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Abstract

Direct electron detectors have made it possible to generate electron density maps at near atomic 

resolution using cryo-electron microscopy single particle reconstructions. Critical current 
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questions include how best to build models into these maps, how high quality a map is required to 

generate an accurate model, and how to cross-validate models in a system independent way. We 

describe a modeling approach that integrates Monte Carlo optimization with local density guided 

moves, Rosetta all-atom refinement, and real space B-factor fitting, yielding accurate models from 

experimental maps for three different systems with resolutions 4.5 Å or higher. We characterize 

model accuracy as a function of data quality, and present a model validation statistic that 

correlates with model accuracy over the three test systems.

Introduction

Recent developments in direct electron detectors as well as improved image data analysis 

have led to vast improvement in the resolution achievable by single-particle electron cryo-

microscopy (cryoEM)1,2. Tools for automatic structure determination, model rebuilding, all-

atom refinement, and model validation are needed for single-particle reconstructions with 

near atomic resolution. Currently available X-ray crystallographic tools3-5 perform relatively 

poorly with density maps worse than 3 Å resolution, failing to converge on an accurate 

atomic model5. Methods have been developed specifically for building and refining 

structures into cryoEM density maps, including tools to fit crystal structures into density6-8, 

to fit secondary structure elements and assign sequence followed by all-atom refinement9,10, 

and to rebuild missing regions of protein backbone guided by experimental density data11,12. 

However, these methods rely on the existence of a high-quality starting model or known 

secondary structure assignment.

In this paper, we present a unified approach to model building, refinement, and model 

validation using near atomic resolution cryoEM reconstructions. Starting from homologous 

structures, using density maps over a wide range of resolutions, we show that when the 

resolution is better than 4.5 Å the approach is able to converge on an accurate all-atom 

model largely independent of starting model accuracy. The approach can automatically 

correct sequence registration errors, and has a substantially better radius of convergence than 

the widely used MDFF method.

Results

We sought to develop a cryoEM model refinement protocol that follows experimental 

density as much as possible while maintaining the physico-chemical accuracy of the model. 

As described in the Methods, we integrated approaches from crystallographic refinement, ab 

initio structure prediction, and segment rebuilding and refinement in comparative modeling 

to enable progression from a poor starting model – where the overall topology is correct but 

with large local backbone deviations – to an atomically accurate model in one seamless 

protocol.

We adapted to density-guided model building a sampling strategy previously developed for 

comparative modeling13. In this strategy, backbone fragments collected from the Protein 

Data Bank (PDB)14 are inserted via superposition onto the current model, and Cartesian 

space minimization against a low-resolution energy function “stitches closed” the broken 

peptide bonds. To sample more effectively guided by a cryoEM map, before stitching, we 
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first optimize each fragment to fit the density in the region. A Monte Carlo trajectory is 

carried out with trial moves consisting of replacement of a region that fits the density poorly 

with a backbone fragment from the PDB pre-minimized to fit the density. In the pre-

minimization step, coordinate constraints at the fragment endpoints maintain proper peptide 

bond geometry, and Ramachandran and rotameric constraints maintain reasonable backbone 

and sidechain geometry. Because these fragments are minimized in isolation, testing of a 

large set of fragments at each position is computationally feasible, quickly identifying 

backbone conformations consistent with both local sequence and the experimental data. All 

steps of modeling take into account the native symmetry of the complex, with all subunits 

present in multi-subunit complexes.

Since cryoEM maps are frequently better in resolution in some regions than others, atomic B 

factors are fit against cryoEM density data to maximize the real-space correlation between 

model and map. The protocol alternates between B factor refinement and model rebuilding 

until the correlation between the map and the model converges. Finally, because the fit of a 

model to experimental data alone provides little information on model quality (as the model 

was refined against that same experimental data), we developed a cross validation metric 

utilizing independently collected data that provides a map-quality independent assessment of 

model accuracy.

Model Building and Refinement

To evaluate the new refinement protocol and compare it to alternate approaches, we use 

three recently collected experimental datasets: 20S proteasome at 3.3 Å resolution, the 

periplasmic domains of the needle complex, PrgH/K, at 4.6 Å resolution, and a peptide fiber 

assembly at 4.3 Å resolution. To test the dependence of the method on the number of images 

used in the reconstruction and map resolution, we generated reconstructions for 20S at 4.1, 

4.4, 5.0, and 6.0 Å resolutions, and reconstructions of PrgH/K at 5.4 and 7.1 Å, using 

subsets of the particle images to realistically evaluate the challenges arising from limited 

data. At the highest resolution, much sidechain density is visible; at 4.0-4.5 Å resolution, 

limited sidechain density is observed, but individual strands and the pitch of helices is 

visible; at 5 Å and worse, individual beta strands and the pitch of helices are 

indistinguishable.

