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Patients with glioblastoma (GBM) have a poor outcome, but even among

patients receiving the same therapies and with good prognostic factors, one

can find those with exceptionally short and long survival. From the Nordic trial,

which randomizedGBMpatients of 60 years or older between two radiotherapy

arms (60 Gy or 34 Gy) or temozolomide (TMZ), we selected 59 with good

prognostic factors. These selected GBM patients were equally distributed

according to treatment and MGMT promoter methylation status but had

long or short survival. Methylation profiling with the Illumina Infinium

Methylation EPIC BeadChip arrays was performed and utilized for

methylation-based CNS tumor classification, and pathway enrichment

analysis of differentially methylated CpG sites (DMCs), as well as calculation

of epigenetic age acceleration with three different algorithms, to compare the

long and short survival groups. Samples identified by the classifier as non-GBM

IDH wildtype were excluded. DMCs between long- and short-term survivors

were found in patients with methylated MGMT promoter treated with TMZ

(123,510), those with unmethylated MGMT treated with 60Gy radiotherapy

(4,086), and with methylated MGMT promoter treated with 34Gy

radiotherapy (39,649). Long-term survivors with methylated MGMT promoter

treated with TMZ exhibited hypermethylation of the Wnt signaling and the

platelet activation, signaling, and aggregation pathways. The joint analysis of

radiotherapy arms revealed 319 DMCs between long- and short-term survivors

with unmethylated MGMT and none for samples with methylated MGMT

promoter. An analysis comparing epigenetic age acceleration between

patients with long- and short-term survival across all treatment arms

showed a decreased epigenetic age acceleration for the latter. We identified

DMCs for both TMZ and RT-treated patients and epigenetic age acceleration as

a potential prognostic marker, but further systematic analysis of larger patient

cohorts is necessary for confirmation of their prognostic and/or predictive

properties.
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Introduction

Glioblastoma (GBM) remains the most common and

deadliest among gliomas. The peak incidence is in

individuals above 65 years old, and only about 5.6% of

patients reach five-year survival (Ostrom et al., 2018).

Unfortunately, the treatment options are also limited, and

so far, efforts have only provided modest survival benefits,

leaving the median survival at 1.2 years (Molinaro et al., 2019;

Weller et al., 2020). Standard therapy for GBM patients

consists of gross total resection, if feasible, followed by

concomitant radiotherapy (RT) and chemotherapy with the

alkylating agent temozolomide (TMZ) and additional six

cycles of TMZ (Weller et al., 2021). For fit patients,

additional treatment with tumor-treating fields is an

option, further prolonging survival for the selected group

by nearly 5 months (Stupp et al., 2017). Choosing the best

possible treatment is crucial, especially for elderly patients

often burdened by comorbidities, where the combined

treatment is not expected to be tolerated. The known

positive prognostic factors include the extent of surgery,

age, performance status, and sex of the patient (Weller

et al., 2020). Thus far, the only predictive biomarker

associated with response to TMZ treatment is the

methylation status of the promoter of the O6-

methylguanine-DNA-methyltransferase (MGMT) gene, and

methylated MGMT (m-MGMT) is associated with better

overall survival (OS) (Stupp et al., 2007; Malmstrom et al.,

2012), although varying responses among patients are still

observed.

Notably, the importance of epigenetic changes in gliomas

has been emphasized by recent discoveries (Etcheverry et al.,

2010; Capper et al., 2018; Chai et al., 2019; Wu et al., 2020).

The current classification of brain tumors incorporates

molecular biomarkers, namely., mutations of isocitrate

dehydrogenase 1 or 2 (IDH1/2) and 1p/19q codeletion

(Louis et al., 2016). Methylome profiling presents a

promising alternative, with further refinement and

subclassification (Capper et al., 2018). Another example is

the glioma cytosine–phosphate–guanine (CpG) island

methylator phenotype (G-CIMP), which entails genome-

wide hypermethylation of the CpG islands. The G-CIMP

profile is tightly associated with IDH1/2 mutations and

better outcomes for patients with IDH-mutated gliomas

(Noushmehr et al., 2010; Malta et al., 2018; Tesileanu et al.,

2021). There are also other indications that methylome

profiling could aid in selection of patients with better

prognosis within the same diagnostic entity, for e.g., by

using the methylation differences found in short- and long-

term survivors (STS and LTS, respectively) with GBM

(Shinawi et al., 2013; Ma et al., 2015; Klughammer et al.,

2018). Moreover, changes in the methylation profiles between

primary and recurrent GBM have been reported, with

common occurrence of switches between methylation

subclasses found at progression (Klughammer et al., 2018).

