), then omitted variable bias could still arise indirectly
if either of the observable covariates (Xit, Gi) are correlated with both the composite unobserv-
able (ai + εit) and with the primary conservation treatment variable Cit.

Estimating the time-invariant component (ai) in Eq 1 as a fixed effect aims to reduce the
degree of omitted variable bias described in the previous paragraph by exploiting temporal var-
iation in conservation status Cit within plots of land. In particular, fixed effects estimation
breaks any correlation between observable time-varying variables (Xit, Cit) and the time-invari-
ant unobservable (ai) by transforming the data in two steps. First, for each plot i, average Eq
(1) over time:

LCCi ¼ aþ b1Xi þ b2Gi þ b3Ci þ b4
�Y t þ ai þ εi ; ð2Þ

where LCCi ¼ T�1ST
t¼1LCCit , and so on for the other variables. Notice that the time-average of
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Gi and ai remains fixed since these variables are time-invariant. Second, subtracting Eq (2)
from Eq (1) yields the classic “within” estimator in panel regression:

LCCit � LCCi ¼ b1ðXit � XiÞ þ b3ðCit � CiÞ þ b4ðYt � �Y tÞ þ ðεit � εiÞ: ð3Þ

Notice two main components of Eq (3). First, the parameters on the time-varying covariates
(β1, β3, β4) are preserved in the differencing, and so least-squares regression of the “within-
transformed” data in Eq (3) enables estimation of the primary treatment effect β3. Second, the
time-invariant observable (Gi) and the time-invariant unobservable (ai) are differenced out of
Eq (3), and so consistent estimation on the within-transformed data in Eq (3) does not require
the researcher to assume any independence between the time-varying covariates (Xit, Cit) and
the time-invariant unobservable (ai). Identical estimates are produced by estimating Eq (1)
with a dummy variable for each plot, though the within estimator in Eq (3) is preferred as a
means of avoiding estimation of potentially many thousands of dummy variable parameters.
Time fixed effects, Yt, on the other hand, are estimated as dummy variable parameters. Their
inclusion controls for unobservables that differ across time but not observations, for example,
national policy changes or global commodity prices.

For fixed effects to be a valid estimation strategy, parallel paths, or trends, must exist prior
to treatment [42]. While this assumption cannot be directly tested, a graph of the temporal
trends in outcomes for treatment and control observations before and after treatment can pro-
vide some visual assurances: we want to observe land cover outcomes on similar—or parallel—
trajectories across treatment and control groups prior to the program. A more robust check is
to statistically test whether there is a difference in pre-treatment outcomes by introducing an
interaction term between Cit and Yt. If the coefficient is not statistically significant in years
prior to treatment then the parallel paths condition is more likely to hold.

Combining Matching with Fixed Effects Panel Regression
While fixed effects panel methods can be used on the full sample of treatment and control
observations, using temporal variation to construct the control group, it can also be combined
with matching. In this case matching is first used to “pre-process” the data to find the best set,
or most similar set, of treatment and control observations before fixed effects regression is used
to estimate the treatment effect. Estimating fixed effects regression on a matched sample can
reduce omitted variables bias in the following sense. Suppose an element of the time-varying
covariate vector Xit is correlated with both a plot’s conservation status Cit and with the time-
varying unobservable εit. Then the regression estimate of the treatment effect β3 will be biased
because Cit will be indirectly correlated with εit through Xit. Fixed effects estimation will not
help reduce this bias since none of these time varying components (Xit, Cit, εit) are differenced
out. A matched sample helps reduce bias in this situation because matching reduces correlation
between the observables Cit and Xit by making treated plots (Cit = 1) similar to control plots
(Cit = 0) in their observed values of Xit. Thus, fixed effects regression on the matched sample is
less sensitive to correct specification of Xit in the model. Even with a dataset where there are no
time-varying observables (Xit) other than conservation treatment (Cit), matching can still
improve estimates from fixed effects regression. One reason is that the linear fixed effects
model assumes that all landowners have a common response to the conservation treatment
(β3)–and this assumption is more plausible when treated and untreated landowners have simi-
lar levels of fixed characteristics rather than very different levels [43].
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Methods

Conservation Programs
Table 1 summarizes the two conservation programs we analyze in our comparison of the
impact evaluation methods discussed above: (1) PES in Northeastern Ecuador and (2) strict
protected areas in European Russia. These two programs cover the more common conserva-
tion approaches for which impact evaluation is being used and illustrate these methods across
both continuous (Ecuador-PES example) and binary measures (Russia-Protected Areas exam-
ple) of forest cover outcomes. No specific permissions were required to conduct these analyses
and all data were acquired from publicly available data sources.

