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� Abstract
Plasmodium falciparum genotyping has recently undergone a revolution, and genome-
wide genotype datasets are now being collected for large numbers of parasite isolates.
By contrast, phenotyping technologies have lagged behind, with few high throughput
phenotyping platforms available. Invasion of human erythrocytes by Plasmodium fal-
ciparum is a phenotype of particular interest because of its central role in parasite devel-
opment. Invasion is a variable phenotype influenced by natural genetic variation in
both the parasite and host and is governed by multiple overlapping and in some
instances redundant parasite�erythrocyte interactions. To facilitate the scale-up of
erythrocyte invasion phenotyping, we have developed a novel platform based on two-
color flow cytometry that distinguishes parasite invasion from parasite growth. Target
cells that had one or more receptors removed using enzymatic treatment were prela-
beled with intracellular dyes CFDA-SE or DDAO-SE, incubated with P. falciparum para-
sites, and parasites that had invaded either labeled or unlabeled cells were detected with
fluorescent DNA-intercalating dyes Hoechst 33342 or SYBR Green I. Neither cell label
interfered with erythrocyte invasion, and the combination of cell and parasite dyes reca-
pitulated known invasion phenotypes for three standard laboratory strains. Three dif-
ferent dye combinations with minimal overlap have been validated, meaning the same
assay can be adapted to instruments harboring several different combinations of laser
lines. The assay is sensitive, operates in a 96-well format, and can be used to quantitate
the impact of natural or experimental genetic variation on erythrocyte invasion
efficiency. ' 2010 International Society for Advancement of Cytometry
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INFECTION with the malaria parasite Plasmodium falciparum causes more than a

million deaths each year, largely in children under the age of five. Plasmodium life-

cycles are complex, involving multiple stages in both vertebrate and invertebrate

hosts, but the symptoms and pathology of malaria are all caused by the invasion and

multiplication of Plasmodium parasites inside vertebrate erythrocytes. The process by

which P. falciparum recognizes and invades human erythrocytes is therefore the target

of extensive study and depends on a number of extracellular receptor�ligand interac-

tions (1). These interactions are overlapping and to some extent redundant, meaning

that erythrocyte invasion is a relatively plastic phenomenon that can be influenced by

natural genetic variation in both parasite and human genomes. The high frequency

of specific erythrocyte receptor variants in some malaria endemic populations, such

as the Gerbich (glycophorin C null) phenotype in Melanesian populations, is attribu-

ted to an impact on P. falciparum invasion efficiencies (2). Similarly, P. falciparum

isolates collected in the field display a range of invasion phenotypes, presumably due

to genetic variability in the expression or sequence of key invasion ligands (3�9).
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Despite the abundant evidence for natural genetic varia-

tion impacting erythrocyte invasion, there are no well-estab-

lished examples of natural P. falciparum variants being asso-

ciated with specific invasion pathways. There are two clear

road blocks to carrying out large-scale association studies to

identify such associations—unbiased genotyping and high

throughput phenotyping. P. falciparum genotyping

approaches are now advancing rapidly and a range of genome-

wide tools are being applied and under development (10,11).

However, phenotyping platforms have lagged behind these

advances, and in the case of erythrocyte invasion has been of-

ten dependent on counting P. falciparum parasites using mi-

croscopy.

Flow cytometry has clear applications to phenotyping

malaria parasites, particularly during the intraerythrocytic

stages. Because erythrocytes are anuclear, erythrocytes infected

with P. falciparum can be detected and distinguished from

noninfected erythrocytes using DNA dyes, and several cyto-

metric protocols have now been published using flow cytome-

try to count P. falciparum growth using fluorescent DNA dyes

(12�14). However, such assays alone cannot be used to phe-

notype erythrocyte invasion because phenotyping invasion

depends not only on counting parasites but also counting

which erythrocytes the parasites have invaded. All invasion

assays involve adding P. falciparum parasites to erythrocytes

with a limited subset of erythrocyte receptors (for example,

erythrocytes from known human blood group variants or ery-

throcytes that have been treated with enzymes to remove

specific receptors) and scoring parasite density 48 h later. The

reason that standard growth assays cannot be applied in this

context is because uninfected (and hence untreated) erythro-

cytes are always present at some level in the starting parasite

culture (referred to hereafter as ‘‘donor’’ cells). For invasion to

be phenotyped, it is essential that parasites present in donor

cells are not counted, whereas parasites that have invaded the

erythrocytes with a reduced receptor repertoire (referred to

hereafter as ‘‘target’’ cells) are counted.

