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SUMMARY

Successful pancreatic ductal adenocarcinoma (PDAC) immunotherapy necessitates optimization 

and maintenance of activated effector T cells (Teff). We prospectively collected and applied 

multi-omic analyses to paired pre- and post-treatment PDAC specimens collected in a platform 

neoadjuvant study of granulocyte-macrophage colony-stimulating factor-secreting allogeneic 

PDAC vaccine (GVAX) vaccine ± nivolumab (anti-programmed cell death protein 1 [PD-1]) to 

uncover sensitivity and resistance mechanisms. We show that GVAX-induced tertiary lymphoid 

aggregates become immune-regulatory sites in response to GVAX + nivolumab. Higher densities 

of tumor-associated neutrophils (TANs) following GVAX + nivolumab portend poorer overall 

survival (OS). Increased T cells expressing CD137 associated with cytotoxic Teff signatures and 

correlated with increased OS. Bulk and single-cell RNA sequencing found that nivolumab alters 

CD4+ T cell chemotaxis signaling in association with CD11b+ neutrophil degranulation, and CD8+ 

T cell expression of CD137 was required for optimal T cell activation. These findings provide 

insights into PD-1-regulated immune pathways in PDAC that should inform more effective 

therapeutic combinations that include TAN regulators and T cell activators.

In brief
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Li et al. perform multi-omic analyses on pre- and post-treatment specimens from a pancreatic 

cancer neoadjuvant platform trial, and identify sensitivity and resistance mechanisms associated 

with anti-PD-1 combination therapy. Results associate tumor-associated neutrophils with poor 

outcomes but CD137+CD8+ T cells with better outcomes, suggesting treatment strategies for 

future interventions.

Graphical Abstract

INTRODUCTION

Immune checkpoint inhibitors (ICIs) are a major breakthrough in cancer therapeutics; 

however, less than 20% of all cancer patients respond to ICIs as single agents (Osipov 

et al., 2019; Sharma and Allison, 2015). Pancreatic ductal adenocarcinomas (PDACs) are 

among the prototypic, immunogenically “cold” tumors because they lack natural infiltration 

of effector T cells (Teffs), the cells that respond to ICIs (Ho et al., 2020). To convert 

PDACs into ICI-responsive tumors, effective immunotherapy strategies are required to (1) 

increase antigenicity, (2) enhance Teff function, and (3) overcome T cell excluding and 

immunosuppressive signals in the tumor microenvironment (TME) (Johnson et al., 2017; 

Popovic et al., 2018). We have been testing the hypothesis that cancer vaccines are effective 

in inducing Teffs that can infiltrate PDACs. We reported that our granulocyte-macrophage 

colony-stimulating factor (GM-CSF)-secreting allogeneic PDAC vaccine (GVAX) can 

induce the formation of tertiary lymphoid aggregates (LAs) in PDACs just 2 weeks 
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following one vaccination (Lutz et al., 2014a, 2014b). Furthermore, programmed death-

ligand 1 (PD-L1) expression is induced on both the tumor epithelial cells and myeloid 

cells within these LAs, suggesting that vaccine therapy may prime PDACs to respond to 

ICIs (Lutz et al., 2014a, 2014b; Tsujikawa et al., 2017). This concept was subsequently 

tested in several preclinical and clinical studies (Soares et al., 2015; Tsujikawa et al., 

2020). These studies showed that it is possible to turn PDACs into immune- responsive 

tumors. However, clinical response rates remain low. Thus, a current challenge is to identify 

additional immune-regulatory signals within the complex PDAC TME that require further 

modification to effectively enhance Teff function and to optimize and maintain activation of 

the most potent Teffs.

Analyses of the PDAC TME mostly come from banked bio-specimen collections instead 

of prospective immunotherapy clinical trials (Danilova et al., 2019; Stromnes et al., 2017). 

Here, we report the initial data analysis of a neoadjuvant platform study where we continue 

to add immune agents to those tested in the previous treatment arm guided by the data 

generated. Prospectively banked paired pre- and post-immunotherapy tumor biospecimens 

collected from the study allowed for the rigorous, multi-omic analyses of changes in the 

TME with treatment and the correlation of these TME changes with clinical outcomes.

RESULTS

Nivolumab enhances vaccine-induced CD4+ and CD8+ T lymphocytes and reduces 
CD4+PD-1+ and CD8+PD-1+ T lymphocyte infiltration into post-treatment PDAC tumors

In this platform clinical trial (NCT02451982), patients with resectable PDAC were 

randomized to receive GVAX only (arm A) or GVAX plus nivolumab (arm B) as 

neoadjuvant therapy and subsequently underwent surgical resection 2 weeks after one 

treatment (Figure S1A). Patients with successful PDAC resection continued to receive the 

same immunotherapy in addition to standard-of-care adjuvant chemotherapy. A biological 

endpoint, namely the increase in intratumoral T helper (Th) 17 signals in arm B versus 

arm A, was chosen as the primary endpoint, as suggested by our prior study (Lutz et 

al., 2014a, 2014b). Secondary endpoints included safety, disease-free survival (DFS), and 

overall survival (OS). There was a trend toward improved DFS and OS in arm B versus arm 

A, although the sample size in this clinical trial was small and only powered to compare 

intratumoral Th17 signals, not clinical outcomes (Heumann et al., 2022). To investigate 

changes in tumor-infiltrating immune cells in PDACs after neoadjuvant immunotherapy 

with GVAX or GVAX + nivolumab, we employed a sequential staining and stripping 

multiplex immunohistochemistry (mIHC) technique (Tsujikawa et al., 2017). Specimens 

were collected from 34 consecutive patients (Figure S1B; Tables S1 and S2). Among them, 

19 patients whose post-treatment surgically resected tumor specimens met the criteria for 

mIHC staining and analysis and who were followed for OS for at least 2 years (Table 

S1) were included in this study. Pre-treatment tumor biopsy cores (Figures S2A and S2B) 

and post-treatment resected tumors were collected (Figures S2C–S2E). Tumor-infiltrating 

tertiary LAs, which were not present in pre-treatment tumors and were induced by vaccine 

therapy as previously described (Lutz et al., 2014a, 2014b; Tsujikawa et al., 2017), were 

identified by peripheral node addressin (PNAd)-marked high endothelial venules (HEVs) 
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on all 19 post-treatment tumors (representative images in Figure S2C). Slides were stained 

by mIHC with a panel of myeloid and lymphoid cell markers (Table S3). The regions of 

interest (ROIs) were selected within the post-treatment surgically resected tumor areas that 

contain LAs and divided into the areas of LAs and the tumor areas outside LAs (designated 

non-LA tumor areas) (Figures 1A–1C). A minimum of three ROIs in the tumor areas that 

each contained at least one LA were selected from each post-treatment tumor (Figures S2D 

and S2E). The ROIs were also selected to cover minimally three different tumor cores from 

the same pre-treatment biopsy (Figures 1D, 1E, S2A, and S2B). A combination of markers 

was used to identify each immune subtype (Table S4). Epithelial cellular adhesion molecule 

(EpCAM) staining was used to help identify tumor epithelia. Interestingly, we found that 

EpCAM is expressed on the extracellular matrix (ECM) surrounding LAs. Notably, EpCAM 

can be detected on the surface of extracellular vesicles derived from PDACs (Amrollahi et 

al., 2019). The density of each immune cell subtype was calculated as the percentage of 

all cells within ROIs. The comparison of immune cell densities in pre-treatment biopsies 

between the two treatment arms (Figure S2F) did not show a significant difference, although 

this comparison may be limited by small sample sizes.

Because pre-treatment biopsy specimens did not contain LAs, we compared non-LA tumor 

areas between matched pre- and post-treatment tumor specimens to assess treatment-induced 

changes. In summary, we observed an increase in many immune cell subsets infiltrating the 

non-LA tumor areas outside the organized LAs in post-treatment tumors when compared 

with each patient’s pre-treatment biopsy in both treatment arms (Figures 1F and 1G). These 

results demonstrate that vaccine therapy not only induces the formation of LAs but also 

induces intratumoral infiltration of immune cells. Moreover, we observed a significantly 

higher density of CD4+ and CD8+ T cells in the post-treatment LAs in arm B versus 

arm A (Figure 2A). This result suggested that ICI treatment enhances Teff infiltration 

if T cells have been induced by a coadministered vaccine. In addition, we observed a 

significantly lower density of post-treatment CD4+programmed cell death protein 1 (PD-1)+ 

and CD8+PD-1+ T cells in LAs from tumors in arm B compared with arm A (Figure 

2A), likely due to an immune response to nivolumab. There was a significant increase in 

Th17 cells in non-LA tumor areas from patients treated in arm B compared with arm A, 

supporting the primary endpoint of this trial (Figure 2B).

An increase in a diverse intratumoral CD8+ T cell population occurs with combination 
vaccine + nivolumab compared with vaccine alone

To understand the response and resistance mechanisms elicited by ICIs in PDACs, we 

examined each subtype of T cells and myeloid cells and their correlation with OS. OS > 2 

years is considered a standard clinical benefit outcome for PDAC patients following surgical 

resection in published correlative studies (Tsujikawa et al., 2017). A higher infiltration 

of CD8+GZMB+ T cells in the pre-treatment biopsies in arm A, but not arm B, was 

associated with improved survival (Figure 2C). However, quantification of low numbers of 

CD8+GZMB+ T cells in pre-treatment biopsies could be prone to large variations (Figure 

S3A). Therefore, it is also possible that this finding could be due to the small sample size 

of available pre-treatment biopsy specimens in arm A. Interestingly, a lower density of 

general CD8+ T cells, possibly due to a decrease in the CD8+PD-1+ T cell subtype, in the 
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post-treatment LAs (Figure 2D), but not in non-LA tumor areas (Figure 2E), was associated 

with a significantly greater OS in arm B. The densities of CD8+ and CD8+GZMB+ T cells 

calculated as a percentage of CD45+ cells showed a similar trend (Figures S3B and S3C). 

However, anti-PD-1 therapy did not appear to alter other immune-effector cells, such as B 

cells and natural killer (NK) cells, in vaccine-treated PDAC patients (Figures S3D–S3G).

We next compared changes in CD8+ and CD8+GZMB+ T cell infiltration in available 

pre-treatment biopsies and matched post-treatment non-LA tumor areas and correlated these 

data with OS (Figure 2F). There was a statistically significant increase in the infiltration 

of CD8+GZMB+ T cells in three arm A patients with OS < 2 years (Figure 2F). However, 

it should be noted that they had the fewest CD8+GZMB+ T cells overall. Although the 

combination of GVAX + nivolumab did not result in a significant increase in CD8+GZMB+ 

T cells in LAs in association with improved OS, the three patients who had the highest 

numbers of CD8+GZMB+ T cells in their LAs had the longest OS among all the patients 

(Figure 2D).

We recently reported that the anti-CD137T cell agonist antibody given in combination 

with GVAX and anti-PD-1 antibody significantly enhanced survival in a murine PDAC 

orthotopic model (Muth et al., 2020). To determine the clinical relevance of these findings, 

we examined the density of CD3+CD8+CD137+ T cells and observed that a higher density 

of CD3+CD8+CD137+ T cells in post-treatment LAs was associated with OS > 2 years in 

both treatment arms (all p < 0.05) (Figure 2G). We further examined whether this CD137+ 

T cell subset in LAs was associated with the cytotoxic Teff signature and found that a 

higher density of CD3+CD8+CD137+ T cells was significantly (p = 0.019) associated with 

a higher density of CD8+GZMB+ T cells in post-treatment LAs (Figure 2H). Notably, 

CD3+CD8+CD137+ T cells were usually of low density and resided almost exclusively 

in LAs; therefore, we did not analyze their density in non-LA tumor areas. This result 

also suggested that this Teff subtype may need to be further expanded and mobilized by 

CD137 agonist treatment to generate a stronger antitumor response, as anti-CD137 agonist 

antibodies were shown to enhance the proliferation, memory, and activation status of Teffs 

(Sanchez-Paulete et al., 2016).

An increase in the Th1:Th2 CD4+ T cell ratio and in the Th17 cell density correlates with 
improved OS in patients treated with vaccine + nivolumab

We next evaluated the infiltration of CD4+ T cells in the post-treatment LAs and non-LA 

tumor areas and correlated them with OS. The overall density of CD4+ T cells and densities 

of the specific CD4+ T cell subtypes including Th1, Th2, Th17, and Tregs failed to 

significantly correlate with OS in either arm (Figures 2I–2N). However, a higher Th1 to 

Th2 (Th1:Th2) ratio was significantly associated with greater OS in arm B but not in arm A 

(Figure 2L), suggesting a role for anti-PD-1 therapy in promoting antitumor Th cell activity. 

We also observed a trend toward increased Th17 cells in LAs in patients with OS > 2 

years compared with those with OS < 2 years (Figure 2N) and a statistically significant 

increase in Th17 cells in post-treatment non-LA tumor areas in patients with OS > 2 years 

versus OS < 2 years, suggesting that anti-PD-1 therapy expanded Th17 cells in patients 

with improved OS and that this expansion was not limited to the LAs (Figure 2O). We 
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did not observe any other anti-PD-1 therapy-specific correlations between OS and CD4+ 

T cells and their subtypes in the pre-treatment tumors or in the treatment-induced changes 

(Figures S3H–S3V). Collectively, our results suggested that the Th1:Th2 ratio and Th17 

density in the post-treatment tumors may predict longer OS following combination treatment 

with GVAX and anti-PD-1 antibody.

Anti-PD-1 therapy reduces LA-residing PD-1+CD4+ and CD8+ T cells in association with 
the improved OS but does not have a differential effect on EOMES+ T cell populations 
compared with vaccine therapy alone

We next examined whether the anti-PD-1 therapy-associated decreases in CD8+PD-1+ and 

CD4+PD-1+ T cells in the LAs correlated with patient survival. We found that CD8+PD-1+ 

and CD4+PD-1+ T cells in LAs were significantly decreased in patients with OS > 2 years 

compared with those with OS < 2 years only in arm B, but not in arm A, indicating 

that CD8+PD-1+ and CD4+PD-1+ T cells are potential outcome predictors for anti-PD1 

therapy (Figures 2P and 2Q). In contrast, the Eomesodermin (EOMES)+ subgroup of CD8+ 

T cells was significantly decreased in patients with OS > 2 years in both arm A and arm 

B (Figure 2R). EOMES expression in T cells has a bimodal expression pattern, elevated 

in early activated T cells and exhausted T cells but absent in effector memory T cells 

(Li et al., 2018). Our results support an exhausted phenotype of CD8+EOMES+ T cells 

in post-treatment LAs as a potential resistance mechanism following treatment with either 

GVAX or GVAX + nivolumab.