Ecuador-PES. In Ecuador, the study region is about 600 sq km around the northwestern
border of Cuyabeno Faunal Wildlife Reserve, a protected area in the northeastern Ecuadorian
Amazon. The Cuyabeno Reserve was officially created in 1979 and deforestation by smallhold-
ers living adjacent to the boundaries of the reserve has been a continuous conservation threat.
Tenure insecurity is commonly cited as a driver of deforestation in the region [55]. In 2009, a
nationally sponsored land titling effort resulted in the acquisition of private individual titles for
smallholders that were living adjacent to the reserve; in all cases, these households occupied
their land since the late 1970s or early 1980s but had not received formal title. In 2008, Ecuador
implemented a national PES program, known as Socio Bosque [56]. The program targets for-
ested lands that include a combination of multiple ecosystem service benefits, risk of deforesta-
tion, and populations with high degrees of social marginality. To be eligible to participate, a
property must have a formal land title, meaning that smallholders around Cuyabeño Reserve
became eligible for the program after they received their formal land titles in 2009; 63 house-
holds enrolled in the program in 2010.

Since PES is a household-level program, the ideal unit of analysis is the household parcel
[44]; spatial boundaries of household parcels are available for this study area from a cadastral
survey conducted by the Government of Ecuador. If this information were not available then it
would be difficult to rigorously evaluate the impact without collecting property boundaries
using GPS, even though some evaluations of PES have used pixels, or grid cells, for evaluation

Table 1. Summary of Conservation Programs.

Ecuador-PES Russia-Protected Areas

Definition and number of
treatment observations

Individual landowner parcels that
enrolled in PES

N = 63

Random sample of pixels within
four protected areas

N = 5,019

Definition and number of control
observations

Individual landowner parcels that
did not enroll in PES

N = 450

Random sample of pixels outside
of protected areas

N = 20,670

Unit of analysis Household Parcel Pixel

Years of land cover data
available

Annual forest cover measures
between 2004–2013

1990 to 2010 in 5-year
increments

Year of treatment 2010 1990–1995

Outcome of interest
(Continuous/Binary)

Percent change in forest cover
(Continuous)

Change from forest to non-forest
(Binary)

Observable covariates Baseline deforestation
Parcel size

Distance to roads, towns, major
rivers, oil wells

Elevation
Slope

Distance to forest edge, towns,
capital city, roads

Potential unobservable
covariates

Household demographics
Conservation motivations
Agricultural suitability

Soil quality
Rainfall

Tree species/forest type

doi:10.1371/journal.pone.0141380.t001
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[36], these do not represent the decision-making unit. In addition to parcel-level information
for households that enrolled in PES, we also know which households did not enroll, providing
us with a group of control observations that are likely to share at least some characteristics with
the treatment observations given the small study area. To further refine this control group, we
limit the pool of potential controls to titled smallholder parcels that are within the same pre-
cooperatives as the households that enrolled in PES. Pre-cooperatives are self-organized groups
of smallholders that precede the land titling campaign, and represent a spatially contiguous
group of households that migrated to the area in a similar time period. This gives us 450 house-
holds as potential controls. Defining control observations as parcels that are near enrolled
households is similar to the strategy used in [31], but a stricter definition of PES controls
would be to use households that applied but were rejected from the PES program, or house-
holds that applied in later years [29,30]; neither of these options exist for these data.

We measure the impact of this PES program on reduced deforestation rates. We use a glob-
ally available forest/non-forest product with resolution of 30 meter by 30 meter to measure
deforestation [46]. While this dataset provides pixel-level information on forest cover, we
aggregate it to household parcels, providing a continuous measure of forest cover loss per par-
cel between 2004 and 2013. While this land cover product provides data as early as 2001, we
excluded these early years because our test of parallel trends detected differences in 2003 across
our two groups. Thus, we can estimate a treatment effect for the impact of PES on reducing
deforestation between 2011–2013, controlling for pre-treatment deforestation rates in 2004–
2010.

PES is a voluntary program, and household-level characteristics, such as age, income, and
prior conservation motivations, as well as parcel-level characteristics, such as size, agricultural
suitability, and accessibility, are expected to influence a smallholder’s decision to participate in
the program [57,58]. These characteristics would also influence the probability of deforestation
with or without the program. Past evaluations of PES programs on land cover change have
controlled for parcel size, accessibility, agricultural productivity, baseline deforestation rates,
forest type, past participation in forestry programs, poverty level, and tenure [29–31,34,36,38].
In our study area there are a number of available datasets measuring parcel-level characteristics
related to accessibility and parcel size, but we do not have household-level information on past
participation in conservation programs or poverty. Additionally, we do not have data directly
related to agricultural suitability. Thus, the observable covariates that we can control for
include parcel-level information on pre-treatment deforestation rates (between the years 2004–
2010), parcel size, and distance of the parcel to roads, population centers, navigable rivers, and
oil wells, which control for remoteness and opportunity costs in this region. Our potential
unobservable variables are related to household-level characteristics that would lead a house-
hold to enroll in the program or to deforest, such as environmental motivations, and parcel-
level agricultural productivity. However, since our unit of analysis corresponds with the deci-
sion-making unit, if these variables are time-invariant unobservables, they will be controlled
for with the fixed effects methods.

