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Chronic kidney disease (CKD) has diverse phenotypic manifestations including structural (such as fibrosis) and
functional (such as glomerularfiltration rate and albuminuria) alterations. Gene expression profiling has recently
gained popularity as an important new tool for precision medicine approaches. Here we used unbiased and di-
rected approaches to understand how gene expression captures different CKDmanifestations in patients with di-
abetic and hypertensive CKD.
Transcriptome data fromninety-fivemicrodissected human kidney samples with a range of demographics, func-
tional and structural changes were used for the primary analysis. Data obtained from 41 samples were available
for validation. Using the unbiased Weighted Gene Co-Expression Network Analysis (WGCNA) we identified 16
co-expressed gene modules.
We found that modules that strongly correlated with eGFR primarily encoded genes with metabolic functions.
Gene groups that mainly encoded T-cell receptor and collagen pathways, showed the strongest correlation
with fibrosis level, suggesting that these two phenotypic manifestations might have different underlying mech-
anisms. Linear regression models were then used to identify genes whose expression showed significant corre-
lation with either structural (fibrosis) or functional (eGFR) manifestation and mostly corroborated the WGCNA
findings.
We concluded that gene expression is a very sensitive sensor of fibrosis, as the expression of 1654 genes corre-
lated with fibrosis even after adjusting to eGFR and other clinical parameters. The association between GFR
and gene expression was mostly mediated by fibrosis. In conclusion, our transcriptome-based CKD trait dissec-
tion analysis suggests that the association between gene expression and renal function is mediated by structural
changes and that there may be differences in pathways that lead to decline in kidney function and the develop-
ment of fibrosis, respectively.
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1. Introduction

Chronic kidney disease (CKD) is a world-wide health problem that
affects N10% of the US population. (Centers for Disease Control and
Prevention). Chronic Kidney Disease Surveillence System-United
States) Its two leading causes in the US are diabetes and hypertension.
The incidence of CKD and end stage renal disease had been rising rapid-
ly over the last several decades, (United States Renal Data System.,
2015) and it is associated with increased risk of death, reaching close
to 15% yearly mortality rate for patients on dialysis.

Despite the large affected population and staggeringmortality rates,
nonewdrug has been registered for CKD in N15years. Current therapies
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are mostly based on blood pressure and glucose control, and on block-
ade of the renin-angiotensin system. (Lewis et al., 1993; Brenner et al.,
2001) These measures slow the rate of the functional decline but do
not stop or reverse disease development.

The pathophysiology of CKD is complex and poorly understood.
Animalmodels have helped to decipher the pathogenesis of many com-
plex disease traits, (Becker and Hewitson, 2013; Brosius et al., 2009) but
have been of limited utility in understanding the pathogenesis of dia-
betic or hypertensive nephropathy. This may partly be because no
model recapitulates all features of the human disease. (Betz and
Conway, 2016; Lin et al., 2016) In addition,whilewe canmeasure struc-
tural changes very effectively in animal models, functional studies
(particularly GFR measurements) have been exceedingly difficult, due
to muscle mass variation in small animals. (Eisner et al., 2010; Meyer
et al., 1993) Conclusions drawn from animal studies to human
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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pathophysiology, especially with regard to drug development, have
often been disappointing, emphasizing the critical need for the use of
human tissues.

In clinical practice, CKD is mostly diagnosed based on functional
changes; these include at least 40% decline in the filtering function of
the kidney (GFR) and urinary loss of plasma proteins (proteinuria, albu-
minuria). The serum creatinine-based estimation of GFR (eGFRcreat) is a
well-established and a widely used surrogate marker for kidney func-
tion. (KDOQI 2002, KDIGO 2012) Despite its limitations (e.g. effects of
muscle mass, obesity and advanced age), it is an extremely useful pa-
rameter to monitor disease progression. (Botev et al., 2011) It is easy
to estimate eGFR and data is available for millions of people. Due to
the ease of measurements, almost all clinical studies use eGFRcreat as
an estimate of kidney function. (Levey et al., 2014).

Tubulointerstitial fibrosis and glomerular sclerosis are the structural
manifestations of CKD. Glomerular changes reflect disease specificity
while changes in the interstitium aremostly independent of disease eti-
ology. Structural changes can be used to diagnose CKD, however, tissue
samples are rarely obtained in the clinical practice, especially when di-
abetic CKD or hypertensive nephrosclerosis is the suspected diagnosis.
Biopsy studies performed several decades ago indicated a strong corre-
lation between structural and functional parameters (fibrosis and GFR)
at the time of the biopsy. (Bohle et al., 1990; Fischbach et al., 1977) Fi-
brosis is believed to be an excellent predictor of functional decline in
the kidney, (An et al., 2015; Rodriguez-Iturbe et al., 2005; Takaori et
al., 2016) however this has not been formally studied.