We focus first on the 20S proteasome as the very large amount of collected data and the 

wide range of structural variation in homologues allow systematic investigation of the 

dependence of the method on the resolution of the map and the accuracy of the starting 

model. We refined the 20S crystal structure (PDB code: 1PMA) into the highest-resolution 

reconstruction to generate a reference model for comparison; to allow evaluation of the 

refined model versus the crystal structure, we first split the particle images into two sets and 

generate two independent reconstructions. We set atomic B factors to uniform, and refine 

coordinates and B factors iteratively into the reconstruction. As illustrated (Fig. 1a,b), after 

refinement, the B factors fit to the reconstruction show very good agreement with those of 

the crystal structure (R2=0.74). Refinement of the crystal structure leads to subtle changes in 

the backbone in several loops (Fig. 1) that increase agreement with the independent 
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reconstruction, suggesting the refined model more accurately represents the structure on the 

EM grid than does the crystal structure.

To explore the role of starting-model accuracy on model refinement, we constructed 

comparative models from 11 homologues ranging from 12% to 40% sequence identity and 

another crystal structure with 100% sequence identity (PDB code: 1YAR). Errors in these 

starting structures are diverse, and cover challenges commonly seen in structure refinement, 

including rigid body movement of helices and strands, missing residues from the template, 

changes in loop conformation, and misaligned residues. Using the fraction of Cα within 1 Å 

of the reference structure as a measure of model accuracy, the input models ranged from 

15% to 96% accurate (Fig. 2a-e, blue bars), with root mean squared deviations (RMSD) 

from 1.0 to 7.1 Å to the reference model.

To simultaneously evaluate the dependence of refined model accuracy on starting model 

quality and map resolution, and the accuracy of model validation metrics, we generated 

independent training and testing maps at 3.3, 4.1, 4.4, 5.0, and 6.0 Å resolutions, and refined 

each of the starting models into each of the training maps (Fig. 2). In all cases, models were 

built excluding all peptide fragments from structures with higher sequence identity then that 

of the worst starting model (12%). For comparison to a widely used current method, we built 

full length comparative models from each starting model using Modeller15, and refined them 

using the MDFF molecular dynamics flexible fitting protocol16. The refined models were 

evaluated by determining the fraction of residues with Cα atoms within 1 Å of those in the 

refined crystal structure.

The new protocol shows less dependence on starting model accuracy at higher resolutions 

(Fig. 2a-e, Supplemental Fig. 1). While the accuracy of the starting models (blue bars) falls 

off dramatically with decreasing sequence identity, the accuracy of the refined Rosetta 

models (green) for the 3.3, 4.1 and 4.4 Å maps is quite good, even with distant starting 

models. For the majority of input templates, resulting models are over 75% accurate, with 

errors primarily in surface loops. However, at 5 and 6Å resolution, the performance of the 

method decreases, occasionally making the starting model worse. The extensive backbone 

sampling carried out during refinement is a double-edged sword: it allows dramatic 

improvement of starting models at high resolution, but can degrade starting models when the 

experimental data provides insufficient restraints. The dramatic decrease in performance 

going from 4.4 to 5.0 (and 6.0) Å may reflect the blurring of beta strands in beta sheets or 

the difficulty placing Cβ atoms in helices. Since resolution alone does not provide a perfect 

picture of map quality, this approach should not be used on maps lacking features such as 

resolution of individual strands or the pitch of helices.

The widely used MDFF method was much less sensitive to the resolution of the density 

map, but more sensitive to the accuracy of the starting model, likely due to stronger 

tethering to the starting model; this reduces model degradation at low resolution, but at high 

resolution makes it difficult to improve distant starting models. To increase the range of 

motion in MDFF, we tried reducing the restraints to the starting model and incrementally 

increasing the density weight. With lower restraint weight and higher density weight, the 

models moved further to better fit the density, but overall model geometry is compromised 
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as indicated by increased MolProbity17,18 scores. In contrast, models can move substantially 

in Rosetta to fit the density while maintaining good MolProbity scores. For example, starting 

from 1g0u at 3.3 Å, the MolProbity score of the MDFF model increases from 2.4 to 3.0; the 

Rosetta-refined model scores 1.7. Deviations of the starting, MDFF-refined and Rosetta-

refined models to the reference model for each residue are illustrated (Fig. 2f). When 

starting from distant models, Rosetta generates superior quality models (Fig. 2a-e) on all but 

the 5.0 and 6.0 Å map.