Russia-Protected Areas. In Russia, our analysis focuses on the effect of four ‘strict’ pro-
tected areas—known as zapovedniks in Russia—in temperate European Russia. This is a subset
of the data used to compare the effectiveness of different types of protected areas in Russia
before and after the collapse of the Soviet Union [27]. Strict protected areas are equivalent to
an IUCN designation of Category I protected areas and logging and other extractive activities
are prohibited [59]. Russia established a number of new protected areas following the collapse
of the Soviet Union in 1991 [60], and the four parks in this analysis were established between
the years 1992 and 1994. Their total area is 515 km2.
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Within a protected area, a remote sensing pixel is a common unit of analysis [44]. Since
each protected area contains thousands of pixels, referred to as plots in the remainder of the
paper, we must sample to get a manageable number of observations. We sample 1% of all plots
within parks that were forested in our baseline year– 1990. For control observations we ran-
domly sample forested plots outside of protection. In Russia, all forested land is publically
owned, so when sampling forest outside of parks the decision-making unit should also be the
Russian Forest Service, although they do lease this land to private timber concessions. We sam-
ple four-times the number of treatment plots from areas outside of protected areas to generate
the potential control group.

The outcome of interest in this case is forest disturbance for harvesting timber [61]–which
varies from deforestation in the Ecuador case, since the land will eventually revert back to forest.
Measures of forest disturbance come from a primary Landsat classification of forest cover
change over 5-year increments from 1985 to 2010 [62]; we exclude the 1985–1990 period since
forest disturbance follows different temporal trends during this period, likely due to political
unrest. This primary analysis provides 30-meter resolution data on forest cover change with
average accuracies greater than 90%. Forest disturbance is measured as a binary outcome, and so
for each observation a value of “0” is recorded if there is no change within a 5-year period or a
“1” if there is a change; a plot is removed from the dataset once change occurs so that forest dis-
turbed on this plot—the outcome variable—is not double counted. Given the year of designation
of the protected areas, pre-treatment forest disturbance is defined as the 1990–1995 time period
and forest disturbance that occurs anytime between 1995 and 2010 is our outcome variable.

The majority of published evaluations of protected area effectiveness focus on tropical
regions—where land cover change is driven by agriculture. In these studies, data is collected on
locational and biophysical characteristics of the pixel or grid cell, such as slope, elevation,
accessibility, agricultural suitability, and forest type [7–23]. Forest disturbance in European
Russia is increasingly correlated with profit-maximization behaviors that factor in transporta-
tion costs and opportunity costs of the land for timber harvesting [63]. Thus, for both protected
area designation and forest disturbance in Russia we control for biophysical characteristics of
the plot and its location. The observable covariates include elevation, slope, and distance of the
plot to the forest edge, closest town, Moscow, and closest road. There are important differences
between the type of observable data that can be controlled for with binary and continuous out-
come measures of land cover change worth highlighting here. With continuous measures a
baseline measure of land cover change can be controlled for (e.g., in Ecuador, baseline defores-
tation rates). With binary data baseline rates cannot be included, but measures such as distance
to forest edge, which would measure accessibility, can be included (e.g., Russian covariates).

Since the Forest Service manages forested plots in Russia, potential unobservable covariates
are less likely to be related to differences in decision-making units, unless “controls” are in
areas of private timber concessions. The more likely source of omitted time-invariant covari-
ates, however, is if there are unobservable biophysical characteristics that influence protected
area status and or forest disturbance. For example, soil quality, rainfall or type of tree species
might influence conservation decisions if protection is targeted at specific ecological species, or
might influence forest disturbance rates if some species are preferred for timber. In Russia,
these datasets are not available and globally available datasets are typically at 1-square kilome-
ter resolution.

Empirical Methods
As discussed above, matching is often used to construct a valid control group in program eval-
uation, and is then combined with several post-matching estimators to get the treatment effect.
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Fixed effects panel methods can be used with or without matching to construct the control
group. Effectively, this gives six combinations across the sample selection process and the esti-
mation process for program evaluation (Fig 1). However, a number of sources have illustrated
why ‘no matching’ combined with simple differences in means or cross-sectional regression
are biased in conservation program evaluation [7,43,45]. The more common methods seen
today in the conservation evaluation literature include combining ‘matching’ with either simple
differences in means or cross-sectional regression. Thus, to compare these more common
methods to fixed effects panel methods, we estimate treatment effects for the two conservation
programs described above using the following approaches: (1) matching plus differences in
means, (2) matching plus cross-sectional regression, (3) ‘no matching’ plus fixed effects panel
regression, and (4) matching plus fixed effects panel regression.