In previous assays, this fundamental problem in pheno-

typing invasion has been overcome by one of two approaches.

In one, purification methods are used in an attempt to elimi-

nate all uninfected erythrocytes from the donor culture, but

purification requires larger volumes of culture and is not sui-

ted to high throughput assays of multiple lines. The widely

used alternative involves pretreating the donor culture with a

combination of enzymes, usually neuraminidase and trypsin,

in order to cleave all available erythrocyte invasion receptors.

This approach is designed to prevent reinvasion into all unin-

fected erythrocytes present in the donor culture and limit

invasion to the target erythrocytes (15,16). This has recently

been successfully combined with a fluorescent DNA dye to

allow measurement using flow cytometry (17), but necessarily

involves serial manipulation of the P. falciparum culture and

exposing it to enzymes that are sometimes present in nonphy-

siological buffers.

To minimize parasite handling, two-color flow cytometry

was investigated as an alternative to quantitate erythrocyte

invasion. Unlabeled donor P. falciparum cultures were coincu-

bated with target erythrocytes that had been labeled with fluo-

rescent dyes, and parasites present in the donor and target

population were quantitated using fluorescent DNA dyes.

Multiple DNA dyes were tested and protocols adjusted to min-

imize background. Cell dyes were chosen to have minimal

emission overlap with the best performing DNA dyes and to

label erythrocytes cytoplasmically rather than on the erythro-

cyte surface as has been used previously (3), reasoning that

surface labels may reduce invasion efficiencies and therefore

reduce the sensitivity of the assay. This combinational

approach resulted in the identification of several dye combina-

tions that recapitulate known invasion phenotypes, meaning

that the assay can be adapted to multiple flow cytometers,

depending on the laser lines available. This 96-well plate-based

adaptable phenotyping platform should be of broad utility for

measuring the impact of natural or experimental genetic varia-

tion in either host or parasite on erythrocyte invasion effi-

ciency and could be applied to genotype�phenotype associa-

tion studies.

MATERIALS AND METHODS

In Vitro Culture of P. falciparum Parasites

P. falciparum parasite strains 3D7, Dd2, and HB3 were

routinely cultured in human O1 erythrocytes (NHS Blood

and Transplant, Cambridge, UK) at 5% hematocrit in com-

plete medium containing 10% human sera, under an atmo-

sphere of 1% O2, 3% CO2, and 96% N2 (BOC, Guildford,

UK). Parasite cultures were synchronized on early stages with

5% D-sorbitol (Sigma-Aldrich, Dorset, UK). Use of erythro-

cytes from human donors for P. falciparum culture

was approved by NHS Cambridgeshire 4 Research Ethics

Committee.

Parasite Labeling

Parasite cultures were stained with a DNA dye according

to the following protocol. The cells were washed with PBS

before staining with 10 lg/mL ethidium bromide (Sigma-

Aldrich, Dorset, UK) in PBS, 2 lM Hoechst 33342 (Invi-

trogen, Paisley, UK) in RPMI 1640 or 1:5,000 SYBR1 Green I

(Invitrogen, Paisley, UK) in PBS, for 1 h at 378C. After stain-
ing, the cells were washed with PBS, before being fixed with a

2% paraformaldehyde (Sigma-Aldrich, Dorset, UK), 0.2% glu-

taraldehyde (Sigma-Aldrich, Dorset, UK) solution in PBS for

1 h at 48C. Finally, the suspension was washed with PBS before

acquisition on a flow cytometer. An alternative protocol was

used to allow removal of RNA. In this method, the cells were

first fixed with a paraformaldehyde/glutaraldehyde solution as

described earlier. Following a PBS wash, the cells were perme-

abilized for 10 min at room temperature with 0.3% Triton1

X-100 (Sigma-Aldrich, Dorset, UK) in PBS. The suspension

was then washed with PBS before RNase treatment for 1 h at

378C with 0.5 mg/mL ribonuclease A (MP Biomedicals, Ill-

kirch, France) in PBS. The cells were next washed with PBS

before staining with the DNA dyes as described earlier. Finally,

the cells were washed with PBS before acquisition on a flow

cytometer.
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Erythrocyte Labeling