Age is one of the prognostic factors, and younger GBM

patients are characterized by better outcomes (Ostrom et al.,

2018; Weller et al., 2020). Aging is also reflected in the

methylation state of the genome, the so-called epigenetic age

(Lu et al., 2019). Methylation of specific CpG sites undergoes age-

dependent changes, which can be quantified and expressed

through the epigenetic age (Horvath, 2013). Acceleration of

the epigenetic age, which is the difference between the

epigenetic age and chronological age, has been reported in

many diseases, such as Alzheimer’s (Levine et al., 2015) or

Parkinson’s disease (Horvath and Ritz, 2015). It has also

shown to be associated with cancer, mortality in

cardiovascular diseases (Lin and Wagner, 2015; Perna et al.,

2016), and patients outcome in gliomas (Liao et al., 2018; Zheng

et al., 2020).

In the Nordic trial, patients of 60 years or older diagnosed

with GBM were randomized between two different fractionation

regimens of RT or TMZ treatment alone (Malmstrom et al.,

2012). Constituting a unique cohort with the possibility to

investigate the role of methylation profiles in relation to RT

and TMZ separately, we decided to analyze the global

methylation status of tumors from LTS and STS using

Illumina EPIC bead arrays. The aim of this research was to

identify potential methylation-based biomarkers or profiles

related to treatment and outcome.

Materials and methods

Patients

All patients included in this study were participants of the

Nordic-randomized, phase 3 trial registered under number

ISRCTN81470623 (Malmstrom et al., 2012), which compared

three treatment modalities for newly diagnosed GBM patients

with age 60 and above (TMZ vs. standard RT 60Gy vs.

hypofractionated RT 34Gy). First, from the entire trial, we

selected patients with available formalin-fixed paraffin-

embedded (FFPE) tumor tissue. From each of the three

treatment arms (TMZ, 34, and 60Gy), we chose patients

with immunohistochemically confirmed IDH1 wildtype

status and characterized the patients by two good

prognostic factors: tumor resection and WHO performance
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status 0–1 (Malmstrom et al., 2012). Next, samples within

each treatment arm were stratified based on their MGMT

promoter methylation status (methylated MGMT promoter,

m-MGMT; unmethylated MGMT promoter, u-MGMT) and

ranked based on the survival. From each group, we selected

five patients with the longest and five with the shortest

survival, so that the treatment modality, MGMT status, and

survival group were represented by an equal number of

patients (Figure 1 and Table 1). The MGMT methylation

status was analyzed with the MDxHealth method, Liège,

Belgium, as mentioned in Malmstrom et al. (2012). Ethical

approval for the Nordic trial and molecular analyses were

previously obtained (99086, M11-06 T40-09, and 2011/

32–32).

FIGURE 1
Patients from the Nordic trial included in the study. Patients with good prognostic factors were selected from each treatment arm
(temozolomide -TMZ, radiotherapy 34Gy-RT 34Gy, and radiotherapy 60Gy- RT60Gy). Half of the tumors had methylated MGMT promoter
(m-MGMT), and half had unmethylated MGMT promoter (u-MGMT). These patients were further divided into long-term survivors (LTS) and short-
term survivors (STS). N, number of patients.

TABLE 1 Patient characteristics.