Next, we examined additional subgroups of CD8+PD-1+ T cells, including 

CD8+PD-1+EOMES+ and CD8+PD-1+EOMES− T cells, to further understand which 

vaccine-induced T cell subsets respond to anti-PD-1 therapy. Comparing arm B with arm 

A, within the total CD8+ T cell population, only the percentage of CD8+PD-1+EOMES− T 

cells decreased significantly (p < 0.01; Figures S4A and S4B), suggesting that EOMES is 

not the major T cell exhaustion mechanism responding to anti-PD-1 therapy and that other 

T cell exhaustion mechanisms, including LAG3 and TIM3 signaling (Goldberg and Drake, 

2011; Wolf et al., 2020), warrant further investigation. Importantly, analysis of the baseline 

densities and changes in densities between pre- and post-treatment of the CD8+PD-1+, 

CD4+PD-1+, and CD8+EOMES+ T cell populations infiltrating tumor areas did not correlate 

with survival in either treatment arms(Figures S4C–S4I). These data further suggest that 

anti-PD-1 therapy mainly targets PD-1+ T cells in the LAs, which are sites of T cell 

activation and regulation.

Changes in both TAM and TAN populations correlate with OS following vaccine + anti-PD-1 
therapy

We also examined changes in myeloid cell populations following vaccine plus anti-PD-1 

therapy, since they are known cellular regulators of T cell responses in PDACs. We did 

not observe any association between OS and the density of M1-like tumor-associated 

macrophages (TAMs), M2-like TAMs, or PD-L1+ TAMs in the pre-treatment tumor biopsies 

(Figures S5A–S5D). However, a higher density of M2-like TAMs in the post-treatment LAs 

was associated with poor OS in both arms A and B. In addition, a higher ratio of M1-like 

to M2-like TAMs was associated with improved OS, but this ratio only reached statistical 
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significance for arm B (Figure 3A). In contrast, changes in the density of TAMs in non-LA 

tumor areas were not associated with OS (Figure 3B). The selective changes in TAMs 

residing in LAs relative to non-LA tumor areas provide additional evidence that LAs are 

important sites of immune modulation in PDAC tumors.

Next, we examined PD-L1+ TAMs. A higher density of LA-residing PD-L1+ M1-like TAMs 

was associated with longer OS in arm A (Figure 3C), confirming our previous reports 

(Tsujikawa et al., 2017). Nevertheless, vaccine-induced PD-L1 expression in TAMs may 

counteract the antitumor activity of Teff and, thus, limit the efficacy of vaccine therapy. 

Notably, a lower density of LA-residing PD-L1+ M2-like TAMs was associated with 

improved OS in arm B (Figure 3C). However, this correlation was not observed in non-LA 

tumor areas (Figure 3D). We also investigated mast cells, which are anticipated to respond 

to GM-CSF expression from the GVAX vaccine and did not observe any strong association 

between the density of mast cells or PD-L1+ mast cells and OS (Figures S5E–S5L).

We then examined tumor-associated neutrophils (TANs) marked by CD3−CD66b+ and found 

that the density of TANs was higher than that of TAMs in pre-treatment biopsies (Figure 

S2F), suggesting that neutrophils may play a more prominent role than TAMs in regulating 

immunity in PDAC TMEs. This possibility was supported by the finding that a higher 

density of TANs seen in pre-treatment biopsies was associated with a significant decrease in 

OS (Figures 3E–3H) in patients treated with GVAX + nivolumab. In contrast, TAN densities 

in post-treatment LAs or non-LA tumor areas did not appear to have an impact on OS, 

likely because the treatment may have changed the densities, distribution, and/or function 

of TANs. We also did not observe a correlation between PD-L1+ TANs and OS in either 

treatment arm (Figures S5M–S5P), suggesting that TANs themselves were not targets of 

anti-PD-1 therapy but potentially a modulatory mechanism of response to anti-PD-1 therapy. 

The densities of myeloid cell subtypes, including TANs, calculated as a percentage of 

CD45+ cells showed a similar trend (Figures S5Q–S5V). These results suggest that TANs in 

pre-treatment PDACs may influence the survival outcome following treatment with GVAX 

and anti-PD-1 antibody.

We next tested the hypothesis that a change in TANs in the post-treatment LAs, an 

immunoregulatory site, would be associated with different T cell functions. We found that 

higher density of TANs in post-treatment LAs was significantly (p = 0.011) associated 

with higher densities of tumor-infiltrating CD4+PD-1+ T cells and, in a near-significant 

trend (p = 0.081), with higher densities of CD8+PD-1+ T cells (Figures 3I–3K) in the 

whole tumor areas. Here, we combined cases from both treatment arms together to increase 

the sample size for this analysis. We performed additional immunohistochemistry (IHC) 

staining of T cell exhaustion markers (Figure S5W) and found that a higher density of TANs 

in post-treatment LAs was associated with a higher density of tumor-infiltrating LAG3+ T 

cells (p = 0.041) (Figure 3L). TIM3+ and EOMES+ T cell changes (Figures 3M and S5X, 

respectively) did not correlate with TAN density; thus, modulation of TANs may promote 

reinvigoration of exhausted T cell populations through LAG3.

To identify a potential therapeutic target on TANs, we examined the expression of 

interleukin (IL)-8RB/CXC chemokine receptor 2 (CXCR2) on TANs by IHC because 

Li et al. Page 8

Cancer Cell. Author manuscript; available in PMC 2022 November 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



IL-8RB/CXCR2 and its ligand, IL-8, are therapeutic targets being studied in cancer 

immunotherapy trials (Teijeira et al., 2021). The results showed that the majority of CD66b+ 

TANs expressed CXCR2 and that CD66b+ TANs are responsible for most of the CXCR2 

expression in post-treatment tumors (Figure 3N), supporting the future development of IL-8/

CXCR2-based immunotherapy for targeting TANs in PDAC.

Tumor-immune cell spatial relationships are influenced by CD8+GZMB+ T cells and TANs 
residing in non-LA tumor areas following GVAX + nivolumab therapy

To exert immune-effector or immunosuppressive functions, immune cells need spatial 

proximity to their target cells. We and others have shown that spatial distances between 

specific TME cell populations can inform therapeutic outcomes (Berry et al., 2021; 

Davis-Marcisak et al., 2021; Obradovic et al., 2021). We therefore measured the spatial 

distance between several key immune cells and their target cells. The ROIs from the above 

mIHC images were reprocessed by Halo software (Figure 4A), and the distances between 

epithelial tumor cells marked by EpCAM, CD8+ T cells, and myeloid cells marked by 

colony stimulating factor 1 receptor (CSF1R) were measured (Figure 4B). There was no 

statistically significant difference in distance measurements between these populations in 

different treatment arms or when correlated with OS (Figure S6A). The density of CD8+ 

T cells in LAs also did not significantly alter the distances between tumor cells, CD8+ T 

cells, and CSF1R+ myeloid cells (Figure 4C). Interestingly, a lower density of CD8+PD-1+ 

T cells in LAs, which appeared to be associated with anti-PD-1 treatment and with longer 

OS (Figures 2A and 2Q), was associated with longer distances between PD-1−CD8+ T cells 

and tumor cells (Figure 4D). Consistently, in tumors from patients treated with GVAX + 

nivolumab, the distance between CD8+ T cells, regardless of their PD-1 expression, and 

tumor cells was significantly increased in tumors with a higher versus lower density of 

CD8+GZMB+ T cells in LAs (Figure 4E). This result should not be attributed to the density 

of CD8+GZMB+ T cells themselves, which was a small subset of CD8+ T cells in LAs. 

Therefore, CD8+GZMB+ T cells in LAs likely influence the immune-regulating role of 

LAs but are not effectors that directly kill tumors. It is possible that, despite anti-PD-1 

treatment, LAs containing a higher density of CD8+GZMB+ T cells and/or lower density 

of CD8+PD-1+ T cells are still not sufficient to fully activate CD8+ T cells with optimal 

effector function to kill tumor cells. Nevertheless, the distance from PD-1+CD8+ T cells to 

PD-L1+CSF1R+ myeloid cells in tumors with higher densities of CD8+GZMB+ T cells (p = 

0.041) (Figure 4E) in LAs became significantly longer, likely due to nivolumab blockade of 

the PD-1/PD-L1 pathway. It will be interesting in the future to examine whether the CD8+ 

T cells that remained distant from tumor cells with higher densities of CD8+GZMB+ T cells 

and/or lower density of CD8+PD-1+ T cells in LAs have a higher potential to be activated 

when treated with additional T cell-activating agents such as CD137 agonists.

The density of general CD8+ T cells, but not that of CD8+PD-1+ T cells, in non-LA tumor 

areas also demonstrated a correlation with the distance between CSF1R+ myeloid cells 

and tumor cells (Figures 4F and 4G). Interestingly, in tumors from patients treated with 

GVAX + nivolumab, the distance between CD8+ T cells, particularly PD-1−CD8+ T cells, 

and tumor cells became significantly shorter in those with higher versus lower densities of 

CD8+GZMB+ T cells (p = 0.024) in non-LA tumor areas (Figure 4H). This result provides 
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additional evidence that anti-PD-1-treated CD8+GZMB+ T cells in non-LA tumor areas 

facilitate access of Teffs to tumor cells.

Although the analysis was limited by the unavailability of pre-treatment biopsy specimens 

from some patients, the densities of CD8+ T cells, their subsets, and myeloid cell subtypes 

in the pre-treatment tumor areas did not appear to influence spatial relationships in 

post-treatment tumors (Figures S6B and S6C). However, a noteworthy finding from the 

remaining distance measurements (Figures S6D–S6G) was the trend of the association of 

higher densities of TANs in LAs and lower densities of TANs in non-LA tumor areas 

with shorter distances from CD8+ T cells or myeloid cells to tumor cells in post-treatment 

tumors. This result supports further exploration of TANs as a surrogate predictor of response 

and a therapeutic target to improve treatment outcomes with anti-PD-1 therapy-based 

combinations in PDAC patients.

The densities of TANs and CD8+GZMB+ T cells are outcome predictors of anti-PD-1 
therapeutic responses in PDAC patients

We next examined the strength of immune markers in predicting outcomes using the 

Bayesian information criterion (BIC) as described (Claeskens and Hjort, 2008). We included 

two types of outcomes: survival measured by OS and DFS and immune cell distances (Table 

1). Immune cell distances were considered biological outcomes that were influenced by 

the densities of infiltrating immune cells (Figure 4). To select a myeloid cell marker that 

best predicts the response to anti-PD-1 therapy and serves as a therapeutic target for further 

enhancing immune responses, we used BIC to compare baseline CD66b+ TANs, M1-like 

TAMs, and M2-like TAMs in pre-treatment tumors. We found that TANs had a small and 

potentially relevant BIC score to support its prediction of OS in patients treated with GVAX 

+ nivolumab.

We next selected a Teff marker in LAs that may best predict outcomes to anti-PD-1 

immunotherapy. As a result, the density of CD8+GZMB+ T cells had a lower BIC score 

than the total CD8+ T cells and is therefore more likely to predict distances between tumor 

cells and multiple immune cell subtypes in both treatment arms (Table 1). In summary, this 

model selection analysis supports further investigation of TANs and Teffs as regulators of 

the immune response in PDACs.

RNA-seq analysis of TILs demonstrated reduced naïve CD4+ T cells following nivolumab 
treatment, and CD8+ TCR clonal expansion was associated with longer OS

The above mIHC analyses showed that cytotoxic Teffs expressing GZMB in some PDACs 

following GVAX or GVAX + nivolumab treatment were associated with longer OS. We 

leveraged sequencing data to further delineate the regulatory mechanisms underlying these 

T cell responses. Whole-exome sequencing (WES) of biopsied tumors from the 19 patients 

showed a common mutation profile (Figures S7A–S7C; Table S5) and generally low tumor 

mutation burden (TMB) (Figures S7D and S7E). There were no statistically significant 

differences observed in TMB or predicted neoantigen load (Figures S7D–S7G, S8A, and 

S8B) between treatment arms, between tumors with different survival outcomes, or between 
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tumors with different densities of immune infiltrates in LAs, confirming that genetics does 

not explain the observed differential therapeutic responses in either treatment arm.

Next, we performed whole-transcriptome RNA sequencing (RNA-seq) on tumor-infiltrating 

leukocytes (TILs) isolated from the post-treatment, surgically resected PDACs of nine 

patients treated with GVAX and eight patients treated with GVAX and nivolumab. 

These cells were sorted by flow cytometry into four immune cell subtypes: CD3+CD4+, 

CD3+CD8+, CD3−CD11b+, and CD3−CD11b−CD19+ cells prior to RNA-seq analysis. Of 

the 68 samples sequenced, 46 passed quality control metrics as described in STAR Methods 

and were retained for analysis (Figure S1). To characterize cellular pathways, we first used 

RNA-seq data to predict cell type composition based upon gene expression signatures with 

CIBERSORTx in the samples from all cell populations (Newman et al., 2019). This analysis 

estimated the proportion of 22 immune cell subtypes in each of the samples (Figure 5A). 

Generally, the cell type composition estimated from the CIBERSORTx analysis of RNA-seq 

data was consistent with the flow cytometry-based sorting. Nonetheless, we observed the 

presence of small subpopulations of additional cell types that we attributed to imperfect 

flow cytometry sorting. Therefore, we compared changes in cellular abundances between 

treatment arms and OS for the cellular populations that were consistent with subtypes of the 

sorted cells for each marker protein.

Comparing CIBERSORTx-estimated cellular abundances of immune cell subtypes between 

trial arms, we observed a nonsignificant decrease in naive CD4+ T cells (p = 0.061; Figure 

5B) but a statistically significant decrease in CD8+ T cells (p = 0.047; Figure 5C) in arm 

B. Additionally, in arm B, we observed increased monocytes (p = 0.041; Figure 5D) but 

no significant changes between treatment arms in CD19+ cells (Figure 5A). Unlike the 

comparison between treatment arms, comparisons of the abundances of the cell subtypes 

associated with the sorted cell populations failed to associate with OS.

