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Spatial big data have the velocity, volume, and variety of big data sources and contain additional geographic information. Digital data
sources, such as medical claims, mobile phone call data records, and geographically tagged tweets, have entered infectious diseases
epidemiology as novel sources of data to complement traditional infectious disease surveillance. In this work, we provide examples of
how spatial big data have been used thus far in epidemiological analyses and describe opportunities for these sources to improve
disease-mitigation strategies and public health coordination. In addition, we consider the technical, practical, and ethical challenges
with the use of spatial big data in infectious disease surveillance and inference. Finally, we discuss the implications of the rising use of
spatial big data in epidemiology to health risk communication, and public health policy recommendations and coordination across
scales.
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During one of epidemiology’s formative moments, John Snow
mapped London households in which residents had cholera and
succeeded in highlighting the risk of cholera associated with the
Broad Street pump. Since then, spatial investigations have played
a critical role in improving our understanding of the associations
between risks and disease outcomes. In infectious disease epi-
demiology, we ask, “Which populations are at higher risk for
disease?” “Where did this outbreak originate?” and “Where can
we expect future disease outbreaks to arise?” Fundamentally,
these are spatial questions that rely on spatial data for answers.

Traditional infectious disease epidemiology is built on the
foundation of relatively high-quality and high-accuracy data
on disease (eg, serological diagnostic assays) and behavior (eg,
vaccination surveys). These data are usually characterized by
small size, but they benefit from control groups or designed ob-
servational samples from known underlying populations, thus
rendering it possible to make population-level inferences. On
the other hand, digital infectious disease epidemiology typically
uses existing digital traces, repurposing them to identify pat-
terns in health-related processes. Digital data are electronic
and can often be characterized as big data when they are pro-
duced in large volumes (ie, when there is a large number of sub-
jects or a large number of measurements per subject), with high

velocity (ie, when data are created in near real time), and have
variety in sources and organizational structures [1]. When big
data are characterized by fine spatial granularity, in which point
or areal locations are identified, we refer to them here as spatial
big data. Big data provide opportunities for infectious disease
epidemiology and public health because they increase accessi-
bility to populations over space and time; data on personal be-
liefs, behaviors, and health outcomes are now available at
unprecedented breadth and depth. The trade-off to this tremen-
dous access is the potential for loss of quality and accuracy.
Streams of digital data relevant to public health may serve as
proxies for a desired measure, but these data sets may not
meet the assumptions for standard methods of epidemiological
comparison (eg, self-reported symptoms on social media and
serological diagnoses both serve as proxies for so-called true
cases, but they have different biases and collection procedures
and represent different populations).

The trade-off between access and accuracy and the task of
separating true signal from large and varied noise characterizes
the challenge and opportunity of big data for infectious disease
epidemiology [2]. In this article, we focus on spatial big data and
its applications to the field of spatial epidemiology. We highlight
the opportunities for spatial big data to improve spatial model-
ing and data coverage and describe ongoing challenges as spatial
big data become more pervasive in informing disease surveil-
lance, disease control, and public health policy.

SPATIAL BIG DATA OPEN NEW DOORS
IN EPIDEMIOLOGY

True to the promise of variety in big data streams, several famil-
iar technologies produce spatial big data that can be used for
infectious disease surveillance and modeling. Social media
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sites like Facebook and Twitter allow users to tag individual
posts with specific locations, linking geography to specific
health behaviors. Mobile phones send signals with global posi-
tioning system locations, and their call data records are spatially
referenced through cell tower locations, both of which enable
the measurement of human activity and mobility [3, 4]. Web
search data may capture user location through Internet protocol
addresses, and online encyclopedia (Wikipedia) access logs may
identify locations on the basis of the search language [5, 6]. Ad-
ministrative medical claims and pharmacy transactions indicate
the location of healthcare facilities and drugstores where pa-
tients seek care and medications [7, 8]. Restaurant reservation
cancellations on sites like OpenTable may provide insight into
disease incidence in specific cities [9].

Infectious disease epidemiology has already witnessed an im-
pact from spatial big data, and the development of new methods
and improvements to computational efficiency will only in-
crease the potential of these data sources. Satellite imagery to
infer climate, land use, and population density information
has contributed to a better understanding of the spatial distri-
bution of critical mosquito disease vectors and the seasonal ep-
idemic dynamics of measles [eg, 10, 11]; and HealthMap, an
automated, online news and outbreak reporting aggregator,
has enabled the assimilation of disparate sources of disease oc-
currence data and has been used to examine spatial dynamics of
cholera [12]. Mobile phone call data records have provided in-
sights into human mobility that have informed risk maps, im-
portation potential, and spatial dynamics of dengue and malaria
[eg, 4]. Medical claims data have been used to examine spatial
heterogeneity in influenza epidemic timing and severity [13,
14], while geographically referenced Twitter data have been
used to identify spatial antivaccination sentiment [15].

