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The use of herbs to treat various human diseases has been recorded for thousands of years. In Asia’s cur-
rent medical system, numerous herbal formulas have been repeatedly verified to confirm their effective-
ness in different periods, which is a great resource for drug innovation and discovery. Through the mining
of these clinical effective formulas by network pharmacology and bioinformatics analysis, important bio-
logically active ingredients derived from these natural products might be discovered. As modern medi-
cine requires a combination of multiple drugs for the treatment of complex diseases, previously
clinical formulas are also combinations of various herbs according to the main causes and accompanying
symptoms. However, the herbs that play a major role in the treatment of diseases are always unclear.
Therefore, how to rank each herb’s relative importance and determine the core herbs, is the first step
to assisting herb selection for active ingredients discovery. To solve this problem, we built the platform
FangNet, which ranks all herbs on their relative topological importance using the PageRank algorithm,
based on the constructed symptom-herb network from a collection of clinical empirical prescriptions.
Three types of herb hidden knowledge, including herb importance rank, herb-herb co-occurrence, and
associations to symptoms, were provided in an interactive visualization. Moreover, FangNet has designed
role-based permission for teams to store, analyze, and jointly interpret their clinical formulas, in an easy
and secure collaboration environment, aiming at creating a central hub for massive symptom-herb con-
nections. FangNet can be accessed at http://fangnet.org or http://fangnet.herb.ac.cn.
� 2020 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Herbal medicine is an effective solution for primary health care
and a great resource for drug innovation and discovery [1,2]. It
have been received increasing attention by pharmaceutical compa-
nies in the past ten years [3,4]. Herbs are the starting materials for
isolation and further derivatization of natural biologically active
ingredients [4]. Also, their larger number of medical use have
recorded valuable effect on particular disease and phenotypes
[2,5]. According to the statistics, more than 70% of 177 drugs
approved for cancer treatment are based on herbs or natural prod-
ucts and other mimetics [6]. In June 2004, the U.S. FDA approved
the use of herbs with unclear active ingredients but have definite
efficacy in clinical practice [7]. In October 2010, the FDA approved
a green tea extract called Veregen for the treatment of genital
warts based on this rule [7].

In clinic practice, herbs exist in formula form, that is, multiple
herbs are combined into one prescription, which is called ‘‘Fang”
in traditional Chinese medicine (TCM) [2,8]. Ancient literature
and the current medical system of TCM have accumulated numer-
ous clinical formulas with definite efficacy, repeatedly verified to
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confirm their effectiveness in different periods [9]. In Asia, the use
of TCM formulas can be traced back to 2,000 years ago and contin-
uously accumulated and compiled by successive dynasties [10]. A
total of 96,592 known prescriptions for 2,000 years have been
included in the current Chinese Medicine Prescriptions Dictionary.
Also, a large number of clinical formulas for the treatment of com-
plex diseases such as immune diseases, cardiovascular diseases,
and pain have been accumulated in the current medical system
[11–14].

Clinically important TCM multi-herbal formulas usually contain
a complex mixture of various biologically active ingredients [8,15].
Yet there are a number of bioactive ingredients have been explored
from TCM formulas. Artemisinin, the first-line drug for malaria,
was obtained by Tu Youyou, a 2015 Nobel Prize winner, from the
approved prescription against malaria Zhouhou Beiji Prescriptions
recorded in ancient books [16]. The anti-asthma drug ephedrine
was discovered by Chen Kehui (1898–1988), inspired by the func-
tional effect of ephedra in TCM clinical formulas [17]. Hypuconitine
(HC) is the main chemical component of Fuzi in Sini Decoction
(SND), and is considered to be the main chemical component for
the treatment of cardiovascular diseases [8]. Paeonol from
Mudanpi [15], Danshensu (DS) and Tanshinone I (TI) from Danshen
[18] are the main active ingredients for the treatment of various
cardiovascular [8]. These two herbs Mudanpi and Danshen are
components of TCM classic prescription Shuang-Dan (SD), which
has function of promoting blood circulation. Andrographolide from
Chuanxinlian is the main active ingredient of clinically widely used
injection, which has functions of liver-protecting, analgesic, anti-
inflammatory, and anti-tumor activities [19].