Erythrocytes were labeled with amine-reactive fluorescent

dyes. The required volume of O1 erythrocytes at 2% haemato-

crit in RPMI 1640 was centrifuged and the pellet resuspended

to 2% hematocrit with either 20 lM carboxylfluorescein diace-

tate succinimidyl ester (CFDA-SE) (Invitrogen, Paisley, UK)

or 10 lM 7-hydroxy-9H-(1,3-dichloro-9,9-dimethylacridin-2-

one) succinimidyl ester (DDAO-SE) (Invitrogen, Paisley, UK)

in RPMI 1640 and incubated for 2 h at 378C. The suspension
was washed with complete medium and the pellet resuspended

to 2% hematocrit with complete medium and incubated for

30 min at 378C. The suspension was then washed twice with

incomplete medium (without human sera) and finally resus-

pended to 2% hematocrit with incomplete medium. The cells

were stored until use at 48C for up to 24 h.

Flow Cytometry and Data Analysis

Stained samples were examined with a 355 nm 20 mW

UV laser, a 488 nm 20 mW blue laser, and a 633 nm 17 mW

red laser on a BD LSRII flow cytometer (BD Biosciences,

Oxford, UK). Ethidium bromide (EB) was excited by a blue

laser and detected by a 610/20 filter. Hoechst 33342 was

excited by a UV laser and detected by a 450/50 filter. SYBR

Green I and CFDA-SE were excited by a blue laser and

detected by a 530/30 filter. DDAO-SE was excited by a red laser

and detected by a 660/20 filter. BD FACS Diva (BD Bios-

ciences, Oxford, UK) was used to collect 100,000 events for

each sample. FSC and SSC voltages of 423 and 198, respec-

tively, and a threshold of 2,000 on FSC were applied to gate on

the erythrocyte population. The data collected was then fur-

ther analyzed with FlowJo (Tree Star, Ashland, Oregon).

All experiments were carried out in triplicate and the

data is presented as the mean � standard error of the mean.

GraphPad Prism (GraphPad Software, La Jolla, CA) was used

to plot parasitemia data generated and carry out statistical

analysis.

Microscopy

Standard blood smear microscopy was performed to

determine parasitemia. In brief, a small aliquot of culture was

smeared on a glass slide, fixed with 100% methanol, and

stained with 10% Giemsa solution (Sigma-Aldrich, Dorset,

UK). Parasitemia was determined by counting the number of

parasitized red blood cells (pRBC) per 1,000 total red blood

cells (RBC) examined by oil immersion with a Leica DME

microscope (Leica Microsystems, Milton Keynes, UK). All par-

asitemia represented were the average of three replicates.

Fluorescence microscopy was performed on cells stained

with Hoechst 33342, SYBR Green I, CFDA-SE, and/or DDAO-

SE, as described above. Cells were examined by oil immersion

with either a Leica DM2500 microscope (Leica Microsystems,

Milton Keynes, UK) or a Zeiss LSM510 laser scanning system

(Carl Zeiss, Welwyn Garden City, UK). Images were captured

using either Leica LAS AF (Leica Microsystems, Milton Key-

nes, UK) with a Leica DFC420C camera (Leica Microsystems,

Milton Keynes, UK) or Zeiss LSM Image Browser (Carl Zeiss,

Welwyn Garden City, UK).

Invasion Assay and Enzymatic Treatment

of Human Erythrocytes

Invasion assays were carried out in round-bottom 96-well

plates, with a culture volume of 100 lL per well at a hemato-

crit of 2%. Plates were incubated inside an incubator culture

chamber (VWR, Lutterworth, UK), gassed with 1% O2, 3%

CO2, and 96% N2, and kept at 378C for 48 h.