Many previous animal model studies use structural and functional
changes interchangeably which implies that these phenotypes are driv-
en by the same underlyingmechanism. (Eddy et al., 2012) There is little
data to support or refute this idea due to a lack of well-characterized
human tissue samples.

Genome wide transcript analysis can provide an unbiased descrip-
tion of gene expression changes in tissue samples and has been widely
used and promoted in precision medicine studies. (Schenone et al.,
2013; Gluck et al., 2017) Our dataset of 95 microdissected tubule sam-
ples is one of the largest datasets in the field of transcriptome- based
kidney research. Of the published datasets, Ju et al. used microarray
based gene expression profiles of CKD samples (107 microdissected tu-
bule samples, representing mixed renal pathology and hybridization
methods) to identify cell type specific transcripts or predictive path-
ways. (Ju et al., 2013) O'Connell et al. used 159 non-microdissected
samples from renal allograft biopsies to determine correlation of gene
expression to structural changes such as chronic allograft damage
index (CADI) and identify a predictor gene set for fibrosis.(O'Connell
et al., 2016) All published transcriptomic studies have used binary out-
come categorization for CKD based on GFR estimation. As GFR is a con-
tinuous variable using a binary outcome limits the power of these
studies.

Recently, outcome independent machine learning methods have
been developed to analyze gene expression datasets. These methods
can identify gene expression patterns independent of clinical and de-
mographic information.

The goal of this study was to perform a phenotype-independent
analysis of gene expression data, identify key driver modules in kidney
expression data and correlate this with phenotypic outcomes. Results of
these unbiased analyses were complemented with phenotype-driven
analysis and validated in an additional dataset.

2. Materials and Methods

2.1. Human Kidney Samples

Kidney samples were obtained from surgical nephrectomies per-
formed for renal cancer. Only the normal, non-neoplastic part of the tis-
sue (taken at least 2 cm away from the cancer) was used for further
investigation. Samples were deidentified and corresponding clinical
information was collected by an individual who was not involved in
the research protocol. We had collected extensive clinical information
including age, race, gender, diabetes and hypertension status, medica-
tion use and urine parameters, as well as creatinine and BUN values.
Histological examination of all samples was performed by a
nephropathologist who was blinded to other clinical information
using periodic acid-Schiff-stained kidney sections. The purpose of the
histological examination was fourfold: to ensure that there was no can-
cerous tissue in the specimens, to determine the scores of 19
predetermined histopathological parameters including glomerular, vas-
cular, tubule and interstitial descriptors, to confirm the diagnosis of di-
abetic or hypertensive nephropathy when applicable, and finally to
exclude samples of non-diabetic or hypertensive kidney disease from
the analysis.

Diabetic and hypertensive nephropathy were defined as follows:
The diagnosis of diabetic nephropathy was based on the consensus
Renal Pathology Society criteria (Tervaert et al., 2010), which include
basement membrane thickening, mesangial expansion, and nodular
mesangial sclerosis. Because early basement membrane thickening
alone cannot be accurately assessed on light microscopy, our diagnostic
threshold for diabetic nephropathy begins at class II with mesangial ex-
pansion. The diagnosis of arterionephrosclerosis was based on clinico-
pathologic criteria which include clinical hypertension associated with
the histopathologic findings of vascular wall medial thickening, intimal
fibrosis, arteriolar hyalinosis, and glomerular ischemic changes of capil-
lary wall wrinkling. (Marcantoni and Fogo, 2007).

The study was approved by the institutional review board (IRBs) of
the Albert Einstein College of Medicine and Montefiore Medical Center
(IRB 2002–202) and the University of Pennsylvania (IRB 815796).

2.2. Tissue Handling and Microdissection

The kidney tissue was immediately placed and stored in RNAlater
(Ambion) according to the manufacturer's instruction. The tissue was
manually microdissected under a microscope in RNAlater for glomeru-
lar and tubular compartments. Dissected tubular tissue was homoge-
nized, and RNA was prepared using RNAeasy mini columns (Qiagen,
Valencia, CA) according to manufacturer's instructions. RNA quality
and quantity were determined using the Laboratory-on-Chip Total
RNA PicoKit Agilent BioAnalyzer. Only samples without evidence of
degradation were studied (RNA integrity number N 6).