As modern medicine requires a combination of multiple drugs
for the treatment of complex diseases, previously clinical formulas
are also combinations of various herbs. In clinical practice, TCM
formulas exist in the form of herb combination, usually containing
2–20 herbs or even more, mainly due to the complexity of chemi-
cal constituents [2,8]. Its dosage size, dosage form (i.e. powder, liq-
uid, suspension, tablet or capsule) exhibit quite complicated in
application scenarios [18]. Different herbs or herb combinations
can be added or subtracted into one prescription according to the
characteristics of the disease with varied symptoms [20]. As a
result, the formulas for treating the same disease vary in quite dif-
ferent forms. The relationship between herbs and diseases is non-
dominant, and which herb plays a core role in specific diseases is
unclear [21]. Therefore, how to rank and evaluate herb’s impor-
tance, determine the most critical herbs from these complex com-
binations, and discover the associations with particular symptoms,
is the primary key to maximizing the use of existing clinical formu-
las and promote herbal drug development [22].

At present, there are three main methods for mining core herbs
from herbal formulas: 1) using the frequency of the herbs [23],2)
mining by association rules [24–25],3) clustering [12,26]. Fre-
quency is a commonly used indicator for herbal importance evalu-
ation, however the importance it gives is misleading. For example,
it will not rank drugs together that are used in combination. In the
real scene, specific combinations of herbs are bundled together
during the treatment of certain symptoms. Regardless of extracting
rules guiding clinic or herbs selection for downstream active ingre-
dient research, these combinations need to be ranked and studied
together. Association rules and clustering methods take into
account the herb combination but failed to provide an overview
weight for each herb. Moreover, all three methods mentioned
above only focus on herbs themselves to conduct herb evaluation
but fail to make effective utilization of the symptom to herb asso-
ciations in clinical prescriptions.

To solve these problems and give a better importance rank of
herbs for a disease, guiding the downstream ingredient research,
we built the FangNet platform, which first constructed the
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symptom-herb network for topological ranking of herbs using
the PageRank algorithm [27]. Three types of herb hidden knowl-
edge, including herb importance rank, herb-herb co-occurrence
and mutual exclusivity, associations to specific symptoms, were
provided in an interactive visualization. As a cloud-service plat-
form, FangNet supports the teams to jointly analyze and interpret
their clinical formulas in a collaborative way, towards constructing
a central hub for massive symptoms and herbs, which would con-
tinuously provide essential clues for drug innovation and
discovery.
2. Methods

2.1. Herb-herb interaction and symptom-herb association calculation

The Jaccard index [28] was used to calculate herb-herb interac-
tions. It is a measure of similarity for the two sets, ranging from 0
to 1, to compare members for two sets to see howmuch proportion
is shared. Confidence score in association rule mining [29] was cal-
culated for symptom-herb associations. The calculation formula is
as follows.

Wðhi;hjÞ ¼ jRxðhiÞ \ RxðhjÞj
jRxðhiÞ \ RxðhjÞj ð1Þ
Wðst ;hiÞ ¼ jRxðstÞ \ RxðhiÞj
jRxðstÞj ð2Þ

where hi stands for herb i, hj stands for herb j, Rx(hi) stands for pre-
scriptions containing the herb i, Rx(hj) stands for prescriptions con-
taining the herb j. Rx(st) stands for prescriptions containing
symptom t.
2.2. Weighted interaction network construction

A weighted network was constructed, with symptom and herb
as two types of nodes. The weight of the edges between herb-
herb and symptom-herb is calculated as above. The initial value
of the nodes was defined as follows.