The Rosetta refinement protocol is able to correct the majority of errors from the input 

structure for 3.3-4.4 Å maps because the rebuilding procedure can quickly overcome local 

barriers. Density data is used to select and then optimize individual fragments, making 

backbone conformational sampling focused and efficient. As highlighted (Fig. 2F), in many 

cases, models can be incorrectly fit into the density with errors in sequence registration and 

misplaced secondary structure elements. On these datasets, residues as far as 10 Å away 

from the native placement in the starting model are remodeled correctly using the new 

protocol. With map resolutions better than 4.5 Å, both backbone and core sidechains are 

placed correctly. On the other hand, with lower-resolution maps, density information is not 

enough to guide correct placement of fragments, and many incorrect sampled models fit the 

density equally well.

Model validation

The fit of a refined model to an independent test map provides an unbiased measurement of 

model quality. We found previously that the medium resolution Fourier shell correlation 

(FSC) was more predictive than real space correlation19. While the entire model-map FSC 

curve is informative, when generating many models, it is valuable to have a single number 

that reflects model quality, thus, we integrate the FSC over the medium resolution range. As 

shown in Figure 3, this integrated FSC on an independent map (or free FSC) correlates with 

model accuracy quite well, particularly at high resolution. Furthermore, the real space 

correlation between models and the independent testing map over segments of the chain 

correlates with the local accuracies of models. In high-resolution maps, as the local 

correlation decreases, the fraction of incorrectly modeled residues increases (Supplementary 

Fig. 2). This allows the identification of local errors that are not eliminated by the automated 

protocol.

Testing on other systems

For the PrgH/K ring and the peptide fiber, there is no crystal structure of the complex in the 

same multimeric configuration to use as a gold standard, so we rely on the FSC against an 

independent reconstruction to evaluate model accuracy.

The first system, PrgH/K, is a C24 symmetric ring, with data to 4.6 Å resolution. We also 

utilize lower-resolution reconstructions made with subsets of the entire dataset that have 

estimated resolutions of 5.4 and 7.1 Å. The starting model is a hybrid derived from two 

sources: one subunit comes from a crystal structure in a different multimeric conformation, 

while the second subunit comes from a homologous structure. At each resolution, we fit 

Rosetta and MDFF models against a training map reconstructed from half of the images, and 

DiMaio et al. Page 5

Nat Methods. Author manuscript; available in PMC 2015 October 01.

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript



measure the FSC against a testing map. Similar to 20S, there are substantially better fits to 

the independent data with the Rosetta models versus the MDFF models at 4.6 and 5.4 Å 

resolution, but the MDFF-generated model at 7.1 Å has better FSC than the Rosetta-

generated model (Fig 3).

In the fiber case, the map is of a repeating helical fiber structure. The challenge is not 

identifying the backbone conformation but rather determining the orientation and sequence 

registration of the helix in the two density maps. The 4.3 Å map has a single copy of the 

helix in the asymmetric unit. Even at this resolution, the nearly-palindromic nature of the 

sequence made sequence registration difficult. Instead of fragment-based assembly, we 

enumerated the 14 possible sequence registrations and refined each model. There is a clear 

signal for one particular sequence registration (Fig. 3), with an independent-map agreement 

improvement of over 0.02 compared to the next-best registration. With MDFF, the overall 

independent-map agreement is worse for this registration, and there is little signal for this 

registration relative to other possible registrations. A more recent higher-resolution 

reconstruction (Fig. 3f) has strong signal for this registration, further suggesting that it is 

correct.

Estimated Phase Error

Even at high resolution, integrated model-map FSC, while very effective at evaluating the 

relative accuracy of multiple models to a single map, does not provide a measure of absolute 

accuracy of models in different maps (Fig. 3a-e and Supplemental Fig. 3). FSC also has a 

number of weaknesses that make it somewhat undesirable as an evaluation metric: (i) 

different resolution ranges are summed over for different maps so the values are not 

comparable; and (ii) the FSC correlation does not take into account the signal-to-noise in 

each shell, which may vary even in maps at the same resolution. An absolute measure 

assessing the accuracy of a model in a map is thus desirable.