2.3. Microarray Procedure

Purified total RNAs from 95 tubule sampleswere amplified using the
Ovation Pico WTA System V2 (NuGEN) and labeled with the Encore Bi-
otinModule (NuGEN) according to themanufacturer's protocol. The pu-
rified total RNA from 41 tubule samples used for validation were
amplified using the Two-Cycle Target Labeling Kit (Affymetrix) as per
the manufacturer's protocol. Transcript levels were analyzed using
Affymetrix U133A arrays.

2.4. Microarray Data Processing

After hybridization and scanning, outliers were detected using the
ArrayQualityMetrics R package. (Kauffmann et al., 2009) Outliers were
identified using several detection methods including: PCA (presented
in FigS3), MA-plot, the boxplot of the log-ratios, distance between ar-
rays, relative log expression (RLE), normalized unscaled standard
error (NUSE) and spatial distribution of M (feature intensity). Raw
data files that passed the detection were imported into GeneSpring
GX software, version 12.6 (Agilent Technologies). Raw expression levels
were summarized using RMA16 algorithm by just RMA() function of
Affy package. (Gautier et al., 2004).

We implemented a linear regression model to examine the correla-
tion between gene expression and CKD traits (eGFR, fibrosis) using age,



Table 1
Clinical and pathological characteristics of primary and validation databases.

Primary database

n 95

Age years (SD) 63.57 (13.46)
Gender -female: male 40:55
Ethnicity

Asian (n) 3
Non Hispanic white 19
Non Hispanic black 35
Hispanic 6
Other and unknown 32
BMI kg/m2 (SD) 29.77 (9.25)
Hypertension (n) 39
Diabetes (n) 37
Serum creatinine mg/dl (SD) 2.05 (2.52)
Serum BUN mg/dl (SD) 23.2 (13.7)
Serum glucose mg/dl (SD) 135.4 (65.3)
Systolic blood pressure mmHg (SD) 138.6 (24.7)
Diastolic blood pressure mmHg (SD) 78 (13.6)
Serum albumin g/dl (SD) 3.96 (0.66)
Urinary protein mg/dl (SD) 441 (773)
eGFR ml/min (SD) 60.076 (29.79)

Histology
Glomerulosclerosis % (SD) 17.65 (26.88)
Interstitial Fibrosis % (SD) 20.52 (27.42)

Validation database

n 41
Age years (SD) 60.19 (13.30)
Gender -female: male 24:17
Ethnicity

Asian (n) 1
Non Hispanic white 8
Non Hispanic black 17
Hispanic 6
Other and unknown 9
BMI kg/m2 (SD) 29.35 (5.94)
Hypertension (n) 32
Diabetes (n) 21
Serum creatinine mg/dl (SD) 1.7 (1.03)
Serum BUN mg/dl (SD) 24.5 (14.11)
eGFR ml/min (SD) 52.69 (28.24)

Histology
Glomerulosclerosis % (SD) 18.47 (25.64)
Interstitial Fibrosis % (SD) 15.21 (18.65)

Data are presented as mean and standard deviation with the median values or
percentage (%).
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gender, race and diabetes and hypertension status as co-variables.
When needed, adjustmentwasmade for CKD traits as well. The analysis
had a power of 80% to detect a statistically significant Pearson correla-
tion R of at least 0.284 with a significance threshold of 0.05.
Fig. 1. Correlation between functional and structural changes of CKD. Correlation graphs of eGF
(y-axis; %) (B). Both parameters have a statistically significant negative correlationwith eGFR,w
interstitial fibrosis (x-axis %) and glomerular sclerosis (y-axis %), Pearson r = 0.883, p b 0.01.
2.5. Weighted Gene Co-Expression Network Analysis (WGCNA)

An unsigned co-expression network was built using the WGCNA
package in R. Based on an adjacency matrix, genes with highly similar
co-expression relationshipswere grouped together by performing aver-
age linkage hierarchical clustering on the topological overlap. The Dy-
namic Hybrid Tree Cut algorithm was used to cut the hierarchal
clustering tree, and modules were defined as branches from the tree
cutting. To obtain moderately large and distinct modules, we set the
minimum module size to 30 genes and the minimum height for merg-
ing modules at 0.25. The modules were randomly color-labeled. Each
module was summarized by the first principal component of the scaled
(standardized) module expression profiles (referred to as module
eigengene). Themodule eigengeneswere then analyzed for correlations
with clinical phenotypes such as eGFR and interstitial fibrosis.

2.6. Pathway Analysis

Transcripts with expression levels showing significant linear corre-
lation with eGFR or interstitial fibrosis were separately exported to
DAVID bioinformatics resource software, where it was analyzed using
Gene Ontology (GO).