Prediction methods for T cell receptor (TCR) and B cell receptor (BCR) sequences from 

bulk RNA-seq data can enable further analysis of cancer-specific functional activity in each 

cell type. We compared changes in TCR and BCR clonality by treatment and survival from 

predictions of repertoires in the CD4+, CD8+, and CD19+ RNA-seq data using MiXCR 

(Bolotin et al., 2015). In this analysis, no significant changes in clonality were observed 

in intratumoral CD4+ T cells, CD8+ T cells, or B cells following each treatment when 

comparing the two arms (Figures 5E–5G). However, we observed a statistically significant 

increase in CD8+ T cell clonality (p = 0.027), but not CD4+ T cell or B cell clonality, 

in tumors associated with OS > 2 years (Figures 5H–5J). These results suggested that 

adding anti-PD-1 therapy to GVAX increased the immunogenic activity in CD4+ T cells 

but not in CD8+ T cells, whereas CD8+ T cell clonal expansion and cytotoxic activity were 

required for improved survival outcomes. These findings are consistent with the insufficient 

activation of Teffs through anti-PD-1 therapy in PDAC (Figures 2D and 2G) and support 

the need to combine additional immune-modulating agents to improve patient outcomes to 

immunotherapy.
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Transcriptional changes from nivolumab therapy in CD4+ T cell chemokine signaling 
that link neutrophil degranulation and subsequent ECM remodeling to the inhibition of 
activated CD8+ T cell motility and function

To further characterize molecular pathways that may inform the mechanisms that underlie 

the observed cellular changes that are associated with longer OS, we performed differential 

expression analysis on each of the TIL subtypes (Figures 6A–6F; Table S6) and identified 

significantly differentially expressed genes (log2 fold change >0.5 or < −0.5 and false 

discovery rate [FDR] adjusted p value <0.05) that correlated with OS and treatment arms. To 

refine the molecular pathways associated with these gene expression changes, we performed 

additional enrichment analyses on the hallmark, Kyoto Encyclopedia of Genes and Genomes 

(KEGG), REACTOME, and Gene Ontology (GO) biological process (GOBP) and molecular 

function (GOMF) gene sets from MSigDb (Table S7). Although we did not perform the 

differential expression analysis by OS in CD11b+ and CD19+ cells due to too few samples 

with sufficient RNA quality, our analysis supported an association between longer OS and 

upregulation of the ubiquitin-dependent proteolysis pathway, tumor necrosis factor (TNF) 

signaling in both CD4+ and CD8+ T cells, and enhanced functional signaling in CD8+ T 

cells (Figures 6A and 6B; Table S7).

Additional changes were attributed to anti-PD-1 therapy in arm B. These include a 

statistically significant downregulation of CCR7 in CD4+ T cells (Figure 6C); BIRC2, which 

has been shown to reduce intratumoral CD8+ T and NK cell infiltration associated with 

ICI therapy (Samanta et al., 2020); CRKL, which controls the generation of Tregs induced 

by foreign antigens (Blaize et al., 2020); IFITM1, which is an interferon (IFN)-induced 

antiviral protein; and TNFSF8, which is a cytokine in the TNF ligand family. Anti-PD-1 

therapy was also associated with a significant increase in the expression of genes associated 

with immune activation. These included CXCL10, which is a Teff trafficking chemokine; 

IL2RA, which is associated with the Th1 response; FOXP3, which is upregulated in Tregs 

during CD4+ T cell activation; SLC11A1, which drives Th17 differentiation (Jiang et al., 

2009); and TNFRSF18 (GITR), which is a T cell activation signal. Notably, we observed 

enhanced immune responses in the upregulation of multiple cytokine/chemokine signaling 

pathways (Table S7), such as the REACTOME pathways, including chemokine receptors 

bind chemokines (Figure 6G). Moreover, we observed an upregulation of the cytokine 

CCL13 (Figure 6C), which attracts proinflammatory myeloid cells (Mendez-Enriquez 

and Garcia-Zepeda, 2013), leading us to hypothesize that changes in cytokine/chemokine 

signaling due to anti-PD-1 therapy may further affect the function of other immune cells in 

the TME. This was supported by the significant upregulation of multiple GOBP pathways 

associated with myeloid cells and lymphocyte chemotaxis in arm B (Figure 6H). Altogether, 

these results suggest the activation of CD4+ T cells by anti-PD-1 therapy through regulating 

chemokine/cytokine signaling pathways.

Compared with CD4+ T cells, we observed fewer changes in immune response genes 

associated with anti-PD-1 therapy in CD8+ cells (Figure 6D). However, we did observe a 

statistically significant increase in the hallmark epithelial to mesenchymal transition (EMT) 

pathway; the REACTOME pathways, including ECM organization, collagen degradation, 

and ECM proteoglycans; the GOBP pathways, including collagen metabolic processes and 
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complement activation; and the GOMF pathways for the ECM matrix structural constituent 

(Figure 6I). Upregulation of these pathways pointed to anti-PD-1 therapy-induced ECM 

regulation of CD8+ T cell trafficking rather than direct CD8+ T cell activation. These data 

also pointed to anti-PD-1 therapy-induced neutrophil degranulation signals in the ECM 

as several genes in this process were altered, including downregulation of MAGT1 (Li et 

al., 2011a, 2011b), upregulation SLC11A1 (Hedges et al., 2013; Jiang et al., 2009), and 

upregulation of PRSS2 (Sui et al., 2021) in arm B. It should be noted that an induction 

of neutrophil degranulation signaling is anticipated to hinder CD8+ T cell activation, likely 

through ECM regulation. This hypothesis was further supported by significant differential 

gene expression changes in the REACTOME neutrophil degranulation pathway in CD11b+ 

cells from arm B (Figure 6J). In this myeloid cell population, we observed significant 

increases in the innate immune response following anti-PD-1 therapy at the individual 

gene level (MARCO, RETN, and TLR8) (Figure 6E) and the pathway level (REACTOME 

innate immune system), which are anticipated to induce myeloid cell infiltration and may 

further induce neutrophil degranulation. We observed a similar trend for B cell activation 

signatures following anti-PD-1 therapy in the CD19+ RNA-seq data (Figure 6F), including 

overexpression of immunoglobulin genes and the chemokine IL32, which induces the 

expression of IL-8 (Khawar et al., 2015). We also observed differential gene expression in 

CD19+ cells from arm B, consistent with changes in B cell motility reflected at the pathway 

level through EMT (hallmark EMT). Altogether, these analyses suggest that anti-PD-1 

therapy induced changes in multiple cytokine and chemokine signals that activated CD4+ 

T cells and induced myeloid cell trafficking and neutrophil degranulation, possibly through 

altering the ECM, to hinder the motility and activation of immune-effector cells, including 

CD8+ T cells and B cells.

Single-cell analysis of untreated PDACs revealed that CD137(TNFRSF9)hi CD8+ T cells 
signal to neutrophils via IFN-γ receptor ligands, and the CD137(TNFRSF9)hi effector CD8+ 

T cell subset exhibits an increased TNF-α response

The integrated analyses of immune cell protein markers by mIHC and TCR/BCR by RNA-

seq from matched tumors provided the opportunity to relate T cell and B cell functions to 

the cellular landscape of LAs. We then examined tumor-specific T and B cell functionality 

by comparing the clonality of CD4+ and CD8+ T cells and B cells between the higher- 

and lower-density immune cell cohorts grouped according to mIHC results. We found a 

statistically significant increase in CD8+ T cell clonality in the cohort with a higher versus 

lower density of CD8+CD137+ T cells (p = 0.0089; Figure S8C). CD8+ T cell clonal 

expansion was also associated with longer OS (Figure 5I), consistent with the above data 

showing that higher CD8+CD137+ T cell density was also associated with longer OS (Figure 

2G).

Given this positive association, we hoped to further mine the RNA-seq data for additional 

molecular changes associated with these T cell responses. However, the six samples with 

higher CD8+CD137+ T cell density and also with adequate quality RNA to conduct these 

additional studies were all associated with longer OS. Thus, we leveraged a single-cell atlas 

of 25,903 cells from 17 treatment-naive primary PDAC tumors previously reported (Steele 

et al., 2020) to evaluate the distribution of CD137 (encoded by TNFRSF9) expression across 
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T cell subtypes and the TME changes directly associated with infiltration of CD8+CD137+ 

T cells. Standardized cell subtyping (Bell et al., 2022; Kinny-Koster et al., 2022) identified 

multiple immune cell subtypes in this atlas (Figure 7A). Expression values for TNFRSF9 
were used to classify the T cells as TNFRSF9hi or TNFRSF9lo (Figure 7B; STAR Methods) 

and to calculate the mean proportions of CD137 status in each cell type across PDAC 

samples that had at least one cell of the corresponding cell type. Within the T cell 

populations, Tregs (13% ± 3.3%, n = 16) had the greatest average proportion of TNFRSF9-

expressing cells in PDACs in the atlas, followed by effector CD8+ T cells (2.2% ± 1%, n = 

15) and CD8+ T cells (1.3% ± 0.6%, n = 16) (Figures 7C and S9A).

To profile phenotypic differences in TNFRSF9hi and TNFRSF9lo cells in PDACs, 

differential expression analysis by MAST test (Finak et al., 2015) between TNFRSF9hi 

and TNFRSF9lo cells was carried out among CD8+ T cells, effector CD8+ T cells, and 

Tregs followed by gene set enrichment analysis of hallmark gene sets (Liberzon et al., 2015; 

Subramanian et al., 2005). No gene sets were found to be significantly enriched in either 

group of CD8+ T cells. TNFRSF9hi Tregs were significantly enriched for 19 gene sets, 

with inflammatory pathways such as TNF-α signaling via nuclear factor κB (NF-κB), IL-2, 

STAT5 signaling, inflammatory response, and apoptosis being among the most enriched 

gene sets in these cells (Figure 7D). Effector CD8+TNFRSF9hi T cells were significantly 

enriched for TNF-α signaling via the NF-κB, EMT, and apoptosis pathways, whereas 

effector CD8+TNFRSF9lo T cells were enriched for pathways including IFN-γ response, 

oxidative phosphorylation, and IFN-α response relative to the TNFRSF9hi cells (Figure 7E). 

These results suggested that increased TNFRSF9 expression in effector CD8+ T cells may 

lead to a shift in the inflammatory response program, where low expression of TNFRSF9 is 

associated with an IFN response that is important for cytotoxicity in Teffs (Cattolico et al., 

2022), to a TNF-responsive state associated with high expression of TNFRSF9. Although 

TNF-α is involved in the CD8+ T cell antitumor activity (Calzascia et al., 2007), it can also 

promote apoptosis of CD8+ T cells (Zheng et al., 1995). This may explain the observed 

enrichment in apoptosis pathways and represent the mechanism underlying T cell exhaustion 

that was observed among the effector CD8+TNFRSF9hi T cells.

Our bulk RNA-seq analysis led to the hypothesis that interactions between CD4+ T cell 

cytokine production, CD8+ T cell activity, and neutrophil degranulation occur in PDACs 

following anti-PD-1 therapy. The ability to model interactions between immune cell types 

with ligand-receptor networks enabled further evaluation of the impact of CD137 expression 

on both CD8+ T cells and Tregs in modulating their interactions with neutrophils. For 

neutrophils, CD8+ T cells, and Tregs, incoming signals were assessed by quantification of 

ligands expressed by other cells that interact with receptors expressed by each cell type 

using Domino (Cherry et al., 2021) (Figures 7F and S9B). We found that neutrophils 

signaled to T cells through the expression of ITGAM, ITGB2, and ITGA5, regardless of 

T cell subtype or TNFRSF9 expression levels (Figure S9B), in accordance with the ECM 

interactions observed in our bulk RNA-seq analysis. Analysis of incoming signals directed 

to effector CD8+TNFRSF9hi T cells showed elevated expression of CD70 by TNFRSF9hi 

Tregs compared with TNFRSF9lo Tregs (Figure S9B). Expression of CD70 in expanded 

Tregs has been associated with loss of regulatory function exerted on other immune cells 

(Arroyo Hornero et al., 2020). Such dysfunction in Tregs may be a means by which the 
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communication between CD4+ T cells and CD8+ T cells was modulated by nivolumab, 

as seen in the bulk RNA-seq analysis. Among signals targeting neutrophils (Figure 7F), 

important distinctions were found between ligand expression in TNFRSF9hi and TNFRSF9lo 

cells. CD8+TNFRSF9hi T cells expressed ligands that target the IFN-γ receptor (INFRG1, 

INFRG2) at a higher level than CD8+TNFRSF9lo T cells, including IFNG, ITGA1, ITGA6, 

ITGB1, ITGB2, and ITGB4. Effector CD8+TNFRSF9hi T cells also expressed substantially 

more IFNG directed to neutrophils than effector CD8+TNFRSF9lo T cells and did not 

cluster with effector CD8+TNFRSF9lo T cells on the heatmap of ligand expression. In 

contrast, CD8+TNFRSF9lo T cells expressed more ANXA1, which encodes Annexin 1, a 

ligand of formyl peptide receptor 2, and controls the resolution of inflammation and the 

return to homeostasis in recipient cells (Alessi et al., 2017). Thus, the TNFRSF9hi cells 

exhibited inflammatory signals directed to neutrophils that could induce degranulation, as 

similarly shown above in the CD8+ T cell RNA-seq data originating from this study, and 

had diminished expression of molecules such as ANXA1 that mediate the resolution of 

inflammation.

DISCUSSION

This prospectively collected cohort of PDAC paired pre- and post-treatment tumor 

biospecimens was analyzed to elucidate the mechanisms of anti-PD-1 treatment sensitivity 

and resistance in the neoadjuvant setting. This study also integrates multi-omic analyses 

to comprehensively define changes in immune subsets within PDAC TMEs following 

anti-PD-1 ICI therapy. Although the sample size is still small, our multi-omics approach 

revealed immunomodulatory signaling pathways that may serve as new therapeutic targets 

for testing in PD-1-blocking antibody-containing combination immunotherapies in our 

ongoing platform neoadjuvant study. Analysis of the single-cell RNA-seq atlas confirmed 

the existence of these immune subset signaling pathways in an independent cohort, further 

supporting the need to further assess these specific pathways in future trials. Thus, this 

platform study provides the opportunity to rapidly understand mechanisms of improved 

immunity and compensatory mechanisms of resistance with the goal of identifying the most 

active combinations to rapidly move forward in clinical development for treating a deadly 

cancer.