Erythrocytes labeled with either CFDA-SE or DDAO-SE

as described earlier were pelleted and washed with incom-

plete media. The pellet was resuspended to 2% hematocrit

with incomplete medium and aliquoted into individual

microfuge tubes. Neuraminidase from Vibrio cholerae

(Sigma-Aldrich, Dorset, UK) was added to the appropriate

tubes to obtain a final concentration of 20 mU/mL, and all

of the tubes were incubated under rotation at 378C for 1 h.

The cell suspensions were pelleted and washed with incom-

plete media. The pellets were then resuspended to 2% he-

matocrit with incomplete medium. Trypsin (Sigma-Aldrich,

Dorset, UK) or chymotrypsin (Sigma-Aldrich, Dorset, UK)

was added to the appropriate tubes to obtain a final concen-

tration of 50 lg/mL (low trypsin) or 1 mg/mL (high trypsin

and chymotrypsin), and all of the tubes were incubated

under rotation at 378C for 1 h. The cell suspensions were

pelleted and washed twice with incomplete media. The pel-

lets were then resuspended to 2% hematocrit with complete

medium, before being added to the culture plate. pRBC

were then added to each well and the well suspension mixed

before incubation for 48 h. At the end of the incubation pe-

riod, RBC were harvested and pRBC were stained as

described earlier. Data collection and statistical analysis were

carried out as described earlier.

Detailed Standard Operating Procedures for all invasion

assays are available at http://www.sanger.ac.uk/research/

projects/malariaprogramme-rayner/ (Resources section).

RESULTS

Detection of pRBC by Flow Cytometry Using

Different Fluorescent Dyes

To develop an assay with the highest sensitivity, several

fluorescent dyes were tested under different staining and treat-

ment conditions for their ability to discriminate between para-

sitized red blood cells (pRBC) and uninfected RBC and to

yield accurate and reproducible parasitemia counts. As shown

in Figure 1a, staining uninfected RBCs with either SYBR Green

I or EB resulted in a low level of background, which could be

removed by including an RNase treatment step (Fig. 1b). By

contrast, Hoechst 33342 staining yielded minimal background

in uninfected RBCs (Fig. 1a). All three dyes identified a popu-

lation of DNA containing cells (Fig. 1b), which were con-

firmed as pRBC using fluorescence microscopy (Supporting

Information Fig. S1). However, EB staining of pRBC was at a

significantly lower intensity than Hoechst 33342 and SYBR

Green I under these and all other conditions tested (data not

shown), making discrimination between uninfected and

infected RBC less robust. Ethidium bromide staining, while

used in some assays (3), was therefore not as effective in this
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case as Hoechst 33342 and SYBR Green I for quantitating

pRBC and was excluded from further development.

To validate the use of either dye in the determination of

parasitemia, the accuracy of the flow cytometry counts was

compared with counts generated from Giemsa-stained thin

smears, the traditional gold standard for parasitemia calcula-

tions. A culture of Dd2 strain P. falciparum parasites was seri-

ally diluted and the resulting parasitemia measured in tripli-

cate by flow cytometry, using either Hoechst 33342 or SYBR

Green I, as well as by microscopy. With each fluorescent dye,

the flow cytometry-based method provided reproducible

counts that correlated well (r2 5 0.9833 for Hoechst 33342

and r2 5 0.9888 for SYBR Green I) with those of the micros-

copy-based method (Fig. 2). Variability between replicates was

routinely lower in flow cytometry-based counts (vertical error

bars in Fig. 2) than in microscopy-based counts (horizontal

error bars in Fig. 2), reflecting the high number of events

counted in flow analysis and the elimination of observer-gen-

erated errors inherent in microscopy. These and other

repeated tests confirm that both Hoechst 33342 and SYBR

Green I produce reproducible parasitemia counts by P. falcipa-

rum, although in the case of SYBR Green I, an RNase treat-

ment step is required to minimize background.