VðstÞ ¼ jRxðstÞj
N

ð3Þ
VðhiÞ ¼ jRxðhiÞj
N

ð4Þ

where ststands for symptom t, hj stands for herb i, Rx(hi) stands for
prescriptions containing the herb i, Rx(st) stands for prescriptions
containing the symptom t, N stands for the number of total
prescriptions.
2.3. Topological-Hub Score (THScore) using the PageRank algorithm

In order to reposition all the herbs in the clinical formulas, the
Topological-Hub score was calculated using the PageRank algo-
rithm for all symptom to herb associations. PageRank (PR) is an
algorithm used by Google company to rank the retrieved web
pages in their search engine results [27]. This algorithm has been
widely used to discover community leaders in social networks
[30,31] and identify important nodes in the networks [32–34].
The PageRank score measures the leadership role of a node based
on all of its links. rather than simply calculating the degree of each
herb node. Herbs with more interaction links, are given higher
PageRank scores.
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2.4. Segmented regression to determine driver herbs and passenger
herbs

We have defined two types of driver herbs and passenger herbs,
corresponding to those playing major roles or supporting roles for
particular diseases. To determine a threshold distinguishing herb
and passenger herbs, a segmented linear regression analysis was
performed using the THScore calculated above. Briefly, this algo-
rithm applied an iterative process to determine a segment break-
point, at which a statistically significant change in the slope of
adjacent regression lines occurred [35]. The herbs large than the
thresholds are defined as the driver herbs, while the others defined
as the passenger herbs.

2.5. Herb-herb co-occurrence and mutual exclusivity level calculation

Co-occurrence and mutual exclusivity level (Co_level) was
defined by herb-herb interaction edge weight and the related p
value calculated from Fisher’s Test. The former is named Co_ratio
in FangNet, which is the co-occurrence ratio for two herbs occur
in the same prescription, ranging from 0 ~ 1, with 1 represents
two herbs always occurring together, and 0 means that they never
occur together. Totally nine levels of co-occurrence and mutual
exclusivity were defined, including -4, -3, -2 -1, 0, 1, 2, 3, 4, while
0 represents no significance, -1 ~ -4 represents mutual exclusion,
the smaller the value, the more significant, 1 ~ 4 represents co-
occurrence, the larger the value, the more significant. The detailed
definition of nine level by Co_ratio and p value is presented in Sup-
plementary Table S1.

2.6. Symptom-herb association mining

The high confidence relationship between the symptom and
herb is filtered by the edge interaction weight and the co-
occurrence event, which is defined as the number of prescriptions
using the herb when having a specific symptom. The parameters of
symptoms-herb association greater than 0.6 and co-occurrence
event >= 20, could be used as a feasible group of filtering parame-
ters, according to our testing under the condition of prescriptions
number about 100. However, this parameter is not universal for
all kinds of inputs. For example, it is quite different when taking
the same doctor’s prescriptions as input, or taking literature col-
lected prescriptions as input. Users are required to customize the
parameters based on the scale and characteristics of their own
data.
3. Results

3.1. Framework of FangNet

3.1.1. Input and output
FangNet requires a collection of empirical prescriptions for a

particular disease as the input (Fig. 1A). In addition to uploading
the multi-herb formula in the prescriptions, the corresponding typ-
ical symptoms also need to be uploaded. For the herb formula, herb
name, dosage and processing method are required (Fig. 1C). For the
symptoms, TCM symptoms, such as fatigue, insomnia, fever, cough,
etc., as well as abnormal indicators found in clinic testing, such as
Fecal Occult Blood Test (FOBT) positive, are required (Fig. 1B).

When a collection of prescriptions is constructed on the Fang-
Net, users could start an analysis by clicking the analysis button
within this collection. FangNet would automatically enter the pro-
cess of network construction and topologic mining. Then FangNet
will interactively visualize three forms of herb hidden knowledge,
including herb driver/passage attributes, herb-herb co-occurrence
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and mutually exclusivity, and symptom-herb associations
(Fig. 1A). Users can dynamically change the thresholds of nodes
and edges, and interactively obtain data tables and visual figures,
which helps the users decipher the hidden rules behind the data
from different perspectives easily and quickly.