Treatment Survival group MGMT status N Male Mean age
at diagnosis
(range) [years]

Median survival
(range) [months]

TMZ LTS Methylated 5 3 64 (60–69) 20.1 (13.7–125.9)

Unmethylated 5 3 72 (67–77) 13.3 (9.9–18.9)

STS Methylated 5 2 70.6 (67–78) 9.2 (3.5–10.4)

Unmethylated 5 3 66.8 (64–69) 2.9 (2.1–3.8)

34Gy LTS Methylated 5 1 69.2 (63–77) 14.6 (12.6–24.3)

Unmethylated 5 3 72.4 (69–81) 14.6 (12.6–35.7)

STS Methylated 5 2 72.4 (65–77) 4 (1.3–5.5)

Unmethylated 5 2 68.6 (64–74) 4.6 (3.3–5.1)

60Gy LTS Methylated 5 2 64.2 (60–72) 14 (12.1–16.6)

Unmethylated 5 4 64.6 (60–70) 17.9 (15.6–33.4)

STS Methylated 4 3 69.3 (62–73) 7.8 (6.6–10.1)

Unmethylated 5 4 69.2 (65–74) 1.7 (1.1–4.2)
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DNA methylation analysis

DNA was extracted from two tumor tissue sections of 10 µm

each, using the Maxwell FFPE DNA Purification Kit (Promega)

according to the manufacturer’s protocol but with a double

amount of proteinase K (40 mg/ml). DNA quantity and

quality were checked using the NanoDrop ND-1000

spectrophotometer (ThermoFisher) and Quantus Fluorometer

(Promega), as well as with the Infinium FFPE QC Kit (Illumina).

A total of 250–500 ng of DNA was subjected to bisulfite

conversion using the EZ DNA methylation kit (Zymo

Research), and genome-wide DNA methylation was assessed

with the Infinium Methylation EPIC BeadChip Kit (Illumina)

complemented by the Infinium HD FFPE DNA Restore Kit as

per manufacturer’s protocol. The BeadChip arrays were scanned

on the NextSeq 550 (Illumina), and DNAmethylation data in the

form of IDAT files (intensity data files that contain green and red

signals from methylated and unmethylated CpG sites) were

uploaded to the online classifier v11b4 (Capper et al., 2018),

where MGMT methylation status was also assessed with the

MGMT-STP27 algorithm (Bady et al., 2016).

Differential methylation analysis

The IDAT files from Illumina Human Methylation EPIC

arrays were also analyzed using R (v4.0.3) (R Core Team, 2021)

and Bioconductor packages (v3.14) (Gentleman et al., 2004), for

example., the Chip Analysis Methylation Pipeline (ChAMP)

analysis package (v2.19.3) (Tian et al., 2017). The files were

pre-processed in ChAMP to filter out CpGs with detection

p-value >0.01, as well as SNP CpGs, unbound and multi-hit

CpGs, and all CpGs from sex chromosomes. After filtration, a

quality check was performed, and the files were normalized with

the beta-mixture quantile normalization (BMIQ) function. The

β- andM-values of the samples were calculated against each CpG

per sample. Batch effects were corrected with the runCombat

function. The differential methylation analysis was calculated

with the linear modeling (limFit) and eBayes algorithm,

comparing two groups from the phenotypic dataset, and

singular value decomposition (SVD) analysis was performed

to check for confounders (e.g., age and sex) (Supplementary

Data, Supplementary Figure S2). The differential methylation

analysis was performed first for all samples that were classified as

GBM IDHwildtype. Then, after removal of patients that died due

to causes other than tumor, such as infection, the same analysis

was conducted for three samples from each group, i.e., three with

the longest survival in LTS and three with the shortest survival in

STS. The latter analysis found differentially methylated CpGs

(DMCs) in the comparison of LTS vs. STS within each treatment

arm with methylated or unmethylated MGMT promoter; hence,

further analysis was based on these. The DMCs were considered

significant at the Bonferroni–Hochberg corrected p-value

(p-valueBH) <0.05. The hierarchical cluster analysis was

performed using the Euclidean distance within the ape

package (v5.0) (Paradis and Schliep, 2019) in R.

Structural annotation

We usedAnnotationDbi package (v1.54.1) (Pagès et al., 2021)

to annotate DMCs and in-house scripts to visualize their

genomic distribution. The statistically significant DMCs

(p-valueBH < 0.05) were used to create the volcano plot with

the mean methylation difference (Δmmd) ≥|0.3|) using the

EnhancedVolcano package (v1.10.0) (Blighe et al., 2021) in R.