Labeling of RBC with Fluorescent Dyes

As described earlier, phenotyping erythrocyte invasion is

distinct from phenotyping P. falciparum growth because it

requires not only counting RBC that have been invaded but

Figure 1. Staining of pRBC with fluorescent DNA-binding dyes. pRBC were detected by flow cytometry after staining with either 10 lg/mL
EB, 2 lM Hoechst 33342, or 1:5,000 SYBR Green I. a: Uninfected RBC and pRBC were directly stained with the DNA dyes. b: Uninfected RBC

and pRBC were fixed, permeabilized, and treated with RNase before staining with the DNA dyes.
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also distinguishing which RBC have been invaded—target

RBC (e.g., RBC from specific genetic backgrounds, or that

have been enzyme treated) or RBC that are present in the do-

nor P. falciparum culture. To investigate the applicability of

using fluorescent labels to discriminate between target and do-

nor cells, we tested a wide range of fluorescent cell labels for

their ability to label RBC. For the assay to be successful, the

fluorescent label must not interfere with parasite invasion or

early development, so although membrane labeling dyes such

as PKH26 and FITC were tested, particular attention was given

to dyes that label cells cytoplasmically and have been shown

not to interfere with cell development in other contexts. RBC

could readily be labeled with two amine-reactive fluorescent

dyes that fit these criteria, CFDA-SE and DDAO-SE. These

dyes are membrane permeable but become impermeable after

they have entered cells due to cellular esterase activity and a

succinimidyl ester group that is able to form covalent attach-

ments to primary amines found in proteins (18). Incubation

of RBC with either CFDA-SE or DDAO-SE effectively labeled

the whole population, with no detectable unlabelled RBC, a

critical consideration for sensitivity (Supporting Information

Fig. S2). After coincubation of labeled and unlabeled RBC for

48 h at 378C, the two populations remained distinct (Fig. 3),

indicating that no leakage occurred between labeled and unla-

beled RBC. Both dyes are therefore theoretically compatible

with a phenotyping assay that involves coincubation of labeled

and unlabeled RBC for 48 h during P. falciparum cultivation.

Figure 2. Accuracy of flow cytometry in determining parasitemia.

Correlation between parasitemia determined by flow cytometry,

using either Hoechst 33342 (direct staining) or SYBR Green I

(staining post RNase treatment), and by light microscopy, using

Giemsa staining, for a serial dilution of a Dd2 parasite culture.

Standard error bars are represented on the horizontal axis for mi-

croscopy counts and vertical axis for flow cytometry counts.

Figure 3. Labeling of target RBC with fluorescent dyes. RBC were

labeled with either 20 lM CFDA-SE or 10 lM DDAO-SE and coin-

cubated with an approximately equal quantity of unlabeled RBC

for 48 h at 1378C under standard P. falciparum culture conditions.

RBC were then harvested and fluorescence detected either by

confocal microscopy (top panels) or flow cytometry (bottom

panels).
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Fluorescent Labeling Has a Minimal Impact on the

Ability of P. falciparum to Invade RBC

To test whether CFDA-SE or DDAO-SE impacted the

ability of P. falciparum to invade RBC, labeled RBC were incu-

bated for 48 h with unlabeled Dd2-infected pRBC, synchro-

nized at the ring stage of development, to allow all parasites to

mature, egress, and reinvade either labeled target RBC or unla-

beled RBC present in the donor culture population. Parasites

were detected using Hoechst 33342 or SYBR Green I staining,

by both fluorescence microscopy and flow cytometry. Labeled

RBC that had been invaded by P. falciparum parasites were

readily identifiable by microscopy, and quantification of inva-

sion into labeled and unlabeled RBC showed no impact of

CFDA-SE or DDAO-SE labeling on invasion efficiency (Fig.

4a). By contrast, experiments with other dyes produced a clear

inhibitory effect, particularly cell surface labels such as PKH26

and 67 (data not shown), presumably because they reduce

RBC recognition and invasion.