3.1.2. Symptom/herb semantic repository and auto or manual tagging
As the core blocking of mining, the standard expressed of symp-

toms and herbs plays a vital role in the quality of mining. To stan-
dardize the input words, FangNet has built a database of 1717
symptoms and 618 herbs, by integrating SymMap [5], an integra-
tive symptom database of TCM we developed earlier, and Chinese
Pharmacopoeia 2020 Edition (Fig. 1A). The content entered by the
user will be converted to terms in the database if they can match.
However, given the complexity of symptom and herb terms used in
TCM, FangNet’s existing database may fail to convert all words and
synonyms. To solve this, FangNet has come up with a solution by
supporting users to specify tags for their content that cannot be
automatically mapped (Fig. 1B). Using such a manual way to stan-
dardize the input terms, structured and normalized data would be
generated for the subsequent mining. These tag terms added by
users will serve as an essential data for expansion of the symp-
tom/herb semantic repository, with a continuous pooling, counting
and curation workflow.

3.2. Interactive visualization of herb hidden knowledge

3.2.1. Herb importance rank
Evaluating the weights of herb and extracting the core herbs is

the key to understanding the herb’s therapeutic effects on specific
diseases. It would help summarize a more short and classical for-
mula from a more extensive set of herbs, which would guide the
clinical applications and provide productive candidates for drug
research [11,36]. By establishing an symptom-herb network, Fang-
Net calculates the THScore of herb in the network by PageRank
algorithm, which is always used to discover community leader in
social network [30,31], and identify essential nodes in the net-
works [32–34]. The herbs are then classified into two categories
by segmented linear regression model according to the THScore,
thus defined as driver herb and passenger herb respectively.
Among them, driver herb is a set of herbs that play a major role
in the treatment of diseases, and passenger herb tends to play a
supporting role and can be added in or deleted in the presence of
specific symptoms. These two types of herbs with different attri-
butes are visualized in different colors. The weight of herb-herb
interaction is converted into the gravity of the two vertices in
the network (Fig. 2A),

3.2.2. Herb-herb co-occurrence and mutual exclusivity
Herbs appearing in the same empirical prescription have been

proved to have some potential interactions, including mutual pro-
motion, synergy, mutual restraint and mutual confrontation
[37,38]. For example, herbal combinations were found to be more
effective than using a single herb in the experiments of cancer cell
lines [39]. By analyzing the co-occurrence and mutual exclusivity
of two herbs, we can simplify the complex interactions among
herbs, and better understand the combination rules of different
herbs. Based on the herb-herb interaction network, Fisher’s test
was used to analyze the co-occurrence or mutual exclusivity
between herb-herb pairs, which are divided into nine different
levels, visualized in the form of triangle heatmap (Fig. 2B). Also,
the highest level of co-occurrence or mutual exclusivity indicates
that the two herbs have stronger potential interaction, which can
be seen as essential candidates for experiment-based drug combi-
nation study.



Fig. 1. A framework of FangNet. A. The workflow of mining hidden knowledge from empirical prescriptions for FangNet. Orange stands for symptom, green stands for herb.
B. Automatic and manual tagging of input symptoms, take a constipation prescriptions as an example. C. The input herb formula. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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3.2.3. Symptom-herb association
Tailoring of medical treatment to the individual characteristics

of each patient is the basic concept of personalized medicine. TCM
exhibits a typical personalized mode in clinical diagnosis and treat-
ment [40]. To discover how symptoms affect the personalized diag-
nosis and treatment, FangNet tries to explore the intimate
associations between symptoms and herbs in TCM. With the
symptom-herb association module of the platform, the correlation
between herb and specific symptoms can be obtained by screening
according to different support and confidence thresholds as condi-
tions. Symptoms and herbs can be shown as many-to-many pat-
terns with a relational circular layout (Fig. 2C). This part of herb
knowledge is a further supplement to mining results of driver/pas-
senger herbs, which indicates the conditions of using specific herbs
according to particular symptoms.
3.3. Validation of knowledge extracted