2.7. Microarray Data Set

The data has been deposited to a public repository and can be
accessed through: ArrayExpress: E-MTAB-5929, E-MTAB-2502.

3. Results

3.1. Clinical and Histological Description of the Cohort

Our primary dataset contained 95 human microdissected tubule
samples from subjects with a range of eGFR, from normal values to ad-
vanced CKD, somewith underlying hypertension and/or diabetes (Table
1). (Ledo et al., 2015) All sampleswere collected fromnon-tumorous re-
gions of renal cancer nephrectomies; therefore they represent an unbi-
ased collection. We had collected extensive clinical information
including age, race, gender, diabetes and hypertension status, medica-
tion use and urine parameters, as well as creatinine and BUN values.
Comprehensive histopathological analysis included a disease state-
blinded description of 19 parameters, including glomerular, vascular,
tubule and interstitial descriptors. The diagnosis of diabetic and hyper-
tensive nephropathy was based on well-established clinicopathologic
criteria. We did not have samples with glomerulonephritis, given that
it is a rare condition in the general population. Since tubulointerstitialfi-
brosis in diabetic and hypertensive CKD is histologically indistinguish-
able and prior gene expression analysis has not been able to identify
molecular differences based on disease etiology, we used samples
R (x-axis, ml/min/1.73m2) with interstitial fibrosis (y-axis; %) (A) and glomerular sclerosis
ith Pearson r of−0.656 and−0.579 respectively, p b 0.01. (C) Positive correlation between

array-express:E-MTAB-5929
array-express:E-MTAB-2502
Image of Fig. 1


Fig. 2.Weighted Gene Co-expression Network Analysis (WGCNA). (A) Hierarchical clustering dendogram of the samples. The clinical traits; fibrosis, glomerulosclerosis, GFR, age, gender,
race, DMandHTN are shown at the bottom. (B) Heatmap representing the Topological OverlapMatrix (TOM) among all genes in the analysis. Degree of overlap is represented by the color
shade; darker color represents higher overlap and lighter color represents lower overlap. The gene dendrogram is shown on the left, module assignment is shown at the top. (C) Average
linkage hierarchical clustering dendogram of the genes. Input was the topological overlap based dissimilarity. Modules, designated by color code, are the branches of the clustering tree.
Unsupervised hierarchical clustering heatmap (D) and dendogram (E) of 16module eigengenes and two clinical traits; eGFR and fibrosis. Red box indicatesmodules that strongly cluster with
eGFR; Black box indicatesmodules that strongly clusterwithfibrosis. (F) Correlation ofmodule eigengenes to clinical andpathological traits. Each rowcorresponds to amodule eigengene and the
columns are clinical traits. The values in the cells are presented as “Pearson r (p value)”, and color-coded by direction and degree of the correlation (red= positive correlation; blue= negative
correlation). 16 modules of co-expressed transcripts are presented with their respective correlation parameters to clinical and pathological traits. (G-I) Pathway analysis using gene ontology
(GO) showing the top pathways enriched in the gene-sets of the black (G), yellow (H) and brown (I) modules. (J) Network of genes in black, yellow and brown modules; distance
between nodes is determined by strength of the correlation.

270 P. Beckerman et al. / EBioMedicine 24 (2017) 267–276

Image of Fig. 2


271P. Beckerman et al. / EBioMedicine 24 (2017) 267–276
from both etiologies in our analysis. In our dataset the mean eGFR, cal-
culated by CKD-Epi formula, was 60.07± 29.78ml/min/1.73m2, ranged
from 3.8 to 134ml/min/1.73m2. The full clinical information and patho-
logical characterization can be found under Table 1.

We then compared clinical and pathological parameters of the sam-
ples. As previously described, interstitial fibrosis showed a strong statis-
tically significant negative correlation with eGFR (Pearson r = −0.656
p = 4.4E-13). Similarly, glomerulosclerosis also correlated negatively
with kidney function (Pearson r = −0.579 p = 5.6E-10). Because of
their relatedness, interstitial fibrosis correlated positively with glomer-
ular sclerosis (Pearson r = 0.883, p = 2.8E-11) (Fig. 1).

3.2. Weighted Gene Co-Expression Network Analysis (WGCNA) Identifies
Critical Modules Correlating with Renal Phenotypes

Transcript analysis was performed on each microdissected tubule
sample. Most prior genomewide expression profiling examined the as-
sociation between CKD status (based on GFR) and expression changes.
We performed an unbiased gene expression analysis to identify co-
expressed genes andmodules in our dataset.Weighted gene co-expres-
sion network analysis is a systems biologymethod to understand corre-
lation patterns among genes across different samples. WGCNA can be
used to find clusters or modules. The eigengene is then used to summa-
rize modules, and the association between these vectors and sample
traits such as clinical parameters can be studied. (Langfelder and
Horvath, 2008).