Our analysis of the Ecuador-PES program uses a limited continuous variable which is never
negative and includes a non-trivial 37% of parcels with a zero deforestation rate, while our
analysis of Russian parks models a binary dependent variable for each plot which equals one if
the plot is deforested and zero otherwise. Alternative non-linear maximum likelihood estima-
tors for such limited dependent variables include Tobit and Probit models. We choose to use
linear ordinary least squares regression rather than non-linear estimation approaches for the
following reason: our primary interest is in obtaining a consistent estimate of the treatment
effect of conservation—known as a marginal or partial effect—rather than predicting the level
of deforestation. Thus, under similar identifying assumptions, linear ordinary least squares typ-
ically generates similar marginal effects as non-linear methods and has the advantage of being
able to include fixed effects in a far simpler fashion—and with fewer assumptions—than non-
linear methods [42]. Fixed effects cannot typically be used in most non-linear methods due to
the incidental parameters problem [64].

Matching. We match treatment to control observations using propensity score matching
[54]. The propensity score is a measure of the probability of an observation receiving the con-
servation program. Since both conservation programs have binary treatments, the probability
of receiving the program is estimated with a Logit model specified on the set of observable pre-
treatment covariates thought to influence treatment assignment and the outcome of interest
identified in Table 1 (regression output in Table A in S1 and S2 Tables). Using the estimated
propensity scores, each treatment observation is then paired with the ‘best’ control observation
based on one-to-one nearest neighbor matching without replacement following [65]. To ensure
‘good’matches the distance between propensity scores is limited by using a caliper size of a
quarter of the standard deviation of the estimated propensity score as recommended by [54].
In the case of propensity score matching, the probability of receiving treatment varies between
‘0’ and ‘1’, and the caliper limits the distance that the algorithm searches to find an appropriate
control observation for the treatment unit (e.g., a caliper of 0.2 would limit the search to two-
tenths). Our choice of matching algorithm is motivated by its popularity in the literature and
the ease at which the matched sample can be exported for use in cross-sectional or fixed effects
panel regression. While alternative matching algorithms might yield a slightly different sample
of treatment and control observations, post-matching estimations of treatment effects with this
sample would yield similar relative differences across findings to what we present below since
it is the presence of time-invariant unobservables that potentially lead to bias in cross-sectional
estimation.

With our matched sample, treatment effects are estimated under three estimators. The dif-
ference in means computes the average difference in outcomes between each treatment and
control observation. For cross-sectional estimation, the matched sample is used in a linear
ordinary least squares regression, controlling for the same observable covariates included in
the match. The fixed effects panel estimator is described below.
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Fixed Effects Panel Regression. First, we estimate a fixed effects panel regression for each
conservation program using all treatment and control observations, i.e., ‘no matching’. We
could include the full list of observable covariates in Table 1, but since most observable covari-
ates are time-invariant—with the exception of distance to forest edge in Russia—they fall out
of the differencing equation, that is, they are not explicitly estimated in the regression output.
However, since we have land cover change data before and after the conservation programs, β3
in Eq 1 can be estimated.

Second, we use matching to pre-process the data as described above, and then use this
trimmed sample to estimate β3 in Eq 1. When matching the Ecuador-PES data, baseline defor-
estation is defined as years 2004–2006; these years are then omitted from the fixed effects
regression.

Standard Errors. For cross-sectional and fixed effects regressions we use cluster robust
standard errors to control for spatial autocorrelation. Clustering standard errors relaxes the
assumption of no correlation across observations within the spatial unit used for clustering.
For Ecuador we cluster at the informal administrative unit known as pre-cooperatives. In
Russia we cluster at a political unit similar to counties in the United States. In addition to
being robust against any form of spatial correlation within clusters, cluster robust standard

Fig 1. Illustration of Sample Selection and Estimator Choice in this Study.

doi:10.1371/journal.pone.0141380.g001
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errors also control for general forms of serial correlation and heteroskedasticity in panel
regressions [66].

Similarities and Differences across Estimators. These methods ensure two things that
aid in comparison across estimators. First, across three of the estimators, propensity score
matching is used for sample selection, ensuring that the same treatment and control observa-
tions are compared. The only difference is that post-matching, one estimator controls for lim-
ited forms of omitted variables bias (i.e., fixed effects) and two do not (i.e., t-tests and cross-
sectional regression). While fixed effects without matching necessarily uses all of the treatment
and control observations, the analysis of these data is exactly the same as that in fixed effects
regression following matching, allowing us to compare the effect of using matching to pre-pro-
cess the data on estimated impacts. Secondly, we are able to estimate similar standard errors—
cluster robust standard errors—for each method of analysis except for matching with differ-
ences in means. This ensures that our standard errors are robust to many known problems
associated with land cover panel data (i.e., heteroskedasticity, spatial correlation within
clusters).

Goodness of Fit Checks. We check whether there is improvement in covariate distribu-
tion after matching treatment to control observations and whether there is overlap of propen-
sity score values for treatment and control observations. For the former, a t-test can be used,
but differences can be skewed by sample size. The normalized difference in means is prefera-
ble over the t-statistic when there are large differences in sample size [5]. We report both since
there is no statistical test of significance for normalized difference in means; although a gen-
eral rule of thumb is that differences larger than 0.25 is indicative of sensitivity of estimates to
functional form in linear regression [5]. Overlap of propensity scores can be plotted using a
histogram.