The cut-off score of Δmmd was calculated using the β-value
distribution of all samples with the mean ± 2SD (Supplementary

Data, Supplementary Figure S3, and Supplementary Data,

Supplementary Table S1). The R package ComplexHeatmap

(v2.8.0) (Gu et al., 2016) was used to create the heatmap from

individual β-values of DMCs (p-valueBH < 0.05; (Δmmd) ≥|0.3|).

Pathway enrichment and correlation
analysis

To reduce the number of DMCs, we first filtered out DMCs

based on the genomic location, leaving only those from the 5′-
untranslated region (5′-UTR) and transcription start site (TSS)

regions (TSS200 and TSS1500). Furthermore, we applied the

Δmmd cut-off score (as described previously). The DMCs were

converted to their respective official gene symbols (hereafter

called DMGs, differentially methylated genes), and the list

(without/with Δmmd values) was used for the pathway

enrichment analysis. The Reactome database (v78) (Griss

et al., 2020) was applied to perform the gene set enrichment

analysis using the clusterProfiler package (v4.0.5) (Wu et al.,

2021) in R (v4.1) with the default parameters setup (e.g.,

1,000 permutations and p-valueBH < 0.05). The results were

visualized using ggplot2 (v3.3.3) (Wickham, 2016) in-house

script.

Epigenetic age calculation

The epigenetic age was calculated for the same set of samples

that were used in the differential methylation analysis (three

samples from STS and LTS per group).We usedmethylation data

obtained in this study and followed the methods published for

three epigenetic clocks, namely, Horvath’s (Horvath, 2013),

Hannum’s (Hannum et al., 2013), and PhenoAge (Levine

et al., 2018). The epigenetic age acceleration was calculated as

the difference between the epigenetic age and chronological age,

given in years. Mean chronological and epigenetic ages were

compared with two-tailed Student’s t-test, and a p-
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value <0.05 was considered significant. Calculations were

performed with IBM SPSS (v.26).

Results

Methylation-based classification

Histological review in the primary analysis of the trial

material classified 58 out of 59 samples included in this study

as GBM grade 4, and one sample was classified as astrocytoma

grade 3, but all samples were IDH1 mutation-negative.

Methylation data for all samples passed the quality control

and were uploaded to the brain tumor classifier (https://www.

molecularneuropathology.org/mnp) (Capper et al., 2018).

Methylation-based classification placed most of the samples in

the GBM IDH wildtype class, including the mentioned

astrocytoma. One sample was classified as anaplastic pilocytic

astrocytoma, and confirmative sequencing of IDH1 and IDH2

displayed the absence of mutation in accordance with the

immunohistochemistry result. In three cases, samples were

classified as “control tissue” probably due to low tumor cell

content and were excluded. The analysis of methylation

subclasses revealed that 21 samples belonged to only one

subclass, with 2 being midline GBM. The remaining (n = 34)

GBM IDH wildtype samples had two or three subclasses assigned

to them. The MGMT methylation analysis results were

concordant between the MDxHealth method and MGMT-

STP27 for all but one sample, even for the samples that were

classified as control tissue.

Differential methylation analysis

We decided to only include samples, where progressive

disease and/or death caused by the tumor had been reported

because, especially in the STS groups, the true relationship

between the tumor’s methylation profile and survival could be

compromised. After removing cases where death was caused by

co-morbidity or complications (e.g., infection and pulmonary

embolism), we decided to include only three samples with

extreme survival times from each treatment arm and MGMT

group, as survival times, especially in the RT arms, which had

relatively small spread. The survival differences between LTS and

STS as Kaplan–Meier curves are shown in the Supplementary

Data, Supplementary Figure S1.

We compared LTS and STS samples in the separated

treatment arms (TMZ, 34Gy, 60Gy, and combined RT), and

within each treatment, we compared m-MGMT and u-MGMT

samples separately and in combination. DMCs between LTS and

STS were identified in the TMZ arm, m-MGMT; 34Gy,

m-MGMT; 60Gy, u-MGMT, and in the combined RT arm,

u-MGMT. The highest number of DMCs were found in the

TMZ group (Supplementary Data, Supplementary Table S1). The

cofactor analysis showed that the differential methylation

analysis was not influenced by the included confounders (age,

sex, and death by the tumor/progressive disease) (Supplementary

Data, Supplementary Figure S2). Upon the structural annotation

of DMCs, we found that they were similarly distributed

throughout the genome (Figure 2), with the majority of

DMCs found in the gene bodies and intergenic regions.