While these studies with spatial big data have leveraged the
fine spatial resolution to develop a detailed understanding of
disease risk, there remain untapped opportunities with real-
time surveillance, large-scale ecological inference, and adaptive
disease mitigation strategies. Harnessing disease data from dig-
ital sources may enable epidemiological analyses to be per-
formed at finer spatial scales in areas with poor coverage
from traditional public health surveillance, and traditional
and digital sources of spatial big data may be combined to ac-
count for the bias and gaps in each [eg, 16]. The assimilation of
multiple spatial big data sources through flexible statistical
modeling methods and the continuous nature of data streams
could enable near real-time dynamic disease mapping and risk
mapping in the near future. For example, Bayesian statistical
approaches have emerged as tools for merging multiscale big
data sources, incorporating explicit spatial dependencies into
maps and models, and providing a framework for joining dis-
ease surveillance data across spatial scales while explicitly cap-
turing the variation in measurement bias across locations
[eg, 17]. Finally, access to multiple spatial scales of data allows

one scale with missing observations to borrow information
from a different scale through the addition of contextual effects
in modeling inference [18].

SPATIAL BIG DATA PRESENT TECHNICAL
CHALLENGES

While big data offer significant opportunities for epidemiolog-
ical modeling and analysis, they also present a variety of techni-
cal and practical challenges. The measurement of incomplete
and unrepresented populations, the lack of consistency and re-
liability in data over time, and the need for data and model val-
idation are broad challenges with big data and statistical analysis
that are discussed elsewhere [eg, 19, 20]. Here, we discuss a nar-
rower set of challenges that arise specifically from the spatial na-
ture of big data.

Spatial Coverage and Representation
Spatial big data may provide precise spatial information, but
careful users should question the validity of available data.
For example, we know that sources of spatial big data have bi-
ases in usership rates and demographic characteristics by loca-
tion (Figure 1A) [21]. Medical claims record data only from
insured and care-seeking populations, which may vary system-
atically according to socioeconomic and demographic charac-
teristics. Social media sites where users volunteer spatial data
tend to have more users and higher-quality information per
capita in urban areas as compared to rural areas [21]. Mobile
phone ownership varies by sex and literacy, and phone sharing
between multiple individuals and SIM card switching compli-
cate comparisons of these data across locations [3, 4]. As we
cannot often measure the heterogeneities in user populations,
these heterogeneities can translate into poor choices in sam-
pling design (eg, how to stratify samples to get a representative
population). Beyond heterogeneities in user populations, the
populations captured by big data (eg, Twitter users) are not usu-
ally relevant to epidemiology; even if we could generate an unbi-
ased sample of the population, it may not provide information
important to public health. All of these issues complicate analyses
that seek to compare different locations. Ultimately, issues with
spatial coverage and representation cause problems for statistical
inference, which often depends on assumptions of independent
random variation and representative sampling for validity. Future
research should compare analyses of spatial big data and analyses
of designed observational data, to demonstrate the validity of spa-
tial big data samples and to understand which features of a big
data sample can produce robust statistical inference.

Spatial Uncertainty and Noise
Each source of big data provides a different type of spatial insight,
despite the high spatial resolution among the sources. Users of
social media volunteer their geographical locations in their pro-
files or posts, while Internet search engines can log spatial infor-
mation automatically every time a Web search is performed.
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Sometimes the data are tied to a static location, as in the case of
medical claims and healthcare facilities, but the cell towers asso-
ciated with call data records and the locations of geographically
tagged tweets vary dynamically over time (Figure 1B). Across the
combinations of features—self-reported or automated, and static
or dynamic—among these data sources, there are additional lay-
ers of uncertainty to consider in the context of epidemiology. For
one, when spatial information in big data is not clearly specified,
systematic biases in the results may be generated from the data-
cleaning process itself (eg, addresses may be less likely to be geo-
located in rural areas) [eg, 22]. Second, locations of potential
transmission events will often differ from locations where disease
is reported. While these components are explicitly differentiated
in medical claims data (ie, transmitted in the community and re-
ported at healthcare facilities), social media posts affiliated with
dynamic movements could provide undifferentiated information
about both transmission and reporting event locations. Big data
provide information at unprecedented levels of spatial precision,

but the spatial information fundamental to infectious disease ep-
idemiology (eg, location and conditions that caused a disease
transmission event) continues to remain obscured. As big data
becomemore prevalent in epidemiological analysis, public health
officials should take care not to conflate spatial precision with
spatial accuracy in statistical inference for disease transmission
and control.