For fixed effects regression we check the parallel paths assumption. We do this by graphing
trends and by introducing an interaction term to Eq 1 and estimating whether there is any dif-
ference in forest outcomes prior to treatment.

Results and Discussion

Ecuador-PES
Households that enrolled in Ecuador’s national PES program differ across observable charac-
teristics from households that did not enroll (Table 2). On average, they have larger parcels of
land, are farther from roads and towns, and have lower rates of deforestation before enrolling
in the program. Propensity score matching does significantly improve the covariate balance
between these two groups as indicated by the t-tests and normalized differences in means fol-
lowing matching. There is good overlap in estimated propensity score values between Ecuador-
PES and Ecuador-non-PES households despite these differences in covariates (Fig 2). The
graph of parallel trends using the full sample also illustrates the different pre-treatment defor-
estation rates of these two groups; despite a lower baseline deforestation rate, the temporal pat-
terns of both groups appear to trend in similar patterns before treatment suggesting that fixed
effects estimation is appropriate to use. When statistically tested using fixed effects regression,
we find no differences in pre-treatment forest outcomes across these two groups between 2004
and 2010.

Using the matched sample, differences in means and cross-sectional regression both esti-
mate a treatment effect of -0.4. This is statistically significant at the 99% level and can be inter-
preted as a four-tenths of a percentage point reduction in the average annual deforestation rate
between 2011–2013 for parcels that enrolled in PES compared to parcels that did not enroll
(Table 3). To put this in perspective, post-treatment deforestation rates on all parcels not
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enrolled in the PES program were an average of 0.7% per year (Table 2). For no matching and
fixed effects regression, the estimated treatment effect is slightly smaller, at -0.3, but still statis-
tically significant. Finally, matching combined with fixed effects regression yields a treatment
effect of -0.4, statistically significant at the 99% level. Full regression output can be found in
Tables B-D in S1 Table. We plot the coefficients in Table 3 with their 95% confidence intervals
to detect the level of overlap (Fig 3). In all cases, the confidence intervals of the estimated treat-
ment effects overlap substantially.

To better understand the conservation implications across these estimators, the relative
reduction in forest cover change at the average estimated treatment effect is presented in Fig 3.
This relative reduction in forest cover is calculated by dividing the estimated treatment effects
in Table 3 by the rate of forest cover change in the matched control observations after the con-
servation program began (i.e., post-treatment), or in the case of ‘no matching’ combined with
fixed effects regression, all control observations. In the Ecuador-PES program, the matched
control observations have an annual deforestation rate of 0.55% in 2011–2013; if you divide the
estimated treatment effect from propensity score matching plus difference in means (-0.40) by
0.55 you get 0.72. Thus, the average annual impact of PES is an approximately 72% reduction
in the deforestation rate when estimated using matching with difference in means; this repre-
sents a decrease in average annual deforestation on a parcel from 0.55 to 0.16. For fixed effects
regression without matching, -0.31 is divided by post-treatment deforestation in the full sam-
ple, which is 0.73, resulting in a relative effect of 42%.

Russia-Protected Areas
Table 4 shows summary statistics for the sample of plots within and outside of strict protected
areas in European Russia. Protected plots appear more remote than unprotected plots—they
are farther from the forest edge and closest road. However, they are closer to towns and the

Table 2. Summary Statistics for Ecuador-PES.

Variable Ecuador-
PES

Ecuador-Non-
PES

T-test Normalized Difference in
Means

Before
match

After
match

Before
match

After
match

Post-treatment deforestation (2011–2013) (Average
annual %)

0.15 (0.31) 0.73 (1.43) 7.50*** 2.96*** -0.39 -0.39

Pre-treatment deforestation (2004–2010) (Average
annual %)

0.31 (0.53) 0.59 (1.1) 3.365*** -0.44 -0.24 0.03

Size of parcel (sq km) 0.64 (0.25) 0.47 (0.26) -5.37*** 0.30 0.49 -0.04

Distance to closest town (km) 4.81 (3.37) 3.89 (3.03) -2.07** 0.88 0.21 -0.12

Distance to closest road (km) 4.13 (4.22) 1.77 (2.32) -4.35*** -0.94 0.47 0.10

Distance to closest river (km) 8.43 (2.91) 8.17 (3.35) -0.65 -0.70 0.05 0.07

Distance to closest oil well (km) 3.90 (3.19) 2.61 (2.44) -3.09*** -0.74 0.27 0.07

Observations 63 450 513 112 513 112

*p<0.1;

**p<0.05;

***p<0.01

Standard deviations in parentheses. T-tests test for differences in means assuming unequal variances. “Before matching” uses the full sample; “After

matching” is based on 1-to-1 propensity score matching without replacement and limiting the maximum distance between matches with a caliper.