Approximately 10% of DMCs were found in the TSS1500 and

up to 8% in the 5′UTR, with both regions being of regulatory

importance for gene expression due to the location of gene

promoters. We reduced the number of DMCs for further

analysis by filtering them out based on the genomic location

(TSS1500, TSS200, and 5′-UTR) and Δmmd cut-off values.

Inspection of density plots created from filtered data revealed

that the majority of DMCs were hypermethylated in LTS in the

TMZ and 34Gy, m-MGMT groups and hypomethylated in LTS

in the 60Gy, u-MGMT group. All DMCs were hypomethylated in

the comparison of LTS vs. STS in the combined RT group with

u-MGMT (Supplementary Data, Supplementary Figure S3).

Next, we performed hierarchical cluster analysis on filtered

DMCs (Figure 3). We observed that in the TMZ, m-MGMT

group, data formed four clusters of DMCs between LTS and STS.

We also found that for the joint RT group with u-MGMT,

clusters separated LTS and STS but not the radiation doses

(34 and 60Gy), emphasizing the importance of the treatment

modality itself.

Pathway enrichment analysis

Next, we used the Reactome database to investigate pathway

enrichment among the filtered DMGs, which were obtained from

the annotated DMCs. There were four pathways enriched in the

hypermethylated DMGs among LTS from the TMZ, m-MGMT

group, namely, metabolism; platelet activation, signaling, and

aggregation; signaling by WNT; and signal transduction. In the

same group analysis (LTS from the TMZ, m-MGMT), we found

37 pathways enriched in the hypomethylated DMGs, for

example., the immune system and Rho signaling pathways

(Supplementary Data, Supplementary Table S2). In the

hypermethylated DMGs in LTS in the treatment of 34Gy with

m-MGMT, we found two enriched pathways (immune system

and class B/2 secretin family receptors) (Supplementary Data,

Supplementary Table S2). We did not find any enriched

pathways for the remaining groups. Due to stringent filters

applied initially to DMCs and a low number of detected

enriched pathways, we decided to include DMCs removed by

the Δmmd cut-off values and repeat the analysis. Consequently,

the number of enriched pathways increased, both for the TMZ,

m-MGMT and 34Gy, m-MGMT groups (Figure 4), but no

pathways were enriched in the 60Gy and combined RT

groups. We compared the lists of enriched pathways and
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found seven that were common for the TMZ and 34Gy

(m-MGMT) arms, with three of them involved in G-protein

coupled receptor (GPCR) signaling (Figure 4).

One of the hypermethylated pathways found to be enriched

in LTS from the TMZ group with m-MGMTwasWNT signaling.

We wanted to check whether there was a correlation between

methylation of DMGs from the enrichment core and the

expression of these, but gene expression data were not

available for our samples. Instead, we used 51 primary, IDH

wildtype GBM samples with RNA-seq and 450k methylation

array data from TCGA, accessed via the SMART App website (Li

et al., 2019). First, we identified which of the DMCs from the

enrichment core were also covered by the 450k beadchip arrays,

since our results were based on the newer design, the 850k

methylation array. The overlapping DMCs were found for

nine genes, which were then analyzed with the Spearman

correlation coefficient to find if the promoter methylation

status of the genes correlated with the corresponding mRNA

expression, at a significance level p < 0.05. A negative correlation

was found only for the WNT2 gene (R = -0.37, p = 0.0067).