The combination of mIHC and RNA-seq analyses confirmed the overexpression of 

neutrophil trafficking factors and neutrophil degranulation signals following treatment 

with vaccine and anti-PD-1 therapy as well as TAN expression of IL8RB/CXCR2, 

differentiating TANs from other immune suppressive monocyte populations previously 

identified as barriers to T cell infiltration (Veglia et al., 2018). The immune activation 

and suppressive changes that occur either at baseline or early after initial priming provide 

strong support that there are compensatory mechanisms that compete in PDACs. These 

competing signals may serve as new targets for testing with initial administration of 

anti-PD-1 combination immunotherapy in an attempt to bypass compensatory mechanisms 

prohibiting full activation of Teff. IL-8, which is known to be secreted by PDAC cells 

in response to KRAS activation, is the main ligand for the IL8RB/CXCR2 receptor on 

TANs (Gonzalez-Aparicio and Alfaro, 2020; Teijeira et al., 2021). Our recent preclinical 

study showed that an anti-IL-8 antibody can potentiate the antitumor activity of anti-PD-1 
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antibody, possibly through the activation of an innate immune and type I cytokine response 

in TANs (Li et al., 2022). Taken together, these data further support testing an IL-8 pathway 

inhibitor with anti-PD-1 therapy currently in the same platform trial (NCT02451982) as a 

next step in improving Teff responses.

We show that a shorter distance between CD8+GZMB+ T cells and tumor cells is associated 

with an anti-PD-1-induced response and resistance. Therefore, vaccine priming of the PDAC 

TME can recruit functional antitumor T cells, but not all patients achieve a clinical benefit. 

We also identified a CD137-expressing CD8+ T cell population in both treatment arms that 

was associated with increased CD8+GZMB+ T cells and improved OS. Our preclinical study 

previously demonstrated that this Teff subtype can be further enhanced when mice with 

orthotopically implanted PDACs are treated with the triple combination of GVAX, anti-PD-1 

antibody, and anti-CD137 agonist antibody (Muth et al., 2020). This triple combination is 

already being tested as a new arm in our neoadjuvant platform study and was shown in a 

preliminary analysis to be safe and meaningfully enhance DFS in resectable PDAC patients 

(Heumann et al., 2022).

Our integrated analysis approach suggested previously unrealized mechanisms promoting 

T cell exhaustion following PD-1 antibody therapy. Testing the hypotheses generated 

from the RNA-seq data that did not have available accompanying mIHC results requires 

further validation, particularly with functional assays. These additional analyses will provide 

an in silico framework to directly evaluate these predicted immunomodulatory effects 

of neutrophil degranulation and changes in ECM structure in human PDACs. These 

additional studies will be conducted on biospecimens from our ongoing platform clinical 

trial inhibiting TAN function with an IL-8 blockade antibody and enhancing T cell function 

with a CD137 agonist antibody.

This study has a few limitations. The sample size was limited by the inability to obtain 

pre-treatment biopsies from some patients and by the exclusion of tumor specimens with 

insufficient clinical follow-up time. The spatial relationship analysis of immune cells in 

PDAC in response to immunotherapy was limited by the number of markers and the size 

of ROIs that can be handled by the current software. This study relied on bulk RNA-seq 

of the individual major subtypes of immune cells due to technical limitations at the time 

when the clinical trial began. Thus, we were limited to inferences of cellular function 

from computational estimates of cellular composition through deconvolution methods 

(Korotkevich et al., 2021) and to inferences of immune cell function in single-cell RNA-seq 

data from treatment-naive PDAC atlases (Kinny-Koster et al., 2022; Steele et al., 2020). 

Nevertheless, single-cell technology is anticipated to be incorporated into the analysis of 

specimens from new treatment arms.

In summary, multi-omic analyses in small cohorts of surgically resectable PDAC patients 

comparing different immune modulatory agents may be a rapid and efficient way to identify 

the immunomodulatory effects that can inform combinations for testing in larger studies 

with primary clinical endpoints.
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STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources or data should be directed 

to and will be fulfilled by the contact: Lei Zheng (lzheng6@jhmi.edu).

Materials availability—This study did not generate new unique reagents.

Data and code availability

• The transcriptomic and clinical data used in this study are available in 

NCBI’s Gene Expression Omnibus (GEO) SuperSeries GSE197613 (GEO 

database: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE197613) and 

are publicly available. Whole-exome sequencing data are deposited in the 

database of Genotypes and Phenotypes (dbGaP): phs003002.v1.p1. Details of 

the trial, data, contact information, proposal forms, and review and approval 

process are available at the following website: https://clinicaltrials.gov/ct2/show/

NCT02451982. The trial protocol is provided in Data S1. The microscopy data 

reported in this paper will be shared by the lead contact upon request.

• Code for genomics analysis available at: github.com/FertigLab/J1568_Bulk

• Any additional information required to reanalyze the data reported in this work 

paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Patients and specimens—A total of 34 patients were enrolled and randomized into 

two treatment arms to receive either GVAX (Arm A) or GVAX in combination with 

nivolumab (Arm B) as neoadjuvant and adjuvant therapy (Figure S2A) in PDAC from 

the clinical trial (NCT02451982) at Johns Hopkins Hospital under a Johns Hopkins 

Medical Institution Institutional Review Board-approved protocol (ID: IRB00050517). 

Written informed consent was obtained from all patients. All available pre-treatment and 

post-treatment tumor specimens from 19 patients with overall survival greater than 2 years 

since the start of immunotherapy or those who died within 2 years after the start of 

immunotherapy (OS < 2 years) by the date of data cutoff on February 17, 2020, were 

included in this study (Figure S1). Patients underwent pancreatectomy between March 

2016 and February 2018 (Table S1). Patients who did not have a diagnosis of PDAC on 

final surgical pathology, who were found intraoperatively to have metastasis, and whose 

specimens were not adequate for mIHC or did not meet the criteria for ROI selection 

for analysis were excluded from this study (Table S2). Primary PDAC tumor samples 

were obtained from endoscopic ultrasound-guided fine needle core biopsies (EUS-FNB) 

or surgically resected tumors. Both fresh tissue and formalin-fixed paraffin-embedded 

(FFPE) tissue blocks were obtained. Pre-treatment tumor specimens for research purposes 

were obtained from 6 patients in Arm A and 10 patients in Arm B after the EUS-FNB 

specimens had been prioritized for diagnostic purposes. Post-treatment surgically resected 

tumor specimens and blood for peripheral blood mononuclear cells were obtained from all 

19 patients.
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METHOD DETAILS

Sequential IHC and image acquisition—The sequential staining-stripping multiplex 

immunohistochemistry (mIHC) protocol has been described previously (Tsujikawa 

et al., 2017). Briefly, deparaffinized 5-μm FFPE tissue sections were first stained 

with hematoxylin (Dako, S3301) followed by whole-slide brightfield scanning using 

NanoZoomer (Hamamatsu). Then, following endogenous peroxidase blocking and heat-

induced antigen retrieval with citrate buffer (pH 6.0) (BioGenex, HK080–9K), sequential 

multiple iterative cycles of the IHC process that included staining, scanning, and chromogen 

stripping, were performed as described previously (Tsujikawa et al., 2017). Information 

on the concentration of primary antibodies, the incubation time of primary antibodies and 

the horseradish peroxidase (HRP)-conjugated polymer (Nichirei Biosciences Inc.), and the 

aminoethyl carbazole (AEC) (Vector Laboratories, SK-4200) reaction time for chromogenic 

detection are summarized in Table S3. Negative control images were obtained after the 

last antibody and chromogen stripping. In this study, two separate staining panels were 

used, including one panel of 15 markers primarily for lymphoid cells and another panel 

of 15 markers primarily for myeloid cells (Table S3). Every immune marker examined 

represented a specific aspect of the immune response of interest, which was determined 

based on previously published studies (Tsujikawa et al., 2017); therefore, we did not control 

for multiplicity in the analysis.

Multiplex image processing and analysis—The digitized image processing and 

analyzing workflow encompasses image coregistration, visualization, and quantitative image 

analysis. Digitized images collected from NanoZoomer were first coregistered via the 

specific CellProfiler v.2.1.1 pipeline designed as previously described (Tsujikawa et al., 

2017). Tumor areas for subsequent analyses were circled by pathologists on hematoxylin-

stained slides. A minimum of three rectangular ROIs (approximately 3000*3000 pixels 

per ROI) in the vicinity of tumor epithelia, which were known to have an adequate 

representation of the whole tumor area in a prior study (Tsujikawa et al., 2017), were 

chosen. For biopsy cores, quantifying any three ROIs that cover at least three biopsy 

cores yielded consistent immune cell density results. Tumor epithelia identified by EpCAM 

staining, large intratumoral blood vessels, and areas with tissue detachment were maximally 

excluded. Visualization was performed by converting coregistered images into individually 

pseudocolored single-marker staining images through ImageJ v1.48 software (National 

Institutes of Health) (Schneider et al., 2012) and Aperio ImageScope v.12.3.2.8013 software 

(Leica Biosystems). Up to five ROIs per slide were quantified. During the quantitative 

image analysis step, signals of single-cell segmentation and quantification were obtained 

using the specific CellProfiler v.2.1.1 pipeline as previously described (Tsujikawa et al., 

2017), followed by image cytometry analysis via FCS Express 7 Image Cytometry software 

v7.10.0007 (De Novo Software). The calculation of immune cell densities as percentages of 

all cells took into consideration PDAC desmoplasia, although they were generally consistent 

with those calculated as the percentage of total CD45+ cells. Immune cell subtypes were 

defined by multiple markers, as listed in Table S4.

For the quantification of CXCR2+ CD66b+ cells, image analysis was conducted with 

Halo Image Analysis Platform software v3.4.2986 (Indica Labs). First, three sequential 
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IHC images, including hematoxylin, CD66b, and CXCR2 staining by the above-described 

multiplex IHC protocol, were deconvolved, registered and fused into a pseudomultiplex 

immunofluorescent image. Then, tumor areas on the whole slide section except for the 

necrotic region were annotated by the pathologist and included in the analysis. Slides with 

significant tissue damage were also excluded. Cells were identified by nuclear staining 

with hematoxylin. Positive staining signals were detected by adjusting the threshold of 

the signal intensity of each marker on hematoxylin-marked cells via the HighPlex FL 

module. CD66b+, CXCR2+, and CXCR2+CD66b+ cells were selected and analyzed for their 

quantities and average intensities of positive signals on each cell type.

Singleplex immunohistochemistry—Following heat-induced antigen retrieval for 30 

minutes at 95°C or 30 seconds at 125°C in citrate (BioGenex, HK080–9K) or EDTA 

buffer (Sigma‒Aldrich E1161), slides were incubated with rat anti-mouse/human PNAd 

IgM (BioLegend, clone MECA-79) at a 1:100 dilution for 1 hour at room temperature, 

mouse anti-human LAG3 IgG (Novus Biologicals, clone 17B4) at a 1:200 dilution overnight 

at 4°C, or rabbit anti-human TIM-3 IgG (Cell Signaling Technology, clone D5DR5) at 

a 1:50 dilution overnight at 4°C, as previously described (Avram et al., 2013; Gorris et 

al., 2018; Wojcik et al., 2022). After the washing steps, the slides were incubated with 

either biotinylated anti-rat IgM secondary antibody (BioLegend, 408903) at a 1:200 dilution 

followed by the VECTASTAIN ABC-HRP kit (Vector Laboratories, PK-4000), HRP anti-

mouse (Vector Laboratories, MP-7452) or HRP anti-rabbit (Vector Laboratories, MP-7451) 

polymer detection kits. The ImmPRESS DAB peroxidase substrate (Vector Laboratories, 

SK-4105) was used prior to counterstaining in hematoxylin, dehydration, and mounting with 

coverslips. Digital images were obtained at 20X magnification via whole-slide brightfield 

scanning using the NanoZoomer slide scanner (Hamamatsu).

LAG3 and TIM3 IHC quantification—Image analysis was performed using HALO 

Image Analysis Platform software v3.0.311.402 (Indica Labs). Tumor tissue areas were 

defined and annotated by the pathologist. Sections without tumor representation were 

omitted, and tissue artifacts, including folds, detachments, and tears, were maximally 

excluded within the annotation layer used for analysis. Immune cells positively stained 

for LAG3 and TIM3 were quantified using the Immune Cell v1.3 module. The immune 

cell stain intensity and color were manually identified for each marker. The algorithm 

settings for identifying staining-positive cells, including minimum tissue optical density 

(0.037), tissue edge thickness (0), minimum immune stain optical density (0.13), membrane 

detection tolerance (0.45), and immune cell size (5,250), were held constant across all cases. 

The density of stained positive cells was calculated as the immune cell count divided by the 

tumor tissue area (mm2) on the whole slide section.

Spatial relationship assessment—All steps of the image analysis were performed 

using Halo Image Analysis Platform software v3.4.2986 (Indica Labs). Briefly, 1) six 

different sequentially stained images were deconvolved, registered and fused into a 

pseudomultiplex immunofluorescent image; 2) the entire tumor region except for the 

necrotic region was annotated by a pathologist and included in the analysis; 3) positive 

staining signals were detected by adjusting the threshold of the signal intensity of each 
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marker via the HighPlex FL module; and 4) distance and proximity measurements were 

performed based on the positive signal detected with coordinates and by the spatial module 

included in the software.

TIL isolation and sorting—TILs were obtained from a nonnecrotic tumor piece 

approximately 2 cm in diameter that could be spared for research purposes after the 

clinical specimens were prioritized and dissected by pathologists. RPMI-1640 media (Life 

Technologies) were used to resuspend all the cells after disruption and homogenization. The 

cell suspension was filtered with a 70-μm cell strainer (Corning), and a layer of mononuclear 

cells that contained TILs was then isolated using Ficoll density gradient centrifugation with 

Ficoll-Paque PLUS (Cytiva) as described (Tan and Lei, 2019). TILs were washed three times 

using 40 mL of complete RPMI media each time. After the final wash with RPMI media, 

isolated TILs were cryopreserved in a liquid nitrogen freezer or subjected to cell sorting. 

Peripheral blood mononuclear cells were obtained from the patient’s whole blood using 

Ficoll-Paque™ PLUS (Cytiva) gradient centrifugation to serve as the FACS staining control. 

TILs and peripheral blood mononuclear cells were stained with Zombie Green viability dye 

(Biolegend, 423111), anti-CD4-PE-CF594 (Biolegend, 562281), anti-CD8-APC (Biolegend, 

344722), anti-CD19-PE (Biolegend, 555413), and anti-CD11b-BV421 (Biolegend, 393114) 

antibodies. After sorting with a BD FACSAria IIu Cell Sorter (Biosciences), the sorted 

immune cell subtype pellets were sent to a commercial vendor (Eurofins) for RNA 

extraction and sequencing. Note that they were sequenced and preprocessed together with 

other specimens under JHMI IRB protocol numbers IRB00083132 and IRB00092443.