Using the WGCNA analysis (Fig. 2A–C) we identified 16 co-
expressed modules in our dataset (Fig. 2C). The dataset had two very
large modules (turquoise and blue) and several smaller modules, indi-
cating that the expression levels of a large number of genes strongly cor-
relate. We examined the association between modules and included
GFR and fibrosis as important clinical measurements. Surprisingly, GFR
and fibrosis did not cluster together, but rather each CKD trait clustered
with a different set of gene expression modules, indicating differences
between fibrosis and eGFR (Fig. 2D, E). Next we examined the associa-
tion between each of the modules and clinical and histological traits,
including eGFR, fibrosis, age, race and diabetes or hypertension status
Fig. 3.Gene expression levels linearly correlatingwith eGFR. (A) Heatmap depicting hierarchica
below. DM = diabetes mellitus, HTN = hypertension, BMI = body mass index. (B) Identifi
adjustment to 5 variables (age, race, gender, DM and HTN status). (C) Pathways analysis u
correlated genes.
(Fig. 2F). One of the largest gene modules (blue) strongly correlated
with hypertension (HTN) and diabetes status (DM) but not with eGFR
or fibrosis, indicating that HTN and DM significantly impact gene ex-
pression changes independent of kidney function. Focusing on eGFR
and fibrosis, we found that while several modules correlated both
with fibrosis and eGFR, some modules correlated with one phenotype
but not the other, further suggesting these are not similar processes.

We further examined the specific modules (brown, yellow and
black) that showed the strongest correlation with CKD traits (Fig. 2).
To understand these modules we performed pathway analysis of the
genes in eachmodule. The blackmodule strongly clusteredwith fibrosis
(p=10−12) and onlymodestlywith GFR (p=0.003). Thismodulewas
enriched for genes encoding for T-cell and collagen associated pathways
(Fig. 2G). It is worth noting that there was a positive correlation be-
tween this module and fibrosis, i.e. T cell and collagen related pathways
were up regulated with fibrosis advancement. On the other hand, genes
in the brown and yellowmodules, which clusteredwith the GFR trait (p
= 10−12 with GFR), mostly encompassed genes with metabolic func-
tions, including fatty acid metabolism (Fig. 2H, I). These modules
showed positive correlation with GFR, indicating that their levels are
lower as CKD advances. The genes in these modules formed a tight net-
work (Fig. 2J). In summary, the WGCNA method has identified 16
coregulatedmodules in human kidney samples. T-cell biology and colla-
gen associated genes correlated strongly with fibrosis while mitochon-
drial and metabolic genes showed strong correlation with eGFR.

3.3. Gene Expression Changes Correlating With eGFR are Mainly Mediated
by Fibrosis

Our next step was to define gene expression profiles that correlate
with specific phenotypic changes by identifying a comprehensive list
of transcripts whose levels show linear correlationwith kidney function
in our cohort. Our current sample size of 95 samples provided an 80%
power to detect a correlation coefficient of at least 0.28 with a signifi-
cance threshold of 0.05. Using a linear regression model and eGFR as
the outcome, our analysis identified 3156 genes whose expression
showed significant linear correlation with eGFR (FDR b 0.05) (Table
l clustering of the eGFR-correlated genes, ordered by eGFR. Clinical parameters aremarked
cation of genes whose expression show linear correlation with eGFR with and without
sing Gene Ontology of non-adjusted (top panel) and adjusted (bottom panel) eGFR-

Image of Fig. 3


Fig. 4.Gene expression changes strongly correlatewith structural damage. (A) Identification of geneswhose expression show linear correlationwith fibrosiswith andwithout adjustment
to 5 variables (age, race, gender, DM and HTN status) and to eGFR. (B) Heatmap depicting hierarchical clustering of the genes correlated with fibrosis, ordered by fibrosis. eGFR of the
corresponding samples is indicated below. (C) Pathways analysis using Gene Ontology of non-adjusted (top panel), adjusted to 5 variables (middle panel) and adjusted to 5 variables
+ eGFR (bottom panel) fibrosis-correlated genes. (D) Graphs of 6 genes that significantly correlate with fibrosis and not with eGFR. Gene expression levels are plotted against fibrosis
and eGFR; the bottom panel shows positive tubular staining of the indicated genes (Human Protein Atlas; www.proteinatlas.org). (E) Venn diagram depicting genes correlating with
fibrosis (3189 genes) and with eGFR (647 genes) and their overlap.
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S1). Expression levels of these eGFR-correlated transcripts were able to
cluster samples based on their eGFR levels better than other clinical pa-
rameters (Fig. 3A). Even though eGFR already includes adjustment for
age, race and gender, we performed additional analysis in whichwe ad-
justed for these variables. After adjusting for these covariates plus HTN
and DM, the number of genes significantly correlatedwith eGFR has de-
creased (3156 vs. 647) (Fig. 3B, Supplementary Table S2), indicating
that these variables play an important role in gene expression associa-
tion.. Geneswhose expression significantly correlatedwith eGFRhad di-
verse functions, including immune system, metabolism, developmental
pathways and cell adhesion (Fig. 3C). Interestingly, no genes showed in-
dependent association with eGFR once we adjusted the model for the
degree of fibrosis in the biopsy sample, indicating that the association
between gene expression and kidney function is mediated by the de-
gree of structural damage.