Epigenetic age

The cofactor analysis showed that chronological age did not

affect DMCs (Supplementary Data, Supplementary Figure S2);

however, molecular alterations in cancer cells may affect the

epigenetic age. This prompted us to analyze the epigenetic age of

the groups consisting of three tumor samples, which involved

three different epigenetic clocks, Horvath’s (Horvath, 2013),

Hannum’s (Hannum et al., 2013), and PhenoAge (Levine

et al., 2018). The calculated epigenetic age was compared to

the chronological age of the patient to establish epigenetic age

acceleration. We found significant differences between mean

FIGURE 2
Pie charts representing the structural genomic distribution of DMCs discovered in samples with long (n = 3) and short (n = 3) survival within the
different treatment arms and with specified MGMT promoter methylation status. TSS200, 200 bases upstream transcription start site; TSS1500,
1,500 bases upstream transcription start site; UTR, untranslated region; IGR, intergenic region; 60Gy34Gy, combined RT.
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epigenetic age acceleration calculated with Horvath’s (STS vs.

LTS; 23.6 vs. 39.2 years, p = 0.043) and PhenoAge (STS vs. LTS;

-18 vs. 0.2 years, p = 0.028) epigenetic clocks of STS and LTS in

the analysis that combined samples from all treatment arms and

with both methylated and unmethylated MGMT promoter

(Figure 5). As the number of samples analyzed was small,

i.e., only 18 in all, to further statistically improve our finding

of the prognostic value of epigenetic age acceleration for the

Horvath’s clock in an analysis regarding LTS and STS for patients

with the same characteristics as used in this study, it would be

necessary to include at least 32 samples per group to maintain a

power of 80% with alpha equal to 0.05. However, it is important

to keep in mind that samples used here were selected based on

their significant survival difference, and these power calculations

do not include the midpoint survival. To analyze whether our

findings were treatment- or MGMT promoter methylation

status-specific, we also compared the epigenetic age and

epigenetic age acceleration between STS and LTS in the

groups defined by these factors. According to Horvath’s

algorithm, all samples had a higher epigenetic than

chronological age (Supplementary Data, Supplementary Table

S3), but there was no significant difference between the

epigenetic age in LTS and STS, when separated into different

treatment arms with different MGMT promoter methylation

statuses. There were also no differences in the age acceleration

(Supplementary Data, Supplementary Table S3). In the results

fromHannum’s and PhenoAge epigenetic clocks, both epigenetic

age acceleration and deceleration (epigenetic age < chronological

age) were observed, with STS groups usually characterized by

lower mean epigenetic age (Supplementary Data, Supplementary

Table S3). Significant differences were discovered only in the

34Gy, u-MGMT group (Hannum’s and PhenoAge) and in the

FIGURE 3
(Continued).
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combined RT, u-MGMT group (Hannum’s). In these cases, STS

showed epigenetic age deceleration and lower mean epigenetic

ages than LTS.

Discussion

In recent years an increase in the use of methylome

profiling has been observed. The widely known brain tumor

classifier proposed by Capper et al. (2018) allows for a more

precise classification of brain malignancies. Undoubtedly,

methylation of the MGMT promoter remains the most

important biomarker for GBM, which predicts the effect of

TMZ treatment (Stupp et al., 2007; Malmstrom et al., 2012;

Weller et al., 2020). However, we lack validated predictive

biomarkers for patients with u-MGMT tumors or for those

treated with RT. Here, we employed the Capper classifier

(Capper et al., 2018) and differential methylation to

FIGURE 3
(Continued).Heatmaps representing β-values of the DMCs for (A) TMZ, m-MGMT; (B) 34Gy, m-MGMT; (C) 60Gy, u-MGMT; (D) combined RT,
u-MGMT.
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identify biomarkers predisposing to good treatment response

or indicating resistance to therapy.

Inter- and intratumor heterogeneity of GBM plays an

important role in treatment resistance and relapse of the

disease. A previous study on spatially separated biopsies

showed that methylation heterogeneity is common in GBM,

though it seems to affect only the subclassification, whilst all

samples remain classified as GBM IDH wildtype and MGMT

methylation status also remains stable (Wenger et al., 2019). This

is in line with our results from the methylation-based

classification, which showed that in 34 samples more than one

subclass was identified. Interestingly, it has recently been

reported that treatments such as chemo- or radiotherapy, and

even hypoxia, as sources of stress for cancer cells, may induce

methylation changes that likely contribute to the heterogeneity

among tumor cells (Johnson et al., 2021) and possibly patients’

outcome.