Normalized differences in means are calculated as recommended by [5]. There is no test for statistical significance associated with normalized differences

in means but a rule of thumb is that sizes larger than 0.25 can bias simple ordinary least squares regression.

doi:10.1371/journal.pone.0141380.t002
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capital city, Moscow. The differences in means tests before matching find very large differ-
ences, and even after matching statistically significant differences remain. However, calcula-
tions of normalized differences in means after matching find that the differences are less than
0.1; well below the 0.25 rule of thumb. There is also overlap in propensity score values (Fig 2).
In the graph of parallel trends there does appear to be similar trends in the five years prior to
protected area designation (i.e., 1990–1995) (Fig 2). A formal test using regression analysis
finds no statistical difference in forest disturbance in the 1990–1995 time period. There also
appear to be similar trends after protected area status indicating that the treatment effect, if
any, is not likely to be large. It is important to point out the relatively small change in forest dis-
turbance over the five-year periods in this sample—rates of change are less than one-tenth of a
percentage point.

The estimated treatment effects for Russia range between -0.01 and -0.03 (Table 3). The
interpretation is that protected areas reduce the probability that a forested plot is disturbed by
as much as -0.03 percentage points over each of the three five-year periods between 1995 (the

Propensity Score Values

Fig 2. Goodness of Fit Tests.Overlap in propensity scores is calculated in Stata 13; it shows the distribution of propensity scores across treatment and
control observations. Parallel trends are graphed for both treatment and control groups before matching. A test for statistical differences in trends was
estimated using fixed effects regression. After matching, trends becomemore similar, and are not shown here.

doi:10.1371/journal.pone.0141380.g002
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year after creation of the protected areas) and 2010 (the last year of data). For context, the aver-
age five-year probability that a potential control plot was disturbed after 1995 was 0.08%
(Table 4). Whether or not the effect of protected areas on forest disturbance is statistically sig-
nificant or not varies across estimators. When matching with differences in means or cross-sec-
tional regression is estimated, the treatment effect is statistically significant at the 95% level or
higher and closer to -0.03 percentage points. With no matching plus fixed effects the estimated
treatment effect is smaller, at about -0.02 percentage points, as is the statistical significance, at
the 90% level. When matching is used to pre-process the data before fixed effects regression,
the treatment effect is not statistically significant. Full regression output for this case can be
found in Tables B–D in S2 Table. In Fig 3 we plot the 95% confidence intervals for these treat-
ment effects; again, there is considerable overlap across each estimator.

For calculating the relative effect of Russia-Protected Areas on forest disturbance we divide
the average treatment effect (Table 3) by the average forest disturbance in the control sample.
For the three estimators that use matching, average forest disturbance in the matched control
plots is 0.07 (not reported in the table). Thus, for matching plus difference in means we divide
0.03 by 0.07 to get a relative reduction in forest disturbance of 36% (Fig 3). When fixed effects
regression without matching is used, average forest disturbance for all areas outside of parks is
0.08 (Table 4). Dividing the average treatment effect of 0.02 by 0.08 generates a relative reduc-
tion in forest disturbance of 23% (Fig 3).

Comparing Estimators
The two cases we evaluate are similar to many published conservation evaluations of PES and
protected areas. In our Ecuador-PES case we have parcel, or household-level sampling units,
even though we do not have household-level data, and are able to control for many covariates
included in past studies. In our Russia-Protected Areas case we have pixel level information
and sample inside and outside of protected areas, controlling for many common observables
that control for location and accessibility. Across these two conservation programs, the differ-
ent sampling and estimation strategies (Fig 1) result in different conclusions about the effec-
tiveness of the conservation policy. One must be cautious, however, in interpreting the reason

Table 3. Treatment Effects under Four Different Empirical Estimators.

Matching
+ Differences in

means

Matching + Cross-
sectional regression

No matching + Fixed
effects panel regression

Matching + Fixed
effects panel
regression

Ecuador-PES

Treatment effect
(change in annual parcel-level
deforestation rate)

-0.395***
(0.133)

-0.396***
(0.130)

-0.305**
(0.120)

-0.422***
(0.137)

N 112 112 3,591 784

Russia-Protected Areas

Treatment effect
(change in probability of plot-level forest
disturbance over 5 year time periods)

-0.025***
(0.005)

-0.026**
(0.010)

-0.018*
(0.011)

-0.014
(0.011)

N 9,095 9,095 106,950 36,217

*p<0.10;

**p<0.05;
***p<0.01

Standard errors in parentheses.

doi:10.1371/journal.pone.0141380.t003
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for the differences in average treatment effects in Table 3 or relative impacts presented in Fig 3.
Some estimators differ in more than one aspect, and so it is not clear which aspect explains the
difference in estimates. The most telling comparisons are those that differ in only one key
aspect, these include (1) matching with differences in means to matching combined with cross-
sectional regression; (2) no matching with fixed effects to matching combined with fixed
effects; and (3) matching with cross-sectional regression to matching combined with fixed
effects.