We sought to develop a likelihood-based measure for evaluating the agreement between 

model and map, that gives reasonable accuracy measures independent of map. As described 

in the Methods, we developed a measure of expected phase error (EPE) in reciprocal space. 

While not perfect, the EPE is more comparable between different resolution maps (Fig. 

3g,h) than is the integrated FSC. Obtaining an absolute scale measure of model quality that 

is less sensitive to noise remains an important area of research.

Discussion

Starting from experimental density maps with 4.5 Å resolution or better, for three different 

systems, we have shown it is possible to consistently generate models with near atomic level 

accuracy. Since there is not a standard definition of map resolution, we also provide a more 

qualitative description of the map quality necessary for our method to be usefully applied: 

inspection of the maps in our test set (Supplemental Fig. 4) suggests that the pitch of helices, 

individual strands and some large aromatic sidechains should be at least in part visible.

By using ideas from crystallographic refinement, such as independent model validation and 

atomic B factor fitting, we have improved model generation from cryoEM maps. A next step 
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is to use modeling to reduce map error, as is done in crystallography through map rephasing 

and density modification. Although single particle reconstructions contain equally accurate 

amplitude and phase information, we may still use modeling to reduce errors in the image 

reconstruction process. For example, using intermediate models rather than heuristic scaling 

factors (as in ref20) to rescale map intensities as a function of resolution should more 

accurately recapitulate high-resolution details. Models may also be used to reduce errors in 

determining particle orientation or particle conformation in heterogeneous systems. Such 

methodological advances could substantially improve the determination of atomic models 

from cryoEM reconstructions.

Online Methods

An overview of the model-building process is illustrated (Supplemental Fig. 5). Initial 

models are derived from either a crystal structure of an alternate state (PrgH), a crystal 

structure of a homologue (20S), a manually built comparative model based on a low-

resolution structure (PrgK) or an idealized helix (fiber). When starting with an alignment to 

a known structure, rather than a full-length model, RosettaCM1 – guided by the 

experimental data2 – was used to rebuild gaps in the alignment. For the proteasome, 200 

comparative models were generated from each starting point; for the fiber, 10 models were 

generated. Rosetta forcefield used for optimization, including fit-to-density, was used to 

select the best model.

Map generation

For all datasets, “gold standard” independent reconstructions3 were made using maximum 

likelihood reconstruction4. The reported resolutions in the manuscript correspond to the 

FSC=0.143 value of the two half maps. One of these reconstructions was used only for 

rebuilding and refinement (the “training” map), while the other was used only for validation 

(the “testing” map). Subsets of the complete particle set were selected, split into two halves; 

each half-set was used to create lower-resolution training and testing maps. In all cases, B 

factor correction5 was applied to the map before refinement, to amplify data in high-

resolution shells.

MDFF

Models were initially built with Modeller6,7 in the cases where no crystal structure was 

available. For each starting homologue, five Modeller models were built, with unaligned 

terminal residues removed. Each of these starting points was used as inputs for MDFF. 

MDFF modeling was carried out using the protocol described by Schulten and co-workers8. 

Energy minimization was used to optimize bond geometries and remove clashes in the input 

model; a molecular dynamics simulation was carried out for 100 pico-seconds, followed by 

a final energy minimization. The MDFF electron density term was used in all three steps 

with a weight of 1, 0.3 and 10 respectively.

Density-guided model building

Multiple independent Monte Carlo trajectories are carried out, each consisting of several 

hundred of the density refined fragment moves described below; trajectories begin with 17 
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residue fragments and then shift to 9 residue fragments. At each step of the trajectory, a 

random position in the protein is chosen, with frequency weighted by local density 

agreement: residues with a local correlation less than 0.6 are sampled frequently (4x base), 

those with correlation 0.6-0.8 sampled occasionally (base), and those with correlation above 

0.8 sampled rarely (0.04x base). A set of 25 fragments of 17 or 9 residues in length is 

selected based on the sequence identity to the target structure. Each fragment is then 

superimposed on the current model so that the two N- and C-terminal residues overlap with 

the corresponding residues in the current model. Then, for each fragment, we: (a) rigid-body 

minimize the fragment into density, (b) optimize sidechain rotamers to best fit the density, 

and (c) minimize all torsions against a forcefield assessing agreement with density, 

agreement of the terminal residues of the fragment with the corresponding positions in the 

current model, and backbone and sidechain torsional probabilities. Because this optimization 

is done with small fragments, ignoring interactions with the remainder of the protein, it is 

very quick, allowing the 25 fragments to be optimized and evaluated in about 1 CPU second. 