Next, we set to identify genes whose expression correlates with
tubulointerstitial fibrosis. Using an unadjusted linear regression model
we found that the level of N5000 genes correlated with fibrosis (Table
S3). Even after adjusting for age, race, gender, diabetes and hyperten-
sion status we found N3000 correlating genes (Table S4), indicating a
strong correlation between fibrosis and gene expression.

To understandwhether the gene expression and fibrosis correlation
is mediated by eGFR, we adjusted themodel for eGFR. The expression of
1654 probes showed significant association with fibrosis even after

Image of Fig. 4
http://www.proteinatlas.org
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adjusting for eGFR at the time of the tissue collection (Fig. 4A, Table S5).
Taken together with the previous results, these data indicate that struc-
tural changes are key intermediates of gene expression changes in CKD.
Genes that correlated with fibrosis were able to cluster genes based on
the degree of fibrosis (Fig. 4B, C). Fig. 4D shows examples of genes
whose levels correlate with fibrosis but not with eGFR. Further dissection
of these genes and pathways indicated enrichment for metabolism: fatty
acid metabolism (e.g. Acetyl-CoA Acetyltransferase 1, Carnitine
Palmitoyltransferase 2), amino acid metabolism (e.g. citrate synthase,
malate dehydrogenase) and oxidation-reduction processes (e.g. carbonyl
reductase 4, aldehyde dehydrogenase 1). There was also a significant en-
richment of immune system related pathways including T-cell activation
and leukocyte migration (e.g. T cell receptor proteins, CD molecules and
chemokine ligands and receptors). We examined whether we can detect
differences based on the directionality of the pathways correlation. We
found that genes whose expression levels are positively correlated with
fibrosis (i.e. increased in fibrosis)weremostly enriched for immune relat-
ed pathways, while genes whose expression decreased were mostly
enriched for metabolic processes.

In summary our phenotype driven gene expression analysis identi-
fied a large number of genes correlating with these phenotypes. We
found that the association between gene expression and kidney func-
tion (eGFR) is mediated by the degree of the structural damage (fibro-
sis). Immune, T-cell and collagen pathways showed the strongest
enrichment in fibrosis, while eGFR correlating genes were enriched for
metabolism.
3.4. Correlation between Phenotype and Gene Expression

As we determined that structural changes such as fibrosis are key
drivers of gene expression changes, we analyzed the strength of the
association between fibrosis and clinical parameters and gene expres-
sion (Fig. 5). As expected, based on the overlapping phenotype between
fibrosis and eGFR, a large number of eGFR-correlated transcripts signif-
icantly associated with fibrosis as well, indicating that function and
structure are indeed two complementary manifestations of CKD.
However, as shown on the plot, the association between the clinical
phenotype of fibrosis and GFR was stronger than the association
between GFR and fibrosis overlapping gene expression profiles, thus
Fig. 5. Association between fibrosis and clinical parameters and gene expression changes.
The x-axis shows the Pearson correlation between clinical and pathological parameters
and fibrosis, the y-axis shows the correlation between ratio of genes correlated with
fibrosis and the depicted parameters. Note that the correlation between fibrosis and GFR
is stronger then the gene expression overlap.
further supporting that kidney gene expression reflects fibrosis better
than it does eGFR. Overall the clinical correlation between fibrosis and
clinical parameters such as blood pressure, aswell as histological chang-
es, were also stronger than its association with gene expression chang-
es. In summary, gene expression levels are strong read-outs for
structural changes and less for functional changes (eGFR), suggesting
that these are not fully synonymous processes.