3.3.1. Three benchmark prescription collections
To verify the extracted knowledge, FantNet has constructed

three benchmark prescription collections for diseases of headache,
abdominal pain and hiccups. In detail, totally 106 prescriptions of
headache, 97 prescriptions of abdominal pain, 125 prescriptions of
hiccups, were collected from Chinese Medicine Prescriptions
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Dictionary and TCM Knowledge Database (Zhong Yi Zhi Ku) (Fig. 3).
Their symptoms and herb formula info were uploaded into Fang-
Net and then standardized using our online auto/manual taggling
module.
3.3.2. Cross-validation with literates and expert knowledge base
Numerous literatures and herbal expert knowledge systems and

have been published in concern of herbs [2,41–43]. For the
extracted results of these three prescription collections, we have
conducted the cross-validation both with the literates and the
expert knowledge base. For headache prescriptions, the top ten
THScore-ranked herbs are Chuanxiong, Baishao, Gancao, Danshen,
Fuling, Tianma, Gouteng, Danggui, Shengdi, Juhua (Fig. 3A,
Table S2). Chuanxiong has the highest THScore, also the most
related literatures (No. = 1412). Expert knowledge base TCMKB
[41] (TCM Knowledge Service Platform, http://www.tcmkb.cn)
records 1470 entries of Chuanxiong’s critical role in treating vari-
ous headaches types. The ingredients of Ligustrazine and Ferulic
acid in Chuanxiong have significant sedative and analgesic effects
on the central nervous system [44,45], while anti-platelet aggrega-
tion is the main treatments for migraine Mechanism [46–48].
Moreover, a correlation analysis showed that THScore of the top
100 herbs is highly consistent with the number of literatures on

http://www.tcmkb.cn


Fig. 2. Interactive visualization of herb hidden knowledge. A: Herb importance rank and driver/passenger classification. The figures can be redrawn by controlling the
value of the node and the weight of the edge. Herbs with different importance rank are showed in different colors, while driver herbs are shown in red and passenger herbs
are shown in green. B. Herb-herb co-occurrence and mutual exclusivity. Totally 9 levels are defined, Blue means a higher level of co-occurrence, while red means a higher
level of mutual exclusivity. C. Symptom-herb associations. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)

Fig. 3. Cross-validation for headache prescription mining results. 106 prescriptions of headache were collected from Chinese Medicine Prescriptions Dictionary and TCM
Knowledge Database (Zhong Yi Zhi Ku). A: Herb importance rank. The left is top 10 THScore-ranked herb. The right are the correlation analysis of THScore and number of
literatures for top 100 ranked herb. B. Herb-herb co-occurrence (Co-occurrence Level = 4, Co-occurrence event� 10, top 10 ranked by Co_ratio). C. Symptom-herb associations
(Co-occurrence event � 5, top 10 ranked by symptom-herb association).
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CNKI using ‘‘headache” and each herb as keywords (cor = 0.83, p-
value = 0.001) (Fig. 3A).