Spatial Scales and Misalignment
When spatial big data are available at the level of individuals or
precise spatial coordinates, practitioners may need to choose the
scale of analysis and aggregate data accordingly. Analyzing data
at the individual scale is prone to overfitting and the atomistic
fallacy, in which we may make incorrect inferences at the group-
or population-level on the basis of relationships observed in
individual-level data [23]. For example, if we observe an associ-
ation between body mass index (BMI) and hospitalization for
influenza among individuals, it may be incorrect to assume

Figure 1. A, Spatial big data have spatial biases in the populations they represent. For instance, as reported by the 2013 American Community Survey, there is spatial
variation in home Internet access across the United States, which might affect the populations generating search query data in Google Trends. B, With static spatial data (left),
individuals (represented with different colors) report case events (points) at fixed locations. For instance, 2 individuals visited the same physician’s office with symptoms
multiple times (points along the time axis), so their events are recorded at the same position along the space axis (see overlapping trajectories in the lower part of the
space axis), while another individual visited a different physician’s office with symptoms 3 times in a similar period (upper part of space axis). Events from the same individual
are connected with a dashed line. With dynamic spatial data (right), events are recorded as individuals move through space. For example, the dark blue individual (see trajectory
that begins earliest on the time axis) recorded 4 events when they tweeted about symptoms at work, at the grocery store, at the pharmacy, and at home, so their case events
occur at 4 different positions along the space axis. Events occur in time dynamically (as shown in this figure), but events may also be aggregated to regular intervals (eg,
weekly). C, Data at different spatial scales may have different magnitudes and variability in time, after adjustment for population size, even if they are derived from the same
data source. For instance, we observe time-varying fluctuations and variation in epidemic peak timing and magnitude in the county-level disease data (gray) that are lost in the
state-level data (black). D, One possible method to protect privacy is to mask individual-level data by aggregating collected data to larger spatial resolutions. In reality, in-
dividuals (black circles) may be connected to other individuals through mobile phone calls (black lines). The publicly released data may be aggregated to the level of neigh-
borhoods (green circles), and the number of calls between individuals from different neighborhoods (green lines) would be represented with different weights (here, depicted
with varying thickness according to number of individual calls).
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that populations with a high average BMI would have higher
rates of influenza-associated hospitalization. On the other
hand, analyzing data at aggregated scales is prone to the ecolog-
ical fallacy, in which inferences about individuals are derived
falsely from population-level observations [23, 24]. As an exam-
ple, if we observed a negative association between average in-
come and cholera prevalence at a national scale, it would be
erroneous to assume that poor individuals have a higher risk
of cholera than wealthy individuals. Similarly, statistical rela-
tionships between predictors and disease outcomes may change
when analyses are performed at different spatial aggregations.
For instance, Google Flu Trends attempted to estimate influenza
activity across different regions of the United States by model-
ing the relationship between Google search terms and visits for
influenza-like illness (ILI), as reported in traditional influenza
surveillance systems [5]. However, the set of search terms iden-
tified as “most predictive” of ILI activity were tuned to a specific
spaital scale (region-level), and may not apply to finer-resolu-
tions (eg, zipcode-level) [5, 25]. Additionally, spatial questions
often require the use of multiple data sources, and spatial mis-
alignment arises when data are collected at different spatial
scales and need to be incorporated into a single analysis. For in-
stance, we may seek to understand the spatial distribution of
cases at the state level when data were collected at the parish
or county level (switching between 2 areal scales), or translate
case data associated with household coordinates to cases at
the county level (switching between point and areal scales; Fig-
ure 1C). Spatial big data have expanded the types of spatial in-
formation available for data aggregation—posts geographically
tagged on social media might provide information at the level of
countries, cities, neighborhoods, landmarks, and latitude-longi-
tude coordinates—potentially engaging statistical change of
support problems, even for one individual in a single day
[24]. The multiplicity of highly resolved spatial scales also
poses concerns for standard data checks, since traditional public
health data will not necessarily be available at scales appropriate
for validating comparisons to spatial big data [7, 16]. Finally,
choices about how to deal with spatial misalignment have con-
sequences for modeling results. For instance, recent studies have
asked whether Zika virus–associated microcephaly was occur-
ring at unusually high rates in different Brazilian states. Birth
rate data might be collected at one spatial scale according to reg-
ular demographic surveys, but data systems tracking microce-
phalic live births would likely have finer spatial detail.
Depending on the choice of spatial scale, the combination of
these 2 data sources creates the potential for both overestima-
tion and underestimation of microcephaly rates.