Considering the first comparison, cross-sectional regression following matching can pro-
vide additional control over differences in means if observable covariates are not completely

Fig 3. Treatment Effect Distribution and Relative Reduction in Deforestation (Ecuador) and Forest Disturbance (Russia). Box plots show the average
treatment effects and 95% confidence intervals (from Table 3). For estimators that use matching, the relative reduction in forest cover change is calculated as
the estimated average treatment effect (Table 3) divided by the deforestation rate (Ecuador-PES) or the probability of forest cover change (Russia-Protected
Areas) in the matched control observations after treatment. When matching is not used, the deforestation rate or probability of forest cover change in the full
set of control observations is used. As an example, the relative effect for Ecuador-PES under propensity score matching and differences in means is
calculated as 0.40/0.55 = 0.72. (The 0.55 is not reported in the tables but comes from calculating average deforestation in 2011–2013 from the matched
control units.) For the same estimation strategy and Russia-Protected Areas, the relative reduction would be calculated as 0.03/0.07; again 0.07 is not
reported in the tables. This gives the relative reduction in forest cover change that can be attributed on average to the conservation program. The four
estimators are abbreviated as follows: PSM +DM: propensity score matching plus differences in means; PSM + XS: propensity score matching plus cross-
sectional regression; FE: fixed effects panel regression; PSM + FE: propensity score matching plus fixed effects regression.

doi:10.1371/journal.pone.0141380.g003
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balanced in matching. For both the Ecuador-PES and Russia-Protected Areas cases, the adjust-
ment on observables after matching has little to no effect on the interpretation of conservation
impacts. In Ecuador-PES, the statistical significance of the results does not change; in Russia-
Protected Areas the statistical significance decreases from the 99% to 95% level. Of course, in
other examples and contexts, this additional adjustment on observables could lead to changes
in treatment effects, and is generally recommended [5,50,54].

In the second comparison, pre-processing the data with propensity score matching changes
the sample used in estimation. Trimming the sample to ensure treatment and control parcels
are similar in observable characteristics matters when there is some misspecification of how
the observed independent variables drive land cover change, and such misspecification is a
common challenge for applied work. Further, since panel fixed effects estimation typically
assumes that treatment and control households have a common response to the conservation
treatment, this assumption is more plausible in a matched sample than in a sample with very
different treatment and control households. Our results suggest that trimming the sample to
include only good matches is especially important for Ecuador-PES, increasing the relative
impact by 30% in Fig 3 when the average treatment effect increases from 0.31 to 0.42 (Table 3).
For protected areas in Russia, the relative impacts in Fig 3 are within 3% of one another, but it
decreases enough when the matched sample is used that the estimate changes from 90% signifi-
cance level to no longer statistically significant. In general, when treatment observations are
quite different from controls, matching provides an additional assurance in getting the two
groups as similar as possible before panel regression analysis, similar to what has been shown
in the case of cross-sectional regression analysis [48–52].

Table 4. Summary Statistics for Russia-Protected Areas.

Variable Russia-Protected
area plots

Russia-Non-
protected plots

T-test Normalized Difference
in Means

Before
match

After
match

Before
match

After
match

Post-treatment forest disturbance (Average
5-year change, 1995–2010) (%)

0.05 (0.22) 0.08 (0.27) 7.99*** 5.06*** -0.08 -0.08

Pre-treatment forest disturbance (5-year change,
1990–1995) (%)

0.01 (0.12) 0.04 (0.20) 12.59*** N/Aa -0.42 N/Aa

Distance to forest edge in 1990 (km) 0.72 (0.57) 0.31 (0.36) -49.49*** -5.21*** 0.49 0.06

Distance to closest town (km) 60.88 (24.40) 75.46 (30.88) 36.69*** 1.58 -0.34 -0.03

Distance to Moscow (km) 473.99 (178.58) 517.60 (213.94) 15.19*** -5.12*** -0.16 0.09

Distance to closest road (km) 1.68 (1.31) 1.25 (1.01) -22.32*** 2.60*** 0.28 -0.02

Elevation (m) 152.09 (62.23) 170.65 (45.06) 20.18*** 3.74*** -0.24 -0.06

Slope (%) 1.33 (1.44) 1.42 (1.53) 3.96*** 1.52 -0.03 -0.02

Observations 5,113 22,920 28,033 9,095 28,033 9,095

*p<0.1;
**p<0.05;

***p<0.01

Standard deviations in parentheses. T-tests test for differences in means assuming unequal variances. “Before matching” uses the full sample; “After

matching” is based on 1-to-1 propensity score matching without replacement and limiting the maximum distance between matches with a caliper.