It is interesting in our rank, although the support of Gouteng is
smaller than Danggui and Shengdi, it ranks before Danggui and
Shengdi, and be together with Tianma (Fig. 3A). Tianma-Gouteng
is in the top-ten co-occurrence herb pairs, and 1412 literatures
have studied on their combination (Fig. 3B, Table S3), in which
Gouteng can increase the dissolution of the active ingredients in
Tianma [49], and Tianma can enhance the function of Gouteng in
dilating blood vessels and lowering blood pressure to a certain
extent [50]. Tianma and Gouteng being ranked together could bet-
ter reflect their relative importance. Finally, the top 10 significant
symptoms-herb associations have more than 100 related litera-
tures (Fig. 3C, Table S4). Among them, Gegen treatment of palpita-
tion, Danshen treatment of flustered, Chaihu treatment of dry
mouth is recorded in TCM Knowledge Database (http://www.
zk120.com), and Family of Traditional Chinese Medicine (http://
www.zysj.com.cn). Similar to the headaches, the results of abdom-
inal pain and hiccups also have cross-validation support from liter-
ates and Expert knowledge Base. The details are described in the
supplementary materials (Fig. S1, Fig. S2).
3.4. Operation mechanism towards a data central

3.4.1. Collaborative mining of empirical prescriptions across multiple
institutions

FangNet has designed role-based permission for a collection of
prescriptions, to provides an easy and secure collaboration envi-
ronment for teams working globally across multiple institutions.
Collections are the core building blocks of FangNet Platform. Each
collection corresponds to a distinct scientific investigation and
serves as a container for its prescriptions and analysis results.
Access to a collection of prescriptions is restricted to the collabora-
tors in the survey. There are four different permission roles, includ-
ing the Creator, the Administrator, the Data Clerk and the
Passenger (Fig. 4A). To be specific, 1) Each collection must have
one Creator, who has the ownership of the collection and the high-
est authority of controlling the other members’ permissions. IT is
also the only authority executor to delete the collection. 2) The
Administrator has the authority to control the Data Clerk and Pas-
senger members’ permissions, and invite other members to join in
the collection. 3) The Data Clerk has the authority to upload and
edit the empirical prescriptions. 4) The Passenger can only view
the prescriptions, without other authorities such as data modifica-
tion or download.
3.4.2. Expansion of the semantic repository and symptom-herb
network

The FangNet is a central hub for teams to store, analyze, and
jointly interpret their empirical prescription data. Two types of
big data will be accumulated with the continuous tagging and
analysis of symptoms and herbs (Fig. 4B). The first is a semantic
repository of symptoms/herbs. The manual tag module in the plat-
form is an entrance to collect a large amount of symptom/herb cor-
pus, which could be used towards generating curation of new
semantic terms as we processed in the SymMap work [5]. By pool-
ing the corpus every six months, analyzing the word frequency and
confirming them the by experts, a much larger semantic repository
would be built. The second is the symptom-herb and herb-herb
associations. The relationship of herb-herb and symptom-herb
would be dynamically changed due to adding of new prescriptions
data. A pan-disease network would be generated, taking massive
prescriptions from various diseases as the input. This network
could be utilized as a baseline knowledge of TCM symptoms and
herbs. Guide by this network, FangNet could give more sensitive
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and accurate annotation of herb-herb and symptom-herb associa-
tions for a particular disease.
3.5. Perspective view of FangNet’s symptom-herb network

3.5.1. Network construction
Totally 6,271 prescriptions from 127 TCM teams have been

uploaded on the FangNet platform, covering more than 50 TCM
diseases. To generate a perspective view of current data on Fang-
Net, we have built a symptom-herb network according to the
method part. However, our primary purpose is not to analyze
any empirical prescriptions for specific diseases, but to verify the
way of transforming big data into big knowledge by applying the
method above. The network constructed initially contains 433
herbs, 104 symptoms, and 35,469 herb-herb edges and 12,095
symptom-herb edges. Filter by herb-herb interaction
weight greater than 0.1 and co-occurrence event >=5, symptom-
herb interaction weight greater than 0.1 and co-occurrence event
>=10, we got 813 herb-herb and 76 symptom-herb edges, which
were visualized in Fig. 5B. The Top 10 most frequently used herbs
in the network are Danggui, Fuling, Gancao, Baizhu, Dangshen,
Chuanxiong, Chenpi, Chaihu, with support value range from
0.2 ~ 0.35 (Supplementary Table T11).
3.5.2. Herb-herb co-occurrence
115 significant co-occurrence herb-herb pairs and 51 mutual