RNA extraction, sequencing, and transcriptomic analysis—Bulk tumor RNA 

was extracted from TILs and quantified by using the All Prep DNA/RNA Micro Kit 

(Qiagen, 80284) and the Qubit RNA HS Assay Kit (Invitrogen, Q32852) according to 

the manufacturer’s instructions. The isolated RNA for each of the sorted CD3+CD4+, 

CD3+CD8+, CD3−CD11b+, and CD3−CD11b−CD19+ cells was sent to iTeos, Inc., for bulk 

RNA-seq library preparation with a SMART-Seq v4 ultra low input mRNA sample prep 

kit and 100-bp paired end sequencing by Eurofins. Library preparation and sequencing 

were performed in three batches, which were analyzed for technical artifacts as described 

below. First, quantification of transcript abundances was performed from RNA-seq reads 

with pseudoalignment to the hg38 genome using Kallisto v0.45.0 (Bray et al., 2016). The 

hg38 cDNA reference (release 87) was obtained from Ensemble (Bray et al., 2016). Gene 

counts were quantified from kallisto estimates of transcript abundances using tximport 

(v.1.22.0) (Soneson et al., 2015), with the t lengthScaledTPM computed for samples across 

both batches. We evaluated sample quality from the distribution of reads as visualized in a 

boxplot of log counts. We observed 10 samples with zero median expression, reflective of 

a low read count, to be filtered from subsequent analysis as low quality. We used principal 

component analysis (PCA) of the variance stabilization transform (vst) RNA-seq data to 

evaluate sample clustering by cell type. To further evaluate sample quality, we examined 

marker gene expression and its relationship to the sample groups observed in the PCA. 

In completing this analysis, we identified 7 samples mislabeled for cell type, which were 

additionally filtered out of the sample cohort. To evaluate the batch effects present due to 

sequencing, we repeated PCA and noticed homogenized clustering of samples from both 

Li et al. Page 20

Cancer Cell. Author manuscript; available in PMC 2022 November 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



batches. For each cell type, we completed differential expression analysis with DESeq2 

(Love et al., 2014), including batch as a covariate in our model along with our comparison 

of interest. Estimated fold changes are shrunk with apeglm using lfcShrink to account for 

the variation in the samples in this dataset. Genes were statistically significant if the absolute 

log2-fold changes after shrinkage were greater than 0.5 and the FDR-adjusted p value was 

below 0.05. Gene set statistics were run with fgsea using MSigDb (Zhu et al., 2019) v7.5.1 

pathways annotated in the HALLMARK, KEGG, REACTOME, and GO databases. Gene 

sets were considered to be significantly enriched for FDR-adjusted p values below 0.05, 

and the results were visualized with LIMMA barcode plots (Ritchie et al., 2015). Raw 

counts were uploaded to CIBERSORTx (Korotkevich et al., 2021) for further deconvolution 

of cell types. Imputation of cell fractions utilizing the LM22 CIBERSORT DEFAULT 

reference (Kanehisa et al., 2017) (signature matrix) to estimate T-cell presence based on 

gene expression was completed using B-mode batch correction and 1000 permutations for 

statistical significance of estimates of cellular proportions in each sample. Comparisons 

of cellular abundances were calculated with Student’s t test comparing CIBERSORTx 

estimated proportions of each cellular population between the treatment or survival groups.

DNA extraction, sequencing, and the estimation of tumor mutation burden 
and neoantigen load—Genomic DNA was extracted by using the AllPrep DNA/RNA 

Kit (Qiagen) according to the manufacturer’s instructions and sent to a commercial vendor 

(BGI Genomics) for whole-exome sequencing (WES). According to the vendor, to construct 

whole-exome capture libraries, genomic DNA was randomly fragmented into 200–250-bp 

fragments, and the fragments were purified and ligated by specific adaptors according 

to the instructions of the MGIEasy Universal DNA Library Prep Set and then captured 

with the MGIEasy Exome Capture V4 Probe Set (~59 Mb). All constructed libraries 

were sequenced on a DIPSEQ platform at an average coverage of 268X (90–420) in 

normal samples and 665X (83–1251) in tumor samples. The raw sequencing data were 

processed by SOAPnuke software v2.0.7 with default parameters to filter out low-quality 

reads and adaptor contamination. The clean reads were processed by using the UCSC 

human reference genome (hg19) and the Sentieon pipeline that follows the GATK best 

practices, including read alignment, mark duplication reads, indel realignment, base quality 

score recalibration (BQSR), and variant calling (Table S5). Variant calls were converted to 

mutation annotations using the default VCF2MAF (Kandoth and Qwangmsk, 2018) pipeline 

and the same UCSC human reference genome (hg19). Mutation annotations were analyzed 

in R utilizing the Maftools (Mayakonda et al., 2018) package (v2.8.05). Tumor mutational 

burden was extracted using a capture size of 35.8 (Ellrott et al., 2018). Class I HLA typing 

was performed at the clinical laboratories of Johns Hopkins Hospital. Neoepitopes (9 to 

11-mers) containing nonsynonymous SNVs or INDELs were predicted by NetMHCpan 

software v4.1b (Jurtz et al., 2017; Wells et al., 2020) for class I HLA-binding affinity <500 

nM according to at least one method. Neoantigen load in plots was completed utilizing 

the “netMHCpan_total_mutationsite_valid” annotation. All statistical comparisons were 

performed using Student’s t test.

BCR/TCR prediction and clonality metrics—BCR and TCR sequences were predicted 

from the bulk RNA-seq data for CD3+CD4+, CD3+CD8+, and CD3CD19+ cells utilizing the 
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MiXCR pipeline (Bolotin et al., 2015). FASTQ files of the same sample and direction were 

appended prior to running MiXCR under the following commands: ‘mixcr analyze shotgun 

–starting-material rna -s hsa –assemble-partial-rounds 2’. MiXCR results were then analyzed 

in R using IMMUNARCH (ImmunoMindTeam, 2019) v0.6.7. Clonality was measured 

utilizing the normalized Shannon’s Entropy (Shannon’s equitability-measure of evenness) 

(Hopkins et al., 2018). Clonality is calculated as (1-Shannon’s equitability), computed by:

1 −
−∑i = 1

n piloge(pi)
loge(n)

where pi is the proportion of the ith clone from a repertoire of n clones. Clonality values 

range from 0–1, with 0 indicating equal representation of clones within a sample (lower 

clonality) and 1 indicating a monoclonal population. All statistical comparisons were 

performed using Student’s t test.

PDAC atlas single cell RNA-seq analysis—Single-cell RNA-seq analysis used 

published data from an atlas of cells from pancreatic ductal adenocarcinoma resected 

primary tumors and biopsies (Kinny-Koster et al., 2022; also includes methods for data 

preprocessing and quality control). Immune cells from the atlas were selected from 61 tumor 

samples by subsetting on clusters expressing PTPRC. These subset cells were clustered 

again at a resolution of 104 using the R package monocle3 (Cao et al., 2019; Qiu et al., 

2017; Trapnell et al., 2014) (version 1.0.0). Clusters were annotated based on canonical 

marker genes detected by monocle3. Thirty-three clusters were detected in 52,765 cells 

and annotated as Macrophages (AIF1), Neutrophils (S100A8, S100A9), NK cells (NKG7, 

CD3E), B cells (CD79A, CD79B, CD52), Mast cells (KIT, ENPP3), CD4+ T cells (CD3E, 

CD4), Activated CD4+ T cells (CD3E, CD4, EOMES, GZMK), CD8+ T cells (CD3E, 

CD8A), Effector CD8+ T cells (CD3E, CD8A, EOMES, GZMK), or Tregs (CD3E, FOXP3, 

CTLA4). Clusters that could not be confidently annotated as a single cell type due to 

doublets were removed.

After cell type annotation, cells were further subset to include only the immune cells in 

17 tumor samples from the 16 patients in (Steele et al., 2020) (25,903 cells) due to the 

larger proportion of immune cells represented specifically in the samples from this study. 

The sparse matrix of UMI counts (15,219 genes × 25,903 cells) was converted to a Seurat 

object with the R package Seurat (Butler et al., 2018; Hao et al., 2021; Stuart et al., 2019; 

Zeng et al., 2018) (version 1.4.1). Using functions from the Seurat package, counts were 

log-normalized and scaled. The top 50 principal components (PCs) were computed using 

the 2,000 most variable features. A dimensionally reduced representation of the data was 

calculated with UMAP using the top 25 PCs. Cells were classified as having high TNFRSF9 
expression (TNFRSF9hi) or low expression (TNFRSF9lo) based on the presence of a log-

normalized expression value of TNFRSF9 above or below the median expression value in 

all cells with nonzero expression of TNFRSF9, respectively. Cells annotated as CD8+ T 

cells, Effector CD8+ T cells, and Tregs were subdivided into CD8+TNFRSF9hi T cells, 

CD8+TNFRSF9lo T cells, Effector CD8+TNFRSF9hi T cells, Effector CD8+TNFRSF9lo 

T cells, TNFRSF9hi Tregs, and TNFRSF9lo Tregs. The proportions of CD8+ and Treg 
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cells expressing TNFRSF9 were calculated as the number of cells of each type with the 

TNFRSF9hi classifier divided by the number of cells annotated as that type and as cells of 

each type with the TNFRSF9hi or TNFRSF9lo classifier divided by the total number of cells 

typed as CD8+, Effector CD8+, or Tregs.

Differential expression between TNFRSF9hi cells and TNFRSF9lo cells of the same cell 

type was carried out with MAST tests in Seurat. The results for all assayed genes were 

ordered by the average log fold change as rankings for gene set enrichment analysis 

with the R package fgsea (Korotkevich et al., 2021) using the H: HALLMARK gene set 

from the Molecular Signatures Database (MSigDB, version 7.5.1) (Liberzon et al., 2015; 

Subramanian et al., 2005).

Intercellular interactions were assessed among annotated cell types and TNFRSF9-classified 

CD8+ cells, Effector CD8+ cells, and Tregs based on the expression of interacting expressed 

transcription factor targets, receptors, and ligands using the R package Domino (Cherry et 

al., 2021) (version 0.1.1). In the Domino analysis, receptor–ligand networks were computed 

with pySCENIC (Aibar et al., 2017; Van de Sande et al., 2020) (version 0.11.0) using lists 

of transcription factors, motif annotations, and cisTarget motifs from the GRCh38 (hg38) 

reference genome (Van de Sande et al., 2020) and curated ligand and receptor interactions 

obtained from CellPhoneDB (Efremova et al., 2020; Garcia-Alonso et al., 2021) (version 

2.0.0).

QUANTIFICATION AND STATISTICAL ANALYSIS

The density of each immune cell subtype was calculated by its percentage among all cells 

or CD45+ cells in ROIs. The tumors whose density of certain immune cell subtypes was 

higher than the average were grouped into the “high” density group for that immune cell 

subtype, while tumors whose density of certain immune cell subtypes was lower than the 

average were grouped into the “low” density group for that immune cell subtype. For the 

comparison between pre- and post-treatment biospecimens, a paired t test was performed, 

while an unpaired t test was used to compare two independent groups. Statistical analyses 

and graphing were performed using GraphPad Prism software v9.3.1 (GraphPad Software) 

or the Immunarch package (ImmunoMindTeam, 2019). All tests were two-sided, and a p 

value of <0.05 was considered statistically significant. Statistical analyses of the genomics 

data were performed as described in detail in the methods for each data modality above with 

code available from github.com/FertigLab/J1568_Bulk.

The Bayesian information criterion (BIC) was used to evaluate the performance of each 

model proposed and to determine which marker better predicts the outcomes. A linear 

regression model was used to evaluate the effect of each marker, dichotomized by the 

mean, as a predictor of each distance measure. For each binary survival outcome, logistic 

regression was employed, with each marker treated as continuous. A meaningful difference 

in BIC between the two models is 2 at a minimum, and a difference between 5–10 and above 

10 is considered to be strong and very strong, respectively (Raftery, 1995).
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ADDITIONAL RESOURCES

More information about the platform trial (NCT02451982) and associated resources can be 

found at https://clinicaltrials.gov/ct2/show/NCT02451982.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

ACKNOWLEDGMENTS

This study was supported by NIH grants R01 CA169702 (L.Z.), R01 CA197296 (L.Z., E.M.J.), P50 CA062924 
(E.M.J., L.Z.), a Bristol-Myers Squibb grant (E.M.J., L.Z.), Viragh Foundation and Skip Viragh Pancreatic Cancer 
Center at Johns Hopkins (E.M.J., L.Z.), and NCI P30 CA006973. RNA-seq was supported by a grant from iTeos 
(L.Z.), which is independent from the collaboration with Bristol-Myers Squibb. DNA sequencing and analysis 
was supported by a collaborative project at Johns Hopkins University inHealth Program and Precision Medicine 
Application Platform. We thank Drs. Dongbing Liu, Fanfan Xie, and Mengyue Lei at BGI Genomics, Inc. for their 
technical advice. B.K. is supported by the German Research Foundation (KI 2437/2–1).

REFERENCES

Aibar S, González-Blas CB, Moerman T, Huynh-Thu VA, Imrichova H, Hulselmans G, Rambow F, 
Marine J-C, Geurts P, Aerts J, et al. (2017). SCENIC: single-cell regulatory network inference and 
clustering. Nat. Methods 14, 1083–1086. [PubMed: 28991892] 

Alessi M-C, Cenac N, Si-Tahar M, and Riteau B (2017). FPR2: a novel promising target for the 
treatment of influenza. Front. Microbiol. 8, 1719. [PubMed: 28928730] 

Amrollahi P, Rodrigues M, Lyon CJ, Goel A, Han H, and Hu TY (2019). Ultra-sensitive automated 
profiling of EpCAM expression on tumor-derived extracellular vesicles. Front. Genet. 10, 1273. 
[PubMed: 31921310] 

Arroyo Hornero R, Georgiadis C, Hua P, Trzupek D, He L-Z, Qasim W, Todd JA, Ferreira RC, Wood 
KJ, Issa F, et al. (2020). CD70 expression determines the therapeutic efficacy of expanded human 
regulatory T cells. Commun. Biol. 3, 375. [PubMed: 32665635] 

Avram G, Sánchez-Sendra B, Martín JM, Terrádez L, Ramos D, and Monteagudo C (2013). The 
density and type of MECA-79-positive high endothelial venules correlate with lymphocytic 
infiltration and tumour regression in primary cutaneous melanoma. Histopathology 63, 852–861. 
[PubMed: 24102908] 

Bell AT, Mitchell JT, Kiemen AL, Fujikura K, Fedor H, Gambichler B, Deshpande A, Wu P-H, 
Sidiropoulos DN, Erbe R, et al. (2022). Spatial transcriptomics of FFPE pancreatic intraepithelial 
neoplasias reveals cellular and molecular alterations of progression to pancreatic ductal carcinoma. 
Preprint at bioRxiv. 10.1101/2022.07.16.500312.