Spatial Confidentiality and Ethics
The practice of collecting data without seeking appropriate eth-
ical approval presents some risk for digital infectious disease ep-
idemiology, and the access to fine-grain spatial information

further deepens this concern. Safeguards currently implement-
ed for collecting and sharing spatial big data have focused on the
obfuscation and aggregation of shared data to protect privacy
and on the anonymization and de-identification of individuals.
Many research institutions have standardized practices to pro-
tect individual privacy that follow the guidance of institutional
review boards, disclosure review boards for public use data, and
federal laws (eg, the Health Insurance Portability and Account-
ability Act of 1996, in the United States), but these organiza-
tions do not often recognize high-resolution spatial data as a
source that should be covered under human subjects protection
policies [26]. Several studies have provided examples in which
seemingly anonymized data could be mined (or linked with
other databases) for de-anonymization: de Montjoye et al [27]
showed that 4 spatiotemporal position points frommobile phone
records can be sufficient to uniquely identify 95% of individuals
in a large de-identified data set; and Homer et al [28] showed that
the sheer quantity of data collected could be sufficient to re-iden-
tify individuals in a genetic database. These issues already push
the limits of existing ethical review mechanisms and our under-
standing of de-anonymization. In the future, guidelines to protect
privacy and confidentiality may require the masking of individ-
ual-level records through the aggregation of data to coarser spa-
tial resolutions (Figure 1D), the provision of synthetic data sets
that attempt to mimic underlying distributions [29], or the distil-
lation of spatial big data to parameters commonly used in epide-
miological models. Investigations may consider the optimal
choice of spatial scale in the context of trade-offs between the ac-
curate representation of process heterogeneity, the protection of
privacy [26], and the improvement of computational efficiency
[30]. Nevertheless, public data become increasingly vulnerable
to breaches of privacy as additional data are released and data-
mining techniques improve over time.

IMPLICATIONS FOR PUBLIC HEALTH
COMMUNICATION AND POLICY

The promise of high spatial and temporal resolutions in spatial
big data opens opportunities for change in the standard practice
of public health. In circumstances where adjacent or subordi-
nate administrative units issue separate public health recom-
mendations (eg, US federal, state, and local governments may
issue independent influenza vaccination recommendations),
spatial big data may enable these entities to derive their policies
from analyses of a common data set and encourage coordina-
tion of preparedness activities across scales [eg, 14]. There is a
growing panoply of adaptive, behavioral, and health economic
modeling methods aimed at identifying the most-effective in-
terventions for human and livestock diseases. As these methods
begin to find use during ongoing outbreaks, the combination of
spatial big data and adaptive models could enable the real-time
adaptive management of infectious diseases and the coordina-
tion of disease control efforts across spatial scales.
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In the long term, some sources of big data may become more
readily available at finer spatial resolutions than the administra-
tive regions at which policy decisions are made, even to the level
of the individual. Spatial big data have already changed con-
sumer-marketing strategies: rather than targeting geographic
areas with certain socioeconomic and behavioral characteristics,
marketers can now target individual users on the basis of behav-
iors demonstrated in their digital traces [31]. Should epidemio-
logical modeling and design reflect these cultural changes to
public health data? Perhaps an analogous scenario would see in-
dividual epidemiological data being used to inform optimal in-
tervention strategies, ignoring the administrative boundaries
that typically constrain decision making. It is difficult to imag-
ine how such a public health infrastructure could operate—
resources must still be coordinated and expended by adminis-
trative units, and policy decisions must still apply to populations
(rather than individuals) to maintain feasibility. Nevertheless,
epidemiological analyses with spatial big data expand the pos-
sibilities for multiscale coordination of infectious disease sur-
veillance, response, and forecasting.

The real-time high-volume nature of spatial big data makes
more epidemiological information readily available to policy-
makers, but it also creates challenges for the communication of
public health information. Spatial big data enable small-area anal-
yses, which are simultaneously highly precise to spatial locations
and highly uncertain in modeling results about risk of disease.
Similarly, the rise of epidemic forecasting technologies based on
spatial big data might present predictions about risk and epidemic
outcomes in precise locations even though the forecasts themselves
are subject to uncertainty [16]. Consumers of analyses derived
from spatial big data—clinicians, public health officials, epidemi-
ologists, and modelers—should develop conscientious practices
for communicating uncertainty about spatial results to the public.
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