exclusive herb-herb pairs are discovered from the network with
a co-occurrence level of 2/3/4 and -2/-3/-4 (See the method). We
have adopted a search on China National Knowledge Infrastructure
(CNKI) using herb pairs as keywords. Significantly, the herb pairs
with high co-occurrence tend to have been paid more research
attention (Fig. 5A). For 17 herb pairs with the highest co-
occurrence (level = 4), average 36 (2 ~ 195) corresponding studies
were retrieved, while for 10 mutually exclusive pairs (level = -4/-
3), only 2 studies for two pairs were obtained, which means that
the herb pairs are generally rarely used simultaneously in Chinese
medicine (Supplementary Table T12). This result shows that
despite possible bias caused by the small diversity and scale of
the current data, the herb-herb associations calculated from the
FangNet network is highly consistent with the observation from
the real-world study.
3.5.3. Symptom-herb association
Totally 76 significant associations between symptom and herb

were found using the filtering parameters of edge weight >= 0.6
and co-occurrence event >= 20 (Fig. 5C, Supplementary
Table T13). Most of the associations can be explained in the exist-
ing research of TCM. Among them, the rules of using Quanxie,
Jiangcan and Baifuzi to treat mouth and eye skew are clearly
recorded in lots of TCM studies, in which they are commonly used
to treat facial palsy, trigeminal neuralgia and migraine [51,52
53,54]. Gancao is an useful herb to treat depression, proved by
the previous pharmacological network study. Glycyrrhizic Flavone
in Gancao involves the regulation of monoamine transmitters and
their receptors [55]. For Danggui to treat depression, it is reported
that Ferulic Acid in Danggui may regulate the antioxidant system
by affecting the nervous system of 5-HT [56] and play an antide-
pressant role. Compound triterpenoid saponin in Jiegeng is often
to treat rhinitis, which has the symptoms of nasal obstruction,
rhinocnesmus and thin nasal secretion [57]. Overall, these results
show that the symptom-herb associations discovered by FangNet
network are consistent with the known studies of using specific
herbs to treat corresponding symptoms.

http://www.zk120.com
http://www.zk120.com
http://www.zysj.com.cn
http://www.zysj.com.cn


Fig. 4. Operation Mechanism of FangNet. A. Role-based permission for a collection of prescriptions. take a Take a collection of constipation prescriptions as an example.
Prescriptions with different colors are created by different accounts. Different accounts have separate permission to create, authorize, edit, view, exit, invite to a collection. B.
Expansion of the semantic repository and symptom-herb big data.
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4. Discussion

Herbal medicines are the oldest and most universally used
manner of treatment for human health and welfare [8]. They have
already been proven for their remarkable potential in the treat-
ment of a wide range of complex diseases. Herbs are essential for
pharmacological research and drug development and have
received increasing attention from pharmaceutical companies in
the past ten years [3,4]. Its role as the starting materials for deriva-
tization of natural biologically active ingredients, and its numerous
valuable effect on particular disease phenotypes, make it have
great value in drug discovery.

In this study, we built FangNet, a tool for retrospective analysis
to a collection of empirical prescriptions for particular diseases,
which can rank each herb’s relative importance, determine the
core herbs and find the associations to specific symptoms.
Although it is illustrated by a collection of empirical prescriptions
as the input in this study. However, more broadly, diverse prescrip-
tions collections share a common characteristic could be used for
analysis, such as a prescription collection from the same doctor,
or a prescription collection with the same side effects.
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FangNet only provides a limited semantic repository of symp-
toms and herbs, far from enough to convert all the input prescrip-
tions. To solve this problem, the manual tag module was
introduced into FangNet. In detail, users is allowed to specify tags
for their content, and in turn, these tags provide an abundant cor-
pus for the platform to expand its semantic repository in a semi-
automatic increment way. This design can bring improved curation
of semantic repository and more accurate of entities extraction.