Berry S, Giraldo NA, Green BF, Cottrell TR, Stein JE, Engle EL, Xu H, Ogurtsova A, Roberts C, 
Wang D, et al. (2021). Analysis of multispectral imaging with the AstroPath platform informs 
efficacy of PD-1 blockade. Science 372, eaba2609. [PubMed: 34112666] 

Blaize G, Daniels-Treffandier H, Aloulou M, Rouquié N, Yang C, Marcellin M, Gador M, Benamar 
M, Ducatez M, Song K. d., et al. (2020). CD5 signalosome coordinates antagonist TCR signals to 
control the generation of Treg cells induced by foreign antigens. Proc. Natl. Acad. Sci. USA 117, 
12969–12979. [PubMed: 32434911] 

Bolotin DA, Poslavsky S, Mitrophanov I, Shugay M, Mamedov IZ, Putintseva EV, and Chudakov 
DM (2015). MiXCR: software for comprehensive adaptive immunity profiling. Nat. Methods 12, 
380–381. [PubMed: 25924071] 

Bray NL, Pimentel H, Melsted P, and Pachter L (2016). Near-optimal probabilistic RNA-seq 
quantification. Nat. Biotechnol. 34, 525–527. [PubMed: 27043002] 

Butler A, Hoffman P, Smibert P, Papalexi E, and Satija R (2018). Integrating single-cell transcriptomic 
data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411–420. 
[PubMed: 29608179] 

Li et al. Page 24

Cancer Cell. Author manuscript; available in PMC 2022 November 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://clinicaltrials.gov/ct2/show/NCT02451982
https://clinicaltrials.gov/ct2/show/NCT02451982


Calzascia T, Pellegrini M, Hall H, Sabbagh L, Ono N, Elford AR, Mak TW, and Ohashi PS (2007). 
TNF-α is critical for antitumor but not antiviral T cell immunity in mice. J. Clin. Invest. 117, 
3833–3845. [PubMed: 17992258] 

Cao J, Spielmann M, Qiu X, Huang X, Ibrahim DM, Hill AJ, Zhang F, Mundlos S, Christiansen L, 
Steemers FJ, et al. (2019). The single-cell transcriptional landscape of mammalian organogenesis. 
Nature 566, 496–502. [PubMed: 30787437] 

Cattolico C, Bailey P, and Barry ST (2022). Modulation of type I interferon responses to influence 
tumor-immune cross talk in PDAC. Front. Cell Dev. Biol. 10, 816517. [PubMed: 35273962] 

Cherry C, Maestas DR, Han J, Andorko JI, Cahan P, Fertig EJ, Garmire LX, and Elisseeff JH (2021). 
Computational reconstruction of the signalling networks surrounding implanted biomaterials from 
single-cell transcriptomics. Nat. Biomed. Eng. 5, 1228–1238. [PubMed: 34341534] 

Claeskens G, and Hjort NL (2008). Model Selection and Model Averaging (Cambridge Books).

Danilova L, Ho WJ, Zhu Q, Vithayathil T, De Jesus-Acosta A, Azad NS, Laheru DA, Fertig EJ, 
Anders R, Jaffee EM, et al. (2019). Programmed cell death ligand-1 (PD-L1) and CD8 expression 
profiling identify an immunologic subtype of pancreatic ductal adenocarcinomas with favorable 
survival. Cancer Immunol. Res. 7, 886–895. [PubMed: 31043417] 

Davis-Marcisak EF, Deshpande A, Stein-O’Brien GL, Ho WJ, Laheru D, Jaffee EM, Fertig EJ, and 
Kagohara LT (2021). From bench to bedside: single-cell analysis for cancer immunotherapy. 
Cancer Cell 39, 1062–1080. [PubMed: 34329587] 

Efremova M, Vento-Tormo M, Teichmann SA, and Vento-Tormo R (2020). CellPhoneDB: inferring 
cell–cell communication from combined expression of multi-subunit ligand–receptor complexes. 
Nat. Protoc. 15, 1484–1506. [PubMed: 32103204] 

Ellrott K, Bailey MH, Saksena G, Covington KR, Kandoth C, Stewart C, Hess J, Ma S, Chiotti KE, 
McLellan M, et al. (2018). Scalable open science approach for mutation calling of tumor exomes 
using multiple genomic pipelines. Cell Syst. 6, 271–281.e7. [PubMed: 29596782] 

Finak G, McDavid A, Yajima M, Deng J, Gersuk V, Shalek AK, Slichter CK, Miller HW, McElrath 
MJ, Prlic M, et al. (2015). MAST: a flexible statistical framework for assessing transcriptional 
changes and characterizing heterogeneity in single-cell RNA sequencing data. Genome Biol. 16, 
278. [PubMed: 26653891] 

Garcia-Alonso L, Handfield L-F, Roberts K, Nikolakopoulou K, Fernando RC, Gardner L, Woodhams 
B, Arutyunyan A, Polanski K, Hoo R, et al. (2021). Mapping the temporal and spatial dynamics of 
the human endometrium in vivo and in vitro. Nat. Genet. 53, 1698–1711. [PubMed: 34857954] 

Goldberg MV, and Drake CG (2011). LAG-3 in cancer immunotherapy. Curr. Top. Microbiol. 
Immunol. 269–278. [PubMed: 21086108] 

Gonzalez-Aparicio M, and Alfaro C (2020). Significance of the IL-8 pathway for immunotherapy. 
Hum. Vaccin. Immunother. 16, 2312–2317. [PubMed: 31860375] 

Gorris MAJ, Halilovic A, Rabold K, van Duffelen A, Wickramasinghe IN, Verweij D, Wortel IMN, 
Textor JC, de Vries IJM, and Figdor CG (2018). Eight-color multiplex immunohistochemistry 
for simultaneous detection of multiple immune checkpoint molecules within the tumor 
microenvironment. J. Immunol. 200, 347–354. [PubMed: 29141863] 

Hao Y, Hao S, Andersen-Nissen E, Mauck WM III, Zheng S, Butler A, Lee MJ, Wilk AJ, Darby 
C, Zager M, et al. (2021). Integrated analysis of multimodal single-cell data. Cell 184, 3573–
3587.e29. [PubMed: 34062119] 

Hedges JF, Kimmel E, Snyder DT, Jerome M, and Jutila MA (2013). Solute carrier 11A1 is expressed 
by innate lymphocytes and augments their activation. J. Immunol. 190, 4263–4273. [PubMed: 
23509347] 

Heumann TR, Judkins C, Lim SJ, Wang H, Parkinson R, Gai J, Celiker B, Durham JN, Laheru 
DA, De Jesus-Acosta A, et al. (2022). Neoadjuvant and adjuvant antitumor vaccination alone 
or combination with PD1 blockade and CD137 agonism in patients with resectable pancreatic 
adenocarcinoma. J. Clin. Oncol. 40, 558.

Ho WJ, Jaffee EM, and Zheng L (2020). The tumour microenvironment in pancreatic cancer - clinical 
challenges and opportunities. Nat. Rev. Clin. Oncol. 17, 527–540. [PubMed: 32398706] 

Li et al. Page 25

Cancer Cell. Author manuscript; available in PMC 2022 November 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Hopkins AC, Yarchoan M, Durham JN, Yusko EC, Rytlewski JA, Robins HS, Laheru DA, Le DT, 
Lutz ER, and Jaffee EM (2018). T cell receptor repertoire features associated with survival in 
immunotherapy-treated pancreatic ductal adenocarcinoma. JCI Insight 3, e122092.

ImmunoMindTeam (2019). Immunarch: An R Package for Painless Bioinformatics Analysis of T-Cell 
and B-Cell Immune Repertoires (Zenodo). 10.5281/zenodo.3367200.

Jiang HR, Gilchrist DS, Popoff JF, Jamieson SE, Truscott M, White JK, and Blackwell JM (2009). 
Influence of Slc11a1 (formerly Nramp1) on DSS-induced colitis in mice. J. Leukoc. Biol. 85, 
703–710. [PubMed: 19116231] 

Johnson BA, Yarchoan M, Lee V, Laheru DA, and Jaffee EM (2017). Strategies for increasing 
pancreatic tumor immunogenicity. Clin. Cancer Res. 23, 1656–1669. [PubMed: 28373364] 

Jurtz V, Paul S, Andreatta M, Marcatili P, Peters B, and Nielsen M (2017). NetMHCpan-4.0: improved 
peptide–MHC class I interaction predictions integrating eluted ligand and peptide binding affinity 
data. J. Immunol. 199, 3360–3368. [PubMed: 28978689] 

Kandoth C, and Qwangmsk GJ (2018). Mskcc/Vcf2Maf: Vcf2Maf V1. 6.16 (Zenodo). 10.5281/
zenodo.1185418.

Kanehisa M, Furumichi M, Tanabe M, Sato Y, and Morishima K (2017). KEGG: new perspectives 
on genomes, pathways, diseases and drugs. Nucleic Acids Res. 45, D353–D361. [PubMed: 
27899662] 

Khawar B, Abbasi MH, and Sheikh N (2015). A panoramic spectrum of complex interplay 
between the immune system and IL-32 during pathogenesis of various systemic infections and 
inflammation. Eur. J. Med. Res. 20, 7. [PubMed: 25626592] 

Kinny-Koster B, Guinn S, Tandurella JA, Mitchell JT, Sidiropoulos DN, Loth M, Lyman MR, Pucsek 
AB, Seppala TT, Cherry C, et al. (2022). Inflammatory signaling and fibroblast-cancer cell 
interactions transfer from a harmonized human single-cell RNA sequencing atlas of pancreatic 
ductal adenocarcinoma to organoid Co-culture. Preprint at bioRxiv. 10.1101/2022.07.14.500096.

Korotkevich G, Sukhov V, Budin N, Shpak B, Artyomov MN, and Sergushichev A (2021). Fast gene 
set enrichment analysis. Preprint at bioRxiv. 10.1101/060012.

Li F-Y, Chaigne-Delalande B, Kanellopoulou C, Davis JC, Matthews HF, Douek DC, Cohen JI, Uzel 
G, Su HC, and Lenardo MJ (2011a). Second messenger role for Mg2+ revealed by human T-cell 
immunodeficiency. Nature 475, 471–476. [PubMed: 21796205] 

Li F-Y, Lenardo MJ, and Chaigne-Delalande B (2011b). Loss of MAGT1 abrogates a Mg2+ flux 
required for T cell signaling and leads to a novel human primary immunodeficiency. Magnes. Res. 
24, S109–S114. [PubMed: 21983175] 

Li J, He Y, Hao J, Ni L, and Dong C (2018). High levels of Eomes promote exhaustion of anti-tumor 
CD8+ T cells. Front. Immunol. 9, 2981. [PubMed: 30619337] 

Li P, Rozich N, Wang J, Wang J, Xu Y, Herbst B, Yu R, Muth S, Niu N, Li K, et al. (2022). Anti-IL-8 
antibody activates myeloid cells and potentiates the anti-tumor activity of anti-PD-1 antibody in 
the humanized pancreatic cancer murine model. Cancer Lett. 539, 215722. [PubMed: 35533951] 

Liberzon A, Birger C, Thorvaldsdó ttir H, Ghandi M, Mesirov JP, and Tamayo P (2015). The 
molecular signatures database hallmark gene set collection. Cell Syst. 1, 417–425. [PubMed: 
26771021] 

Love MI, Huber W, and Anders S (2014). Moderated estimation of fold change and dispersion for 
RNA-seq data with DESeq2. Genome Biol. 15, 550. [PubMed: 25516281] 

Lutz ER, Kinkead H, Jaffee EM, and Zheng L (2014a). Priming the pancreatic cancer tumor 
microenvironment for checkpoint-inhibitor immunotherapy. Oncoimmunology 3, e962401. 
[PubMed: 25941589] 

Lutz ER, Wu AA, Bigelow E, Sharma R, Mo G, Soares K, Solt S, Dorman A, Wamwea A, Yager A, et 
al. (2014b). Immunotherapy converts nonimmunogenic pancreatic tumors into immunogenic foci 
of immune regulation. Cancer Immunol. Res. 2, 616–631. [PubMed: 24942756] 

Mayakonda A, Lin D-C, Assenov Y, Plass C, and Koeffler HP (2018). Maftools: efficient and 
comprehensive analysis of somatic variants in cancer. Genome Res. 28, 1747–1756. [PubMed: 
30341162] 

Mendez-Enriquez E, and Garcia-Zepeda EA (2013). The multiple faces of CCL13 in immunity and 
inflammation. Inflammopharmacology 21, 397–406. [PubMed: 23846739] 

Li et al. Page 26

Cancer Cell. Author manuscript; available in PMC 2022 November 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Muth ST, Saung MT, Blair AB, Henderson MG, Thomas DL 2nd, and Zheng L (2020). CD137 
agonist-based combination immunotherapy enhances activated, effector memory T cells and 
prolongs survival in pancreatic adenocarcinoma. Cancer Lett. 499, 99–108. [PubMed: 33271264] 

Newman AM, Steen CB, Liu CL, Gentles AJ, Chaudhuri AA, Scherer F, Khodadoust MS, Esfahani 
MS, Luca BA, Steiner D, et al. (2019). Determining cell type abundance and expression from bulk 
tissues with digital cytometry. Nat. Biotechnol. 37, 773–782. [PubMed: 31061481] 

Obradovic A, Chowdhury N, Haake SM, Ager C, Wang V, Vlahos L, Guo XV, Aggen DH, Rathmell 
WK, Jonasch E, et al. (2021). Single-cell protein activity analysis identifies recurrence-associated 
renal tumor macrophages. Cell 184, 2988–3005.e16. [PubMed: 34019793] 

Osipov A, Murphy A, and Zheng L (2019). From immune checkpoints to vaccines: the past, present 
and future of cancer immunotherapy. Adv. Cancer Res. 143, 63–144. [PubMed: 31202363] 

Popovic A, Jaffee EM, and Zaidi N (2018). Emerging strategies for combination checkpoint 
modulators in cancer immunotherapy. J. Clin. Invest. 128, 3209–3218. [PubMed: 30067248] 

Qiu X, Mao Q, Tang Y, Wang L, Chawla R, Pliner HA, and Trapnell C (2017). Reversed graph 
embedding resolves complex single-cell trajectories. Nat. Methods 14, 979–982. [PubMed: 
28825705] 

Raftery AE (1995). Bayesian model selection in social research. Socio. Methodol. 25, 111–163.

Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, and Smyth GK (2015). Limma powers 
differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 
43, e47. [PubMed: 25605792] 

Samanta D, Huang TY-T, Shah R, Yang Y, Pan F, and Semenza GL (2020). BIRC2 expression impairs 
anti-cancer immunity and immunotherapy efficacy. Cell Rep. 32, 108073. [PubMed: 32846130] 

Sanchez-Paulete AR, Labiano S, Rodriguez-Ruiz ME, Azpilikueta A, Etxeberria I, Bolaños E, Lang 
V, Rodriguez M, Aznar MA, Jure-Kunkel M, et al. (2016). Deciphering CD137 (4–1BB) signaling 
in T-cell costimulation for translation into successful cancer immunotherapy. Eur. J. Immunol. 46, 
513–522. [PubMed: 26773716] 

Schneider CA, Rasband WS, and Eliceiri KW (2012). NIH Image to ImageJ: 25 years of image 
analysis. Nat. Methods 9, 671–675. [PubMed: 22930834] 

Sharma P, and Allison JP (2015). Immune checkpoint targeting in cancer therapy: toward combination 
strategies with curative potential. Cell 161, 205–214. [PubMed: 25860605] 

Soares KC, Rucki AA, Wu AA, Olino K, Xiao Q, Chai Y, Wamwea A, Bigelow E, Lutz E, Liu L, et al. 
(2015). PD-1/PD-L1 blockade together with vaccine therapy facilitates effector T cell infiltration 
into pancreatic tumors. J. Immunother. 38, 1–11. [PubMed: 25415283] 

Soneson C, Love MI, and Robinson MD (2015). Differential analyses for RNA-seq: transcript-level 
estimates improve gene-level inferences. F1000Res. 4, 1521. [PubMed: 26925227] 

Steele NG, Carpenter ES, Kemp SB, Sirihorachai VR, The S, Delrosario L, Lazarus J, Amir E.-a. D., 
Gunchick V, Espinoza C, et al. (2020). Multimodal mapping of the tumor and peripheral blood 
immune landscape in human pancreatic cancer. Nat. Cancer 1, 1097–1112. [PubMed: 34296197] 

Stromnes IM, Hulbert A, Pierce RH, Greenberg PD, and Hingorani SR (2017). T-cell localization, 
activation, and clonal expansion in human pancreatic ductal adenocarcinoma. Cancer Immunol. 
Res. 5, 978–991. [PubMed: 29066497] 

Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM 3rd, Hao Y, Stoeckius M, 
Smibert P, Satija R, et al. (2019). Comprehensive integration of single-cell data. Cell 177, 1888–
1902.e21. [PubMed: 31178118] 

Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy 
SL, Golub TR, Lander ES, et al. (2005). Gene set enrichment analysis: a knowledge-based 
approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 102, 
15545–15550. [PubMed: 16199517] 

Sui L, Wang S, Ganguly D, El Rayes T, Askeland C, Børretzen A, Sim D, Halvorsen OJ, Knutsvik G, 
Aziz S, et al. (2021). PRSS2 stimulates tumor growth by remodeling the TME via repression of 
Tsp1. Preprint at bioRxiv. 10.1101/2021.03.23.436667.

Tan YS, and Lei YL (2019). Isolation of tumor-infiltrating lymphocytes by Ficoll-Paque density 
gradient centrifugation. Methods Mol. Biol. 1960, 93–99. [PubMed: 30798524] 

Li et al. Page 27

Cancer Cell. Author manuscript; available in PMC 2022 November 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Teijeira A, Garasa S, Ochoa MC, Villalba M, Olivera I, Cirella A, Eguren-Santamaria I, Berraondo 
P, Schalper KA, de Andrea CE, et al. (2021). IL8, neutrophils, and NETs in a collusion against 
cancer immunity and immunotherapy. Clin. Cancer Res. 27, 2383–2393. [PubMed: 33376096] 

Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S, Morse M, Lennon NJ, Livak KJ, Mikkelsen 
TS, and Rinn JL (2014). The dynamics and regulators of cell fate decisions are revealed by 
pseudotemporal ordering of single cells. Nat. Biotechnol. 32, 381–386. [PubMed: 24658644] 

Tsujikawa T, Crocenzi T, Durham JN, Sugar EA, Wu AA, Onners B, Nauroth JM, Anders RA, 
Fertig EJ, Laheru DA, et al. (2020). Evaluation of cyclophosphamide/GVAX pancreas followed by 
listeria-mesothelin (CRS-207) with or without nivolumab in patients with pancreatic cancer. Clin. 
Cancer Res. 26, 3578–3588. [PubMed: 32273276] 

Tsujikawa T, Kumar S, Borkar RN, Azimi V, Thibault G, Chang YH, Balter A, Kawashima R, Choe 
G, Sauer D, et al. (2017). Quantitative multiplex immunohistochemistry reveals myeloid-inflamed 
tumor-immune complexity associated with poor prognosis. Cell Rep. 19, 203–217. [PubMed: 
28380359] 

Van de Sande B, Flerin C, Davie K, De Waegeneer M, Hulselmans G, Aibar S, Seurinck R, Saelens 
W, Cannoodt R, Rouchon Q, et al. (2020). A scalable SCENIC workflow for single-cell gene 
regulatory network analysis. Nat. Protoc. 15, 2247–2276. [PubMed: 32561888] 

Veglia F, Perego M, and Gabrilovich D (2018). Myeloid-derived suppressor cells coming of age. Nat. 
Immunol. 19, 108–119. [PubMed: 29348500] 

Wells DK, van Buuren MM, Dang KK, Hubbard-Lucey VM, Sheehan KCF, Campbell KM, Lamb A, 
Ward JP, Sidney J, Blazquez AB, et al. (2020). Key parameters of tumor epitope immunogenicity 
revealed through a consortium approach improve neoantigen prediction. Cell 183, 818–834.e13. 
[PubMed: 33038342] 

Wojcik JB, Desai K, Avraam K, Vandebroek A, Dillon LM, Giacomazzi G, Rypens C, and Benci JL 
(2022). Consistent measurement of LAG-3 expression across multiple staining platforms with the 
17B4 antibody clone. Preprint at bioRxiv. 10.1101/2022.02.21.481075.

Wolf Y, Anderson AC, and Kuchroo VK (2020). TIM3 comes of age as an inhibitory receptor. Nat. 
Rev. Immunol. 20, 173–185. [PubMed: 31676858] 

Zeng XP, Zhu XY, Li BR, Pan CS, Hao L, Pan J, Wang D, Bi YW, Ji JT, Xin L, et al. (2018). 
Spatial distribution of pancreatic stones in chronic pancreatitis. Pancreas 47, 864–870. [PubMed: 
29975348] 

Zheng L, Fisher G, Miller RE, Peschon J, Lynch DH, and Lenardo MJ (1995). Induction of apoptosis 
in mature T cells by tumour necrosis factor. Nature 377, 348–351. [PubMed: 7566090] 

Zhu A, Ibrahim JG, and Love MI (2019). Heavy-tailed prior distributions for sequence count data: 
removing the noise and preserving large differences. Bioinformatics 35, 2084–2092. [PubMed: 
30395178] 

Li et al. Page 28

Cancer Cell. Author manuscript; available in PMC 2022 November 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Highlights

• Prospectively collected PDAC specimens from a neoadjuvant platform 

clinical trial

• Identified sensitivity and resistance mechanisms to anti-PD-1 therapy in 

PDAC

• Informed studies of additional immune-modulating agents in the ongoing 

platform trial

• Generated hypotheses of reprogramed TME signals for combination 

immunotherapy strategies
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Figure 1. Multiplex immunohistochemistry of PDACs before and after immunotherapy
(A) ROIs were selected within the post-treatment surgical resected tumor areas. CD45 and 

EpCAM staining were used to identify the lymphoid cells and tumor epithelia, respectively. 

All scale bars, 200 μm.

(B and C) Overlaid images of representative markers assigned with pseudocolors in one 

representative LA (B) and one representative non-LA tumor area (C) in post-treatment 

tumors. All scale bars, 100 μm.
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(D) CD45 and EpCAM staining of one representative ROI from a pre-treatment biopsy 

tumor area. All scale bars, 200 μm.

(E) Overlaid images of one representative ROI of pre-treatment biopsy. All scale bars, 100 

μm.

(F and G) Summary of the density of all immune cell subtypes analyzed as indicated in 

the paired pre-treatment versus post-treatment non-LA tumor areas from the same arm 

A patients (F, n = 6) and arm B patients (G, n = 10). Data shown as the mean ± SD; 

comparison by paired t test; *p < 0.05, **p < 0.01, ***p < 0.001; all others, not significant. 

See also Figures S1, S2, Tables S1, S2, S3, and S4.
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Figure 2. Multiplex IHC of CD8+ or CD4+ T subtypes and their correlation with OS
(A and B) Summary of the density of all immune cell subtypes analyzed as indicated in LA 

(A) and non-LA tumor areas (B) in arm A (n =9) versus arm B (n=10) patients.

(C–E) Correlation between OS and CD8+ and CD8+GZMB+ T cells in pre-treatment tumor 

biopsies (C, pre, n = 6 for GVAX and n = 10 for GVAX + Nivo) and in LA (D) and non-LA 

tumor areas (E) from post-treatment tumors (see sample numbers in A and B). Three cases 

with the highest densities of CD8+GZMB+ T cells and the longest OS are circled.
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(F) Changes in the density of CD8+ or CD8+GZMB+ T cells between pre-treatment (pre) 

and matched post-treatment non-LA tumor areas (post) and their correlation with OS.

(G) Correlation between OS and CD8+CD137+ T cells in LA.

(H) Correlation between CD8+GZMB+ T cells and CD8+CD137+ T cells in LA. Tumors are 

subgrouped by higher versus lower density of CD8+CD137+ T cells in LA.

(I–R) Correlation between OS and CD4+ T cells (I), Th1 (J), Th2 (K), Th1:Th2 ratio (L), 

Treg (M), and Th17 (N) in LA, Th17 in non-LA tumor area (O), and CD4+PD-1+ T cells 

(P), CD8+PD-1+ T cells (Q), and CD8+EOMES+ T cells (R) in LA. All data shown as 

the mean ± SD; all comparisons by t test; *p < 0.05; **p < 0.01; ***p < 0.001; NS, not 

significant; all others, not significant. See also Figures S3 and S4.
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Figure 3. Multiplex IHC analysis of TAM and TAN
(A–G) Correlation between OS and M1-like TAM, M2-like TAM and the ratio of M1- and 

M2-like TAM in LA (A) and non-LA tumor area (B), PD-L1+ M1-like and M2-like TAM in 

LA (C) and non-LA tumor area (D), TAN (CD66b+ Gr) in pre-treatment biopsy (E, pre) and 

in post-treatment LA (F), and non-LA tumor area (G).

(H) Changes in TANs between pre-treatment (pre) and matched post-treatment non-LA 

tumor areas (post) and their correlation with OS. Sample numbers (A–H) are the same as in 

Figure 2.
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(I–K) Correlation between CD8+PD-1+ T cells and CD4+PD-1+ T cells, as indicated, and 

myeloid cell densities in post-treatment tumor areas. Tumors (n = 19) subgrouped by 

higher versus lower density of M1-like TAM (I), M2-like TAM (J), or CD66b+ TAN (K), 

respectively, in LA.

(L and M) Correlation between LAG3+ cells (L) and TIM3+ cells (M), respectively, and 

TANs in post-treatment tumor areas. Tumors subgrouped by higher versus lower density of 

TANs in LA.

(N) mIHC images of CD66b and CXCR2, as indicated, and their overlaid image. All scale 

bars, 100 μm. Pseudocolors assigned by the Halo software. A representative LA shown; one 

square region enlarged and also shown. Arrow indicates the only CXCR2+ cell that was not 

CD66b+ within this region. All data shown as the mean ± SD; all comparisons made by t 

test; *p < 0.05; **p < 0.01; NS, not significant. See also Figure S5.
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Figure 4. Spatial relationship between tumor cells and immune cells
(A) A representative region from six-marker mIHC images integrated by Halo software. 

Scale bar, 100 μm.

(B) Distance measurement schema of a representative region. Positive signals (exemplified 

by the EpCAM staining signals) and the nearest neighbor cells (exemplified by the nearest 

CD8+ cells) are connected by lines whose lengths are measured as the distances.

(C–H) Tumors were subgrouped by higher versus lower density of CD8+ T cells (C and 

F), CD8+PD-1+ T cells (D and G), and CD8+GZMB+ T cells (E and H) in LA (C–E) and 

non-LA tumor areas (F–H). Distances from one cell type to another cell type were compared 

by t test between subgroups (high versus low density) in two cohorts of tumors treated 

with GVAX and GVAX + nivolumab, respectively. Tumor cells marked by EpCAM staining 

and identified by pathologists. mIHC images qualified for distance measurement: n = 7 for 

GVAX and n = 10 for GVAX + Nivo. All data shown as the mean ± SD; *p < 0.05; **p < 

0.01; all others, not significant. See also Figure S6.
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Figure 5. Transcriptomic profiling of tumor-infiltrating immune cells in PDACs treated with 
GVAX or GVAX + nivolumab
(A) Cibersort heatmap of immune cell subtype composition profiling sorted CD19+ (n = 10), 

CD4+ (n = 13), CD8+ (n = 13), and CD11b+ (n = 10) TILs. Treatment arms, OS, and sorted 

cell types indicated by various colors.

(B–D) The proportion of immune cell subtypes profiled by Cibersort was compared between 

treatment arms by t test. Boxplots display minimum and maximum values (whiskers), 

interquantile range (box) with median, and outliers.