3.5. Validation of Gene-Sets Correlating with CKD Traits

To validate our findings, we used genome-wide transcript profiling
that included 41 microdissected tubule samples (Table 1). These sam-
ples were distinct from the primary set, and were collected from sub-
jects with a range of GFR and with the presence or absence of DM,
HTN and diabetic and hypertensive CKD. Also, probe labeling was per-
formed using a different method. First, using this independent cohort
we validated the correlation of a subset of the top highly eGFR- or fibro-
sis- correlated genes identified through the primary dataset analysis;
the top 5 genes of each group are presented in Fig. S1A. A linear regres-
sion analysiswas then performed usingGFR and fibrosis as outcomes. In
the unadjusted model, we were able to validate the association for
about 40%–60% of the genes, which was expected given that this is a
much smaller dataset. (Fig. S1B). The strength of the correlation was
also reproducible in the two databases. In addition to individual gene
expression we have also analyzed the differential regulation of specific
pathways. Similar to the primary dataset, CKD was associated with dif-
ferential expression of immune and metabolic genes in the replication
dataset as well. The direction of association in the replication dataset
was the same as in the primary dataset (Fig. S1C).

3.6. Characterization of Previously Published Biomarker Data

Next we interrogated the renal expression of several published and
validated biomarkers (Fig. 6).(Fassett et al., 2011) The level of epidermal
growth factor (EGF) in renal tubule cells strongly correlatedwith kidney
function and kidney fibrosis (Ju et al., 2015) (Fig. 6). Indeed, of the pub-
lished biomarkers, EGF showed the strongest correlation both with
eGFR and fibrosis. We found that renal expression levels of fatty acid
binding protein 1 (FABP1) significant correlated both with eGFR and
with fibrosis. This is consistent with the fact that urinary FABP1 levels
predict CKD progression (Matsui et al., 2016) and reflect the severity
of tubulointerstitial damage in CKD kidney biopsies. (Kamijo et al.,
2004) Expression levels of neutrophil gelatinase-associated lipocalin
(NGAL), which is a known marker of CKD progression (Bolignano et
al., 2009) that predicts renal function decline (Wu et al., 2010), showed
a better correlation with renal fibrosis than with eGFR, but had a statis-
tically significant association with eGFR as well (Fig. 6). There was no
identified statistically significant correlation between renal tubule ex-
pression of KIM1, IGFBP1 and IL18 and kidney function or kidney fibro-
sis (Fig. 6). We validated the correlations of these biomarkers using the
independent validation dataset (FigS2).

Interestingly while increased urinary levels of FABP1 are associated
with decreased GFR and poor prognosis, the expression of this gene
showed inverse relationship with decreased FABP1 expression levels
in low eGFR samples (Fig. 6). On the other hand, NGAL and EGF renal tu-
bule expression correlated with their reported urinary levels in CKD, as
NGAL urinary levels are increased and EGF urinary levels are decreased
in CKD patients. (Bolignano et al., 2009; Ju et al., 2015) In summary, we
found that renal expression of only FABP1, NGAL and EGF correlates
with kidney function and fibrosis, indicating that these are critically im-
portant biomarkers.

4. Discussion

eGFRcreat is the most widely used surrogate marker for kidney dis-
ease stage and progression in clinical practice, in observational and

Image of Fig. 5


Fig. 6. The relationship between the expression of previously published CKD biomarkers and kidney function and structure changes. Expression levels of the following biomarkers (y-axis): FABP1, NGAL, KIM1, IGFPB1, IL18 and EGF and eGFR (x-axis)
and interstitial fibrosis (x-axis). The R2 value was examined for linear correlation. *p value b 0.05.
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interventional clinical trials. (Lambers Heerspink et al., 2014; Stevens et
al., 2006) Most studies use eGFR as the primary outcome measure, as it
is considered to reflect the pathological process in the kidney. Doubling
of serum creatinine is the most commonly used outcome to obtain reg-
istration for a new drug. (Weldegiorgis et al., 2015) On the other hand
eGFR is a dynamic parameter that is highly sensitive to hemodynamic
changes including blood pressure alterations; therefore structural
changes, such as fibrosis, might better represent CKD state and the fu-
ture functional decline. Our aim was to better understand the related-
ness of these phenotypes by using gene expression profiling. Using
unbiased (WGCNA) and directed approaches we found significant dif-
ferences in genes correlating with fibrosis and eGFR, indicating key dif-
ferences between structural and functional manifestations of CKD.