However, our study still needs more improvement. In a real-
world study, it is critical to evaluate the effectiveness of a prescrip-
tion. In the FangNet platform, a prescription uploaded by the users
is recommended as user self-conformed effective prescriptions.
This may bring biases due to the different subjective evaluation cri-
teria. Although it has less impact on the mining result of a single
user, it may disturb quality of increment symptom-herb associa-
tions in the entire platform. Therefore, more research methods
for evidence-based medicine (EBM) efficacy assessment would be
introduced into the platform in the future, to distinguish the levels
of evidence and applied mining with different confidence weights.

The current FangNet focuses on how to obtain the candidate
herbs in a collection of empirical prescriptions. However, there is



Fig. 5. Perspective view of FangNet’s symptom-herb network. A. Herb-herb co-occurrence and Mutual Exclusivity. The triangular heat map is an illustration of co-
occurrence and mutual exclusivity for 69 herbs with a frequency more than 0.05. The inner figure on the left is the result of the literature search on CNKI for herbs with
significant co-occurrence and mutual exclusivity. 17 Herb pairs on the left with light green background are those herbs with high co-occurrence. 10 herb pairs on the right
with light red background are those herbs with high mutual exclusivity. B. Symptom-herb network with 813 herb-herb and 76 symptom-herb edges. C. 76 high confidence
symptom-herb associations. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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still a gap existing between these candidates and a phenotype-
based drug discovery (PDD) study. Discovering the biologically
active ingredients is an important part of subsequent analysis from
herb candidates. A PDD cellular phenotypic screening could only be
carried out after these ingredients are identified or predicted. Thus,
tools and sources for network pharmacology is necessary to be
integrated or linked by FangNet. In our previous study, we have
developed HERB database [58] (http://herb.ac.cn/), which collects
experimental data of herb’s high-throughput sequencing and pro-
vides herb’s ingredients, gene targets and disease information.
More database and other ingredients analysis tools would be
linked or integrated with FangNet, to assist studies from prescrip-
tions to drug ingredients discovery.

Ontology is widely used in sorting out the knowledge and build-
ing an easy-access expert knowledge system [42,43,59]. It is the
key technology to reconstruct and present the knowledge net of
TCM. In the FangNet platform’s construction, the current extracted
knowledge has not yet been organized in an ontology form. How-
ever, with more knowledge discovered, to sort out the knowledges
in structured ontology hierarchy, would be an essential direction
for optimizing the FangNet platform.

Recently, intelligent computational models such as deep learn-
ing and soft computing techniques have been widely applied in
pattern understanding and knowledge-generating [60,61]. As a
critical technology of big data analysis, it overcomes the restriction
that traditional machine learning algorithms must rely on the
selection of features. Intelligent computational technology yields
multiple applications in the fields such as speech recognition,
image recognition, object detection and drug target prediction.
Limited by the data size, FangNet has just applied limited mining
method in its knowledge mining. However, more intelligent com-
putational models would be introduced to mine huge hidden
69
symptom to herb knowlege in the future, toward a more accurate
and intelligent knowledge finding.
5. Conclusions

In this study, we propose a platform FangNet for mining herb
hidden knowledge from a collection of empirical prescriptions,
aiming at speed the path from raw clinic treatment observations
to new drug discovery. A collaborative system is created to amplify
the power of connection, by jointly building and interpreting their
data from different teams, leading to a central hub for storage,
mining and investigating TCM clinical important formulas on a
secure cloud environment. Hidden symptoms-herb connections
would be continuously accumulated and discovered, with the data
expansion in FangNet, also with more advanced intelligent compu-
tational models brought in. It is expected that FantNet would be a
great source and intelligent transformer for sorting herb hidden
knowledge from clinic data, and provide import clues towards drug
innovation and discovery.
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