In LTS treated with TMZ and with m-MGMT, our analysis

revealed that the WNT signaling pathway was hypermethylated,

implicating silencing of WNT signaling and indicating the

importance of a maintained WNT pathway activity in STS. This

aligns with the previously presented results by Shinawi et al. (2013),

in which hypermethylation of the promoter of the DKK2 gene, an

antagonist of the WNT pathway, was found in STS. In TCGA data,

FIGURE 4
(Continued).
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we found a negative correlation between methylation of the sites

corresponding to hypermethylated CpGs in our samples and the

expression of the WNT2 gene. In mice, WNT2 drives the

proliferation of progenitor cells and development of the

midbrain, possibly having similar effects in humans (Sousa et al.,

2010). Wnt signaling is crucial during embryonal development and

is commonly altered in cancers (Zhan et al., 2017). In GBM,

activation of the WNT pathway is necessary for the maintenance

of glioblastoma cancer stem cells, which greatly contribute to

treatment resistance (Lee et al., 2016). Importantly, methylation

may be the main regulatory mechanism of the WNT pathway in

GBM, as mutations are rare (Lee et al., 2016). GBM is also proposed

to originate from the subventricular zone (SVZ), an area supporting

neural progenitor cells (Lee et al., 2018), and tumor proximity to the

SVZ has been linked to STS (Adeberg et al., 2014). Methylation of

gene promoters in newly diagnosed GBM and their impact on gene

expression, and survival of patients treated with concomitant

radiochemotherapy, was also previously reported by Etcheverry

et al. (2010). They found six CpG sites, for which methylation

was associated with decreased survival, and two of the CpG sites

were localized in the SOX10 gene promoter. We did not find SOX10

among DMGs in any of the treatment arms, but active WNT

signaling acts inhibitory on SOX10 expression (Uka et al., 2020).

To further emphasize this signaling pathway, a study by Wu et al.

(2020) showed that SOX10 acts as a master regulator of the receptor

tyrosine kinase I (RTK1) subtype of GBM, which often harbors

platelet-derived growth factor receptor alpha amplification (Wu

et al., 2020).

Another interesting finding, also in LTS with m-MGMT

promoter treated with TMZ is hypermethylation of the

platelet activation, signaling, and aggregation pathway. Up

to 30% of GBM patients experience venous

thromboembolism, making it one of the most common and

serious complications, which may influence survival (Yust-

Katz et al., 2015; Heenkenda et al., 2019). Hypermethylation

of the platelet activation pathway may therefore have a

protective function.

Among the hypomethylated enriched pathways, we found

some that were labeled as neuronal system, neurotransmitter

receptors, transmission across chemical synapses, and potassium

channels, all of which have been shown to partake in GBM

development and progression (Venkataramani et al., 2019;

FIGURE 4
Results of the pathway enrichment analysis for DMGs from (A) TMZ,m-MGMT (top 50 pathways) and (B) 34Gy,m-MGMT. The number of unique
and shared enriched pathways between the two groups (C) (TMZ-blue and 34Gy-red) is presented as a Venn diagram. The shared pathways are also
listed.
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Venkatesh et al., 2019). In our study, however, these pathways are

associated with LTS treated with TMZ and with m-MGMT. It

should be noted that in most of the published studies mentioned

here, STS is referred to patients with a survival of <1 year and LTS
to those with a survival of >3 years. In our study of elderly

patients with GBM, median survival was 12 months, and the

survival range was 4.5–126 months for the most favorable group,

those treated with TMZ and m-MGMT.

TMZ is the most commonly used drug in GBM treatment

due to its good blood–brain barrier penetration and generally

mild toxicity (Stupp et al., 2005), and MGMT promoter

methylation status is predictive for the treatment response to

TMZ (Malmstrom et al., 2012). However, not all GBMs are tested

for MGMT (Malmstrom et al., 2020). Chai et al. (2019)

investigated the potential benefits of TMZ in patients with

u-MGMT and showed that by using a methylation signature

of 31 genes, it is possible to select patients with u-MGMT to

obtain a survival similar to that of patients with m-MGMT.

Unfortunately, we did not find any DMCs separating LTS and

STS in the TMZ arm with u-MGMT.