At each position, the fragment with best fit to the density that has an RMS of less than 0.5A 

over the terminal residues is selected. Backbone atomic positions from the selected fragment 

then replace the corresponding backbone in the current model, and the entire structure is 

minimized in Cartesian space (as in ref9) to regularize backbone geometry at the stitching 

site. The minimization is done using a smooth version of the Rosetta centroid level energy 

function1 which primarily consists of sterics and backbone hydrogen bonding supplemented 

with density agreement.

Real-space B-factor refinement

To better model the density maps and generate more accurate models, we refined atomic B 

factors against the maps optimizing the real-space correlation between model and map. 

Given that atom i has a B factor Bi, we calculate the density of the model as:

Here, f is a scattering factor fit to each element. Our implementation makes use of a single-

Gaussian scattering for each atom type, but it is straightforward to extend this to a standard 

5-Gaussian scattering model10.

B factor refinement is carried out using quasi-Newton optimization, with the gradient of the 

B factor of atom i (located at coordinates xi) given in real space by:

Here, ρc and ρo are the calculated and observed density, σc is the standard deviation of the 

calculated density, the observed density has been standardized to mean 0 and standard 

deviation 1 over a mask around the protein, and sums are over the density map. Then:
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To prevent overfitting of B values, we also use restraints so that nearby atoms have similar 

B values, using the same formulation as phenix.refine11:

Since atomic coordinate errors can lead to artificially high B values in refinement, which 

leads to reduced forces acting on these (incorrect) atom positions in subsequent rounds of 

coordinate refinement, we perform several rounds of refinement with uniform B values 

before our first cycle of B factor refinement.

Atomic refinement

Atomic refinement is based on the Rosetta relax protocol where cycles of discrete sidechain 

optimization are alternated with cycles of quasi-Newton optimization. In all cases, the 

relevant symmetry was included in the Rosetta refinement to model the full biological unit. 

An additional term assesses agreement to density. For speed considerations, we use 

approximate model-map correlation as our metric: an atom's density is convoluted over the 

entire map, with spline interpolation used to quickly compute the ∑ρcρo term in the 

correlation, with ρc the computed map and ρo the experimental map. With proper 

normalization of ρc and ρo, this approximation only differs from a real-space correlation by 

the term ∑ρc
2; assuming this is constant is equivalent to assuming a constant atom density, 

which is not unreasonable.

B-factor optimization is carried out using a similar approximation for computational 

efficiency. Our fast density formulation pre-computes a three-dimensional grid where 

f(x)=∑zρc(z+x); that is, the overlap between calculated and observed density when a single 

atom is placed at x; this was extended to a four-dimensional grid where f(x,B)=∑zρc(z+x). 

Grid spacing was uniform in 1/B2, which allows for 8-12 grid points in the B dimension to 

accurately approximate this space.

Using this approximation, B factors can be very quickly fit by refining atoms along the B 

dimension of the 4D surface. However, when refining along the B dimension, the 

assumption of a relatively constant ∑ρc
2 is violated. To remedy this, we compute the exact 

correlation at a number of fixed values of Bmean (corresponding to each discrete sample in 

the B dimension). These values are used as a scaling factor for the spline coefficients of each 

B slice. This allows us to use 4D interpolation to both fit B values, and refine atomic 

coordinates taking into account atomic B factors. All of our refinement steps are followed by 
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exact B-factor refinement at the end, which tends to further improve real-space correlation 

by about 0.01-0.02.

Finally, previous work has shown that relaxing bond ideality is important for both structure 

prediction as well as refinement against crystallographic data11. Thus, the final two cycles of 

refinement are carried out in Cartesian space, allowing for bond angle and bond length 

deviations to improve energetics and fit to the experimental data slightly.

Validation metrics

Following previous work9, models were validated against an independent reconstruction 

using the integrated FSC of the model and independent reconstruction in high-resolution 

shells. Additionally, an alternate likelihood-based model validation metric was explored. To 

motivate this, we formulate the probability of the data given the model. Assuming each 

structure factor is independent:

Here, Emodel and Eobs are the model and map structure factors (with lowercase e referring to 

individual structure factors), normalized in resolution bins so that ∑|E(ri)|2=1. The term etrue 

represents the (unknown) ground truth structure factors. In the integral, the first term 

accounts for errors in the reconstruction, and the second accounts for errors in the model. 