Normalized differences in means are calculated as recommended by [5]. There is no test for statistical significance associated with normalized differences

in means but a rule of thumb is that sizes larger than 0.25 can bias simple ordinary least squares regression.
aAfter matching, pre-treatment forest disturbance was “0” for both protected areas and areas outside of protected areas; thus, differences in means could

not be calculated.

doi:10.1371/journal.pone.0141380.t004
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In the comparison of matching combined with cross-sectional versus matching combined
with fixed effects regression, the same sample of treatment and control observations are used
but the estimators differ in the control of time-invariant unobservables. Thus, we see that
explicit control of fixed effects in a panel setting is responsible for differences in conclusions
about a conservation programs’ relative effect on forest cover change in Fig 3 ranging from
between an increase of 4% (Ecuador-PES) to a decrease of 16% (Russia-protected areas) when
time-invariant unobservables are controlled. In the case of Ecuador, the policy implications
would be similar between these two estimators, as both estimators come to similar conclusions
about statistical significance and size. Thus, in this case the observable covariates do a good job
of controlling for confounding factors. In the case of Russia, however, when time-invariant
unobservables are controlled the program does not have a statistically significant effect on the
probability of forest disturbance. In the Russia case, these time-invariant unobservables are
likely related to the hypothesized missing measures for timber value—when the low timber val-
ues of protected areas are controlled for with fixed effects the impact estimate is reduced.

The explicit control of fixed effects is the primary advantage to using panel data. The control
of fixed effects matters when there is some correlation between the time-invariant unobserved
determinants of land cover change, and the location of the conservation program. If time-
invariant unobservables are not a concern, estimation under cross-sectional or fixed effects
methods will yield similar results. These two conservation programs illustrate that the impor-
tance of hidden bias in conservation evaluation will vary. In the Ecuador-PES case, when
matching with cross-sectional or matching with fixed effects panel regression is used, the esti-
mated treatment effects are almost identical. This indicates that time-invariant unobservables
are not a large concern. In contrast, for the Russia-Protected Areas case, the conclusion of sta-
tistically significant conservation impacts does not hold when time-invariant unobservables
are controlled (Table 3). In other datasets and examples, the direction of bias from time-invari-
ant unobservables and their importance will also vary. The researcher will have to critically
evaluate the likelihood of time invariant unobservables in each case, and the validity of the
assumption that treatment effects can be estimated on observable data alone, as is the case with
cross-sectional estimation strategies. It is important to re-emphasize as well, that no quasi-
experimental design can control for potential time-varying unobservable bias.

Conclusion
The conservation community is increasingly evaluating if conservation tools are effective and
incorporating this information into decision-making. For conservation policies and programs
that have a goal of affecting land cover change, the ability to conduct a rigorous quasi-experi-
mental evaluation is bolstered by the release of the Landsat archives [67], the advancement of
remote sensing techniques to provide temporally-rich land cover change classifications [68,69],
and the publication of free, global datasets of forest cover [46,70]. The number of studies using
remote sensing products and quasi-experimental techniques to conduct an impact evaluation
is increasing rapidly and the majority of these rely on matching estimators combined with dif-
ferences in means or cross-sectional regression to estimate treatment effects exclusively on
observable covariates. The results from our comparison of estimators across two conservation
programs illustrate that estimated treatment effects can vary across estimators, and that in
some cases time-invariant unobservables can lead to differences in statistical significance and
differences in magnitude of relative impacts. These estimated differences could affect policy les-
sons and actions such as who should get paid in incentive-based programs, allocation of fund-
ing for protected areas, and whether a program should be scaled up or stopped. However, if
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time-invariant unobservables are not a concern, then estimates from matching combined with
cross-sectional regression result in similar policy lessons.

While bias from time-invariant unobservables could be reduced in cross-sectional analyses
by collecting more data on plot or parcel characteristics or instrumenting for the conservation
program, such data is not always easily available or well measured, and conservation instru-
ments are often far from obvious. An easier solution is often to build better temporal variation
with spatial data on land cover change that can reduce the number of assumptions required for
identification of conservation program effectiveness. This allows the researcher to control for
many of the observable variables already commonly included in evaluation studies—since they
do not vary over time—as well as hidden sources of time-invariant bias through the fixed effect,
as long as the unit of analysis corresponds with the appropriate decision-making unit. Combin-
ing matching to pre-process the dataset with fixed effects regression to control for time-invari-
ant unobservables has also been shown to be one of the most robust strategies for replicating
experimental evidence of conservation effectiveness [43]. The identification of conservation
impacts with fixed effects relies on two conditions: (1) repeated remote sensing landscape
images over time, and (2) temporal variation in the location of conservation programs within
the time frame of the estimation sample.

If these two conditions do not hold for a particular conservation policy or program, then
matching combined with t-tests or cross-sectional estimation approaches will be the only alter-
native. Our findings suggest that when these methods are used, they are likely still in range of
the average treatment effect estimate that would be obtained from fixed effects regression, as
indicated by the overlap in confidence intervals in our two examples in Fig 3. Across both
cross-sectional and panel program evaluation methods, researchers should take greater care to
emphasize the uncertainty associated with the estimated average treatment effect and report
the range of values using the 95% confidence interval, in addition to just reporting the mean
effect. Additionally, if researchers are able to hypothesize on the potential sources of bias from
time-invariant and time-varying unobservables they can discuss the direction of that bias, and
how this would affect estimated treatment effects. These best practices can help move the field
of conservation evaluation to more rigorous, and reliable, estimates of the impact of conserva-
tion policies and programs on land cover change outcomes, and facilitate synthesis of impacts
across multiple studies in systematic reviews and meta-analysis [71].
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