In LTS from the 34Gy treatment armwithm-MGMTpromoter,

the enriched pathway in the hypermethylated DMGs is the pathway

of the secretin family receptors, a subgroup of G-protein coupled

receptors (GPCRs). Pathways involving GPCR are enriched in the

TMZ and 34Gy arms when filtering conditions are less stringent.

GPCR is the largest family of membrane proteins involved in cell

metabolism, migration, neurotransmission, immune response, and

cell differentiation (Byrne et al., 2021). Hypermethylation of these

pathways may lead to downregulation of gene expression and

decreased activity, potentially having a protective effect on the

patients. In fact, GPCRs are explored in various studies as

treatment targets for glioblastoma (Byrne et al., 2021), but in our

limited study, we did not find any DMCs in the combined RT group

to indicate the importance ofmethylation of GPCR for RT outcome.

The magnitude and direction of epigenetic age changes were

dependent on the applied algorithm, but overall, we observed a trend

toward lower epigenetic age in STS in comparison to LTS in all

algorithms. We found that STS had a significantly lower acceleration

of epigenetic age than LTS in the combination groups from all

treatment arms and when calculated with Horvath’s and PhenoAge

algorithms. Only Hannum’s clock failed to show a significant

difference. The discrepancies between the results are likely caused

by the innate differences between the algorithms. Horvath’s clock

pioneered the field and can be universally used for different tissues

(Horvath, 2013), Hannum’s clock is primarily designed for the

assessment of epigenetic age from blood, and the PhenoAge

model was built on phenotypic age, including many morbidity-

andmortality-related factors. Hannum’smethod and PhenoAge both

showed deceleration of epigenetic age instead of acceleration, which is

possibly dictated by the tissues and factors used for model

development. However, the results from Horvath’s clock are in

line with previous studies performed on gliomas, indicating

acceleration of epigenetic age in tumor tissue (Liao et al., 2018;

Zheng et al., 2020). The surprising effect of epigenetic age

deceleration or lower age in STS could be the result of the

involvement of stem-like cells in GBM development and

progression, since stem cells are characterized by lower epigenetic

age (Horvath, 2013). Although we did not find consistent and

significant differences in the epigenetic age of LTS and STS in

most of the analyzed treatment groups, this was probably caused

by the low number of samples. Overall, we observed a general

distortion in the epigenetic age in comparison to the

chronological age, which could be further explored as a

prognostic factor. A very recent study, which included four

datasets, one of them being the Nordic trial analyzed with the

Illumina 450k array, showed a 70% overlap between CpGs used

for methylation-based classification and sites linked to epigenetic age

acceleration (Bady et al., 2022). The RTKII subclass exhibited the

highest epigenetic age acceleration in comparison to the RTKI and

MES tumors. Due to the limited number of samples included here,

we were not able to conduct the same comparison with our 850k-

generated data. At the same time, the mentioned study reported no

differences in the results related to younger and older patients,

indicating a lack of relevance of chronological age in relation to

the epigenetic age of the GBM tissue (Bady et al., 2022).

The value of methylome profiling for brain tumors has been

largely shown through the methylation-based CNS classifier (Capper

et al., 2018). Although our analyses are limited due to the number of

samples, they highlight methylation differences, also related to

treatment modality, that exist between LTS and STS with GBM,

which might be clinically relevant. Also, epigenetic age assessment

may potentially be a valuable tool to select patients with good

FIGURE 5
Results of the epigenetic age acceleration analyses. The
epigenetic age acceleration (difference between the epigenetic
age and the chronological age) is shown in years on the y-axis,
horizontal lines represent the median values, boxplots
represent the first and third quartiles, errors are represented by the
T-bars, and the dots represent outliers. Epigenetic age
acceleration is significantly lower for short-term survivors (STS)
(N = 18) than long-term survivors (LTS) (N = 18) when calculated
with Horvath’s and PhenoAge algorithms. All data above the
dashed line represent an acceleration of epigenetic age, and data
below the dotted line represent a deceleration of epigenetic age.
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prognosis. However, systematic analysis of larger cohorts of patients

with LTS and STS is necessary and warranted for validation of our

findings.
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