While fully exploring this formulation remains an important topic of future research, 

parameterization of each of these terms is not straightforward and is out of the scope of this 

manuscript.

Instead, in this manuscript, we explore a more computationally tractable formulation of 

model error, the expected phase error. By computing errors in phase space, we no longer 

need to worry about integration over different resolution ranges, since the expected phase 

error goes to 90 degrees in the limit of completely random data. We can integrate over all 

resolutions – independent of estimated map resolution – and have a reasonable measure of 

model quality comparable between different maps. Our measure assumes phase errors are 

normally distributed in phase space with deviation σk:

These deviations are estimated from the independent reconstructions, and are computed 

separately for each resolution bin by calculating deviations in model phase error between 

different bins.

Under this assumption, given the phase error δ = αmodel-αmap between model and test map, 

we can compute:
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In bins where the two maps agree (e.g. in low-resolution bins), the error is simply the 

difference between model phase and the independent map phase. As the agreement reduces 

in higher-resolution bins, the error is smoothed out; at the extreme – at resolutions that 

contain no information – the error is uniformly 90 degrees given the model-map agreement.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Refinement of 20S proteasome crystal structure into high-resolution cryoEM density. 

Atomic B-factors obtained from cryoEM model refinement correlate with the deposited X-

ray B factors. (A,B) The crystal structure (PDB code: 1PMA) and the cryoEM model refined 

against the 3.3 Å map. The model is colored by the B-factor in the crystal structure (A), and 

by the Rosetta real-space B-factor fit to the cryoEM map (B). (C) An example of loop region 

that reconfigures in the cryoEM model: green, crystal structure; magenta, Rosetta refined 

model. The independent map density (not used in refinement) is shown.
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Figure 2. 
Dependence of model accuracy on starting model quality and map resolution. For a series of 

comparative models of 20S, Rosetta and MDFF refinement was initiated from comparative 

models based on templates indicated on the x-axis. The fraction of Cα atoms within 1 Å of 

the reference model is indicated on the y-axis for (blue) the starting comparative models, 

(magenta) the MDFF refined models, and (green) the Rosetta refined models. The templates 

are arranged from the best starting model to the worst based on the fraction of Cα atoms 

within 1 Å of the reference model. Sequence identity of the template and RMSD to the 

reference model is labeled under the PDB ID. Models were refined against 20S maps 

reconstructed using (A) 120,000 (B) 5,000 (C) 3,000 (D) 1,200 and (E) 1,000 particles, 

yielding 3.3, 4.1, 4.4, 5.0 and 6.0 Å resolution, respectively. (F) Deviations to the reference 

model (y-axis) from (black) the starting model based on 1g3k, (cyan) the MDFF refined 

model and (magenta) the Rosetta refined model for each residue (x-axis). Structure and 

electron density of the regions highlighted with red arrow is shown for (G) MDFF models 

and (H) Rosetta models.
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Figure 3. 
Model evaluation using independent maps. For each Rosetta-refined model of 20S at (A) 3.3 

Å, (B) 4.1 Å, (C) 4.4 Å, (D) 5.0 Å, and (E) 6.0 Å resolution, the integrated FSC between 

model and testing map is plotted (y-axis) against the fraction of residues within 1 Å of the 

reference model (x-axis). More accurate models have higher independent map integrated 

FSC. (F) Evaluation of (blue) input models, (magenta) MDFF-, and (green) Rosetta-refined 

models for prgH and fiber based on the independent map integrated FSC. (G) Fiber models 

based on models (green); the MDFF models also identify the correct threading but with 

much weaker signal different sequence threading possibilities were refined in (magenta) 

MDFF and (green) Rosetta. The correct threading is distinguished by the highest integrated 

FSC in the Rosetta refined (magenta). The integrated FSC between Rosetta models refined 

in this study and a higher resolution density map available more recently (black) validates 

the threading identified using Rosetta and the lower resolution map (green). (H,I) Expected 

phase error (y-axis) correlates with the accuracies of refined models (x-axis). Refinement 

was carried out with reconstructed maps of 20S proteasome (H) at (magenta) 3.3Å, (cyan) 

4.1 Å, (red) 4.4 Å, (blue) 5.0 Å and (green) 6.0 Å, and with maps of prgH (I) at (red) 4.6 Å, 

(blue) 5.4 Å and (green) 7.1 Å. The expected phase error tracks absolute model quality 

better than the integrated FSC (Supplemental Fig. 3).
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