The key finding of our study is that gene expression levels show a
stronger correlation with fibrosis than with eGFR and indeed the rela-
tionship between gene expression and eGFR is actually mediated by
the degree of structural damage. Fibrosis is an excellent predictor of
CKD progression. (An et al., 2015; Rodriguez-Iturbe et al., 2005;
Takaori et al., 2016; Mariani et al., 2017) In the transplant literature,
the association between interstitial fibrosis and graft survival or eGFR
change is well established (reported correlation coefficient around
−0.48).(Gonzales et al., 2016; Diaz Encarnacion et al., 2004) It has
also been suggested that in diabetic nephropathy, interstitial fibrosis
predicts eGFR decline better than proteinuria alone or baseline eGFR.
(Mise et al., 2015) In recent years the appreciation for fibrosis has in-
creased and several large companies have developed programs aiming
to selectively target fibrosis (Mathew et al., 2011), therefore under-
standing genes and pathways that drive fibrosis is critically important.
Recent animal model studies indicate that reversing fibrosis can poten-
tially improve kidney function. (RamachandraRao et al., 2009; Lin et al.,
2002).

Unbiased and directed analysis indicated that immune related path-
ways show the strongest correlation with fibrosis development. Im-
mune system activation has also been consistently observed in
diseases traditionally referred to as “non-immune mediated” kidney
diseases such as hypertension and diabetic CKD.(Navarro-Gonzalez et
al., 2011) Indeed, many current clinical studies targeting cytokines
(such as MCP1)(Menne et al., 2016) (ClinicalTrials.gov Identifier:
NCT01547897) and proinflammatory mediators (such as JAK)
(ClinicalTrials.gov Identifier NCT01683409) have shown promise in re-
ducing proteinuria in early clinical studies. The enrichment for immune
system genes in fibrosis likely represents the influx of inflammatory
cells rather than increased expression of inflammatory genes by resi-
dent cells. (Meng et al., 2014) This inflammatory cell influx is synony-
mous with the fibrotic stroma. Our unbiased analysis was highly
sensitive in identifying inflammatory changes in fibrosis.

Our studies indicate a strong correlation between metabolic gene
expression and kidney functional changes such as GFR. These results
are very much in line with multiple recent publications indicating the
importance of energy supply, including the role of fatty acidmetabolism
andmitochondrial function in acute and chronic kidney disease. (Mount
and Power, 2015; Kang et al., 2015) These are more in line with the hy-
pothesis that some of the functional changes could be acute and may
correlate closer with acute functional-metabolic changes without asso-
ciating with structural damage. Animal model studies show a strong
role of metabolic genes both in acute and chronic injury. (Han et al.,
2016; Woroniecka et al., 2011).

For the first time, we have performed a systemic analysis of kidney-
specific gene expression changes of previously proposed urinary bio-
markers. Easily accessible surrogate tissue samples such as blood or
urinemight be well suited to identify disease biomarkers, but do not al-
ways reflect renal pathology. (Ledo et al., 2015; Ju et al., 2015;Martini et
al., 2014) For example, while biomarkers whose urinary levels were
shown to be increased in patients with lower GFRweremostly associat-
ed with elevated kidney expression in samples with lower eGFR in our
database, sometimes their gene expression level in such samples was
decreased. Furthermore some of the urinary biomarkers did not show
an association of kidney gene expression levels with eGFR. A possible
explanation is that some of these markers could be filtered, therefore
their expression level may not change in the kidney. Also, the predictive
value of these markers has been examined using an unadjusted model
and they may not replicate in the adjusted model.

Limitations of the work include the use of nephrectomies, instead of
kidney biopsies. However, as all samples were obtained from nephrec-
tomies this would represent a systemic bias and not a disease state-spe-
cific bias, and therefore would not change the differential expression
analysis between the different groups. Unfortunately, comparable size
expression data obtained from kidney biopsies are not available for dia-
betic and hypertensive CKD subjects. Moreover, as kidney biopsies are
not routinely performed when diabetic or hypertensive nephropathy
is the suspected diagnosis, when such biopsies are done, it is often for
unusual clinical characteristics (e.g. rapid deterioration of kidney func-
tion) that may introduce a bias limiting the generalizability of the re-
sults. The use of nephrectomies allowed for certain advantages which
would not be possible if biopsies were used, such as the ability to ana-
lyze sampleswith andwithout DMor HTN in the absence of kidney dis-
ease. The WGCNA analysis indicates that a large number of genes
correlate with DM and HTN, but not with kidney function; thus
highlighting that collecting and analyzing such samples is essential to
understand CKD that occurs in the presence of DM and HTN.

In summary, genome-wide transcriptome analysis ofmicrodissected
human kidney samples and computational analyses indicates strong
correlation between gene expression levels and structural changes,
which mediate the relation of gene expression levels and kidney func-
tion levels; and highlights key differences between structural and func-
tional manifestations of kidney disease.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.ebiom.2017.09.014.
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