(E–J) TCR and BCR clonality predicted from RNA-seq of sorted CD4+ (E and H), CD8+ 

(F and I), and CD19+ cells (G and J) were compared between treatment arms (E–G) and 

between OS > 2 years and OS < 2 years cohorts (H–J) by t test. Data shown as the mean ± 

SD. Cases with follow-up < 2 years shown separately. See also Figures S7, S8, and Table S5.
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Figure 6. RNA-seq analysis of differentially expressed genes between different subcohorts from 
this study cohort of PDACs
(A–B) Volcano plots showing differentially expressed (DE) genes compared between the 

OS > 2 years and OS < 2 years cohorts in sorted CD8+ (A) and CD4+ (B) T cells. (C-F) 

Volcano plots showing DE genes compared between treatment arms in sorted CD4+ T cells 

(C), CD8+ T cells (D), CD11b+ cells (E), and CD19+ B cells (F). The sample numbers are 

the same as in Figure 5. Vertical dashed lines indicate Log2 fold change (FC) at −0.5 and 

0.5; horizontal dashed line indicates adjusted p value at 0.05. Genes that met either, both, or 

neither (NS) of the following two criteria: (1) Log2 FC > 0.5 or < −0.5 and (2) adjusted p 
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value <0.05 are represented by color-coded dots. Total gene counts are indicated. Genes of 

interest are annotated.

(G–J) Enrichment plots showed upregulation of the REACTOM chemokine receptor bind 

chemokines pathway in sorted CD4+ T cells (G), the GOBP myeloid cells and lymphocyte 

chemotaxis pathway in sorted CD4+ T cells (H), the GOMF extracellular matrix structural 

constituent pathway in sorted CD8+ T cells (I), and the REACTOM neutrophil degranulation 

pathway in CD11b+ cells (J) in the GVAX + Nivo versus GVAX treatment arm. DE by 

treatment, differentially expressed between treatment arms. See also Tables S6 and S7.

Li et al. Page 39

Cancer Cell. Author manuscript; available in PMC 2022 November 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. Single-cell analysis of CD137 (TNFRSF9)-expressing T cells
(A) Uniform Manifold Approximation and Projection (UMAP) embedding of color-coded 

immune cell subtypes from the PDAC atlas.

(B) Immune cells from the PDAC atlas were annotated according to high (hi) or low (lo) 

TNFRSF9 expression and annotated for different immune cell subtypes.

(C) Stacked bar plots of the proportions of CD8+, effector CD8+, and Treg cells classified as 

TNFRSF9hi or TNFRSF9lo.

(D and E) MsigDB hallmark gene sets significantly enriched in TNFRSF9hi (orange) or 

TNFRSF9lo (blue) Tregs (D) and effector CD8+ cells (E) ordered by normalized enrichment 

score.

(F) Expression of ligands by immune cells that interact with receptors expressed by 

neutrophils is presented in the heatmap as scaled, log-normalized counts. See also Figure S9.

Li et al. Page 40

Cancer Cell. Author manuscript; available in PMC 2022 November 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Li et al. Page 41

Ta
b

le
 1

.

C
om

pa
ri

so
n 

of
 m

od
el

s 
ba

se
d 

on
 th

e 
B

IC
 m

et
ho

d

P
re

-t
re

at
m

en
t 

tu
m

or
 a

re
a

P
os

t-
tr

ea
tm

en
t 

L
A

C
D

66
b+ G

r 
(T

A
N

)
M

1 
T

A
M

M
2 

T
A

M
C

D
8+  

T
 c

el
l

C
D

8+ G
Z

M
B

+  
T

 c
el

l

G
V

A
X

 +
 N

iv
o 

A
rm

su
rv

iv
al

 (
da

y)

O
S

10
.1

6b
16

.5
1

16
.1

9
11

.7
1a

15
.2

1

D
FS

12
.4

0
12

.9
3

14
.1

0
14

.5
3

14
.6

1

di
st

an
ce

 (
μm

)

tu
m

or
 to

 C
D

8+
 c

el
l

12
9.

34
12

9.
17

12
9.

36
12

8.
87

12
3.

73
b

tu
m

or
 to

 C
D

8+
PD

-1
+
 c

el
l

14
1.

94
14

1.
87

14
2.

02
14

1.
22

13
6.

96
b

tu
m

or
 to

 C
D

8+
PD

-1
−
 c

el
l

95
.4

3
93

.7
3

94
.1

5
94

.9
4

87
.9

3b

tu
m

or
 to

 C
SF

1R
+
 c

el
l

12
5.

93
12

4.
72

12
5.

97
12

6.
04

12
4.

43

tu
m

or
 to

 P
D

-L
1+

C
SF

1R
+
 c

el
l

13
9.

21
13

7.
86

13
9.

20
13

9.
25

13
7.

85

tu
m

or
 to

 P
D

-L
1−

C
SF

1R
+
 c

el
l

79
.0

2
79

.5
0

79
.4

7
79

.1
2

75
.4

9a

PD
-L

1+
C

SF
1R

+
 c

el
l t

o 
C

D
8+

PD
-1

+
 c

el
l

11
4.

26
11

3.
34

11
2.

57
11

4.
11

10
8.

80
b

G
V

A
X

 A
rm

su
rv

iv
al

 (
da

y)

O
S

6.
55

6.
91

6.
64

8.
74

a
12

.9
9

D
FS

7.
12

6.
43

6.
65

11
.0

4
9.

23

di
st

an
ce

 (
μm

)

tu
m

or
 to

 C
D

8+
 c

el
l

49
.2

1
49

.2
1

49
.2

1
85

.2
3

80
.0

3b

tu
m

or
 to

 C
D

8+
PD

-1
+
 c

el
l

52
.8

8
52

.8
8

52
.8

8
91

.7
2

88
.0

3a

tu
m

or
 to

 C
D

8+
PD

-1
−
 c

el
l

44
.1

4
44

.1
4

44
.1

4
74

.8
2

66
.8

3b

tu
m

or
 to

 C
SF

1R
+
 c

el
l

47
.3

8
47

.3
8

47
.3

8
94

.3
6

95
.2

4

tu
m

or
 to

 P
D

-L
1+

C
SF

1R
+
 c

el
l

50
.8

5
50

.8
5

50
.8

5
10

2.
98

10
4.

36

tu
m

or
 to

 P
D

-L
1−

C
SF

1R
+
 c

el
l

41
.5

6
41

.5
6

41
.5

6
70

.9
1

66
.8

1a

PD
-L

1+
C

SF
1R

+
 c

el
l t

o 
C

D
8+

PD
-1

+
 c

el
l

49
.7

7
49

.7
7

49
.7

7
84

.2
8

83
.1

4

L
A

, l
ym

ph
oi

d 
ag

gr
eg

at
e;

 O
S,

 o
ve

ra
ll 

su
rv

iv
al

; D
FS

, d
is

ea
se

-f
re

e 
su

rv
iv

al
; T

A
N

, t
um

or
-a

ss
oc

ia
te

d 
ne

ut
ro

ph
il;

 M
1 

TA
M

, M
1-

lik
e 

tu
m

or
-a

ss
oc

ia
te

d 
m

ac
ro

ph
ag

e;
 M

2 
TA

M
, M

2-
lik

e 
tu

m
or

-a
ss

oc
ia

te
d 

m
ac

ro
ph

ag
e.

Cancer Cell. Author manuscript; available in PMC 2022 November 17.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Li et al. Page 42
a C

on
si

de
re

d 
to

 h
av

e 
a 

m
ea

ni
ng

fu
l d

if
fe

re
nc

e.

b C
on

si
de

re
d 

to
 h

av
e 

a 
st

ro
ng

 d
if

fe
re

nc
e.

Cancer Cell. Author manuscript; available in PMC 2022 November 17.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Li et al. Page 43

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Multiplex immunohistochemistry antibody panel See Table S3

Rat monoclonal anti-mouse/human PNAd, clone 
MECA-79

BioLegend Cat#120802; RRID: AB_493555

Mouse monoclonal anti-Human LAG-3, clone 
17B4

Novus Biologicals Cat#NBP1-97657SS; RRID: AB_11162489

Rabbit monoclonal anti-Human TIM-3, clone 
DRDR5

Cell Signaling Technology Cat#45208S; RRID: AB_2716862

Monoclonal Biotin anti-rat IgM, clone MRM-47 BioLegend Cat#408903; RRID: AB_10571208

Mouse monoclonal anti-Human CD4 PE-
CF594, clone RPA-T4

BioLegend Cat#562281; RRID: AB_11154597

Mouse monoclonal anti-Human CD8 APC, 
clone SK1

BioLegend Cat#344722; RRID: AB_2075388

Mouse monoclonal anti-Human CD19 PE, clone 
HIB19

BioLegend Cat#555413; RRID: AB_395813

Mouse monoclonal anti-Human CD11b BV421, 
clone LM2

BioLegend Cat#393114; RRID: AB_2750258

Biological samples

Tumor biopsy before treatment This paper N/A

Tumor samples after surgery This paper N/A

Peripheral blood mononuclear cells This paper N/A

Chemicals, peptides, and recombinant proteins

Hematoxylin Dako Cat#S3301

Citra Plus Solutions BioGenex Cat# HK086-9K

EDTA buffer Sigma-Aldrich Cat# E1161

Hydrogen peroxide solution Sigma-Aldrich Cat#H1009-500ML

HistoFine Simple Stain MAX PO (Mouse) Nichirei Bioscience Cat#414132F

HistoFine Simple Stain MAX PO (Rabbit) Nichirei Bioscience Cat#414142F

HistoFine Simple Stain MAX PO (Rat) Nichirei Bioscience Cat#414311F

VectaMount AQ Mounting Medium Vector Laboratories Cat#H-5501-60

Ficoll-Paque Plus Sigma-Aldrich Cat#GE17-1440-02

Critical commercial assays

AEC Substrate Kit Vector Laboratories Cat#SK-4200

ImmPRESS HRP Goat Anti-Rabbit IgG 
Polymer Detection Kit

Vector Laboratories Cat#MP-7451

ImmPRESS HRP Goat Anti-Mouse IgG 
Polymer Detection Kit

Vector Laboratories Cat#MP-7452

ImmPRESS DAB peroxidase substrate Kit Vector Laboratories Cat#SK-4105

AllPrep DNA/RNA Micro Kit Qiagen Cat#80284

Qubit RNA HS Assay Kit Invitrogen Cat#Q32852
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REAGENT or RESOURCE SOURCE IDENTIFIER

SMART-Seq v4 Ultra Low Input RNA Kit Takara Cat#634894

Zombie Green™ Fixable Viability Kit BioLegend Cat#423111

Deposited data

Transcriptomic Data (raw) This paper GEO database: GSE197613

Whole exome sequencing data This paper dbGAP: phs003002.v1.p1

Code for genomics analysis This paper github.com/FertigLab/J1568_Bulk

scRNA-seq database Kinny-Koster et al., 2022 https://doi.org/10.1101/2022.07.14.500096

Software and algorithms

Aperio ImageScope v.12.3.2.8013 Leica Biosystems https://www.leicabiosystems.com/us/digital-
pathology/manage/aperio-imagescope/

CellProfiler pipeline v.2.1.1 Tsujikawa et al., 2017 https://github.com/multiplexIHC/cppipe

ImageJ v1.48 Schneider et al., 2012 https://imagej.nih.gov/ij/

FCS Express 7 Image Cytometry v7.10.0007 De Novo Software https://denovosoftware.com/full-access/
download-landing/

Halo Image Analysis Platform v3.4.2986 Indica Labs https://indicalab.com/halo/

Kallisto v0.45.0 Bray et al., 2016 http://pachterlab.github.io/kallisto/

Tximport v1.22.0 Soneson et al., 2015 http://bioconductor.org/packages/tximport

DESeq2 v1.36.0 Love et al., 2014 http://www.bioconductor.org/packages/release/
bioc/html/DESeq2.html

apeglm v1.18.0 Zhu et al., 2019 https://bioconductor.org/packages/release/bioc/
html/apeglm.html

MSigDb v7.5.1 Zhu et al., 2019 http://www.gsea-msigdb.org/gsea/msigdb

LIMMA v3.52.2 Ritchie et al., 2015 http://www.bioconductor.org/packages/release/
bioc/html/limma.html

CIBERSORTx Korotkevich et al., 2021 https://cibersortx.stanford.edu/

MGIEasy Universal DNA Library Prep Set MGI Tech Co., Ltd. https://en.mgi-tech.com/products/
reagents_info/id/8

MGIEasy Exome Capture V4 Probe Set MGI Tech Co., Ltd. https://en.mgi-tech.com/products/
reagents_info/9/

SOAPnuke v2.0.7 BGI Genomics https://github.com/BGI-flexlab/SOAPnuke

VCF2MAF v1.6.16 Kandoth and Qwangmsk, 2018 https://zenodo.org/record/
1185418#.YugPFHZBxD8

Maftools package v2.8.05 Mayakonda et al., 2018 https://github.com/PoisonAlien/Maftools

NetMHCpan v4.1b Jurtz et al., 2017 https://services.healthtech.dtu.dk/service.php?
NetMHCpan-4.1

MiXCR v4.0 Bolotin et al., 2015 https://github.com/milaboratory/mixcr/releases

IMMUNARCH v0.6.7 ImmunoMindTeam, 2019 https://immunarch.com/index.html

Normalized Shannon’s Entropy algorithm Hopkins et al., 2018 https://doi.org/10.1172/jci.insight.122092

monocle3 v1.0.0 Cao et al., 2019; Qiu et al., 2017; 
Trapnell et al., 2014

http://cole-trapnell-lab.github.io/monoclerelease/
monocle3/#installing-monocle-3

Seurat v4.1.1 Butler et al., 2018; Hao et al., 2021; 
Stuart et al., 2019; Zeng et al., 2018

https://cran.r-project.org/web/packages/Seurat/
index.html

fgsea v1.22.0 Korotkevich et al., 2021 https://bioconductor.org/packages/release/bioc/
html/fgsea.html

Domino v0.1.1 Cherry et al., 2021 https://github.com/Shamir-Lab/DOMINO/
releases
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REAGENT or RESOURCE SOURCE IDENTIFIER

pySCENIC v0.11.0 Aibar et al., 2017; Van de Sande et al., 
2020

https://github.com/aertslab/pySCENIC

CellPhoneDB v2.0.0 Efremova et al., 2020; Garcia-Alonso 
et al., 2021

https://github.com/Teichlab/cellphonedb

GraphPad Prism v9.3.1 GraphPad Software https://www.graphpad.com/scientificsoftware/
prism/

Other

Clinical trial protocol This paper Data S1
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