Invasion rates were tested at a range of initial parasitemia,

and optimum reinvasion was obtained with lower initial para-

sitemia, with a parasitemia between 0.5 and 1% providing the

best compromise in term of reinvasion rate versus final para-

sitemia (Fig. 4b). By contrast, the availability of labeled RBC

had little effect on the final parasitemia, as varying the ratio

between labeled and unlabeled cells showed only a minor

impact on the final parasitemia (Fig. 4c). This implies that the

number of RBC is not limiting in this assay, and that there is

no competition effect between labeled and unlabeled RBC,

again reinforcing the conclusion that these two fluorescent

labels do not affect invasion rates. A starting parasitemia of

Figure 4. P. falciparum invasion in labeled cells. Target RBC labeled with fluorescent dyes CFDA-SE or DDAO-SE were coincubated with

unlabeled P. falciparum Dd2 strain cultures, containing a mix of uninfected and pRBC, for 48 h under standard P. falciparum culture condi-

tions. Cultures were then harvested and stained with Hoechst 33342 or SYBR Green I, respectively. a: Cultures were observed by confocal

microscopy (first 4 panels) and flow cytometry (last panel on the right). In the microscopy pictures, yellow (Hoechst 33342) and blue (SYBR

Green I) arrows point to parasites detected inside unlabeled RBC, whereas white arrows point to parasites detected inside fluorescently la-

beled RBC. In the dotplot representation of the data generated by flow cytometry, four populations can be readily distinguished: unlabeled,

uninfected RBC (lower left); labeled, uninfected RBC (lower right); unlabeled, infected RBC (upper left); and labeled, infected RBCs (upper

right). b: Effect of the starting parasitemia on the final parasitemia in labeled RBC. Parasitemia of DDAO-SE-labeled RBC was determined

by SYBR Green I staining using flow cytometry, for different starting parasitemia using donor unlabeled population with increasing para-

sitemia. c: Effect of the unlabeled to labeled RBC ratio on the final parasitemia in labeled RBC. Parasitemia of DDAO-SE-labeled RBC was

determined by SYBR Green I staining using flow cytometry, in a mixed unlabeled donor pRBC/label target RBC culture with a volume of

100 lL and a starting parasitemia of 1%.
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0.5�1% and a ratio of 2:1 labeled RBC to unlabeled pRBC

was selected as the best conditions to observe and quantitate

invasion in target RBC.

A Two-Color Assay to Phenotype Plasmodium
falciparum Erythrocyte Invasion

To validate this two-color flow cytometric assay, we used

it to determine the invasion phenotypes of three laboratory

strains of P. falciparum, 3D7, Dd2, and HB3, which have all

had invasion profiles generated previously by multiple labora-

tories. CFDA-SE or DDAO-SE labeled RBC were treated with

neuraminidase, trypsin, or chymotrypsin in a standard man-

ner and coincubated for 48 h with pRBC. Parasitemia in

labeled RBC was then quantitated using Hoechst 33342 (in the

case of CFDA-SE labeled RBC) or SYBR Green I (in the case of

DDAO-SE labeled RBC). Invasion efficiency was calculated by

dividing the parasitemia observed in labeled RBC of a given

treatment group by the parasitemia observed in labeled RBC

of the mock-treated positive control. For all three strains, the

effects of enzyme treatment on invasion efficiency were identi-

cal using either CFDA-SE- and DDAO-SE-labeled RBC. For

example, Dd2 parasites are unable to invade neuraminidase-

treated RBC but are not affected by chymotrypsin treatment

(Fig. 5). The phenotypes for each strain were in keeping with

the phenotypes determined previously using slide microscopy-

based invasion assays: 3D7 is known to be neuraminidase-re-

sistant, trypsin- and chymotrypsin-sensitive, Dd2 chymotryp-

sin-resistant, neuraminidase- and trypsin-sensitive, and HB3

neuraminidase- and chymotrypsin-resistant, trypsin-sensitive

(19). Two-color flow cytometry-based phenotyping of P. fal-

ciparum erythrocyte invasion therefore recapitulates estab-

lished invasion profiles.

DISCUSSION

Flow cytometry is being increasingly used for the quanti-

tation and phenotyping of P. falciparum parasites, ranging

from parasite growth (12�14) to more complex phenotypes

such as oxidative stress (20). In this manuscript, an adaptable

platform for phenotyping P. falciparum erythrocyte invasion

using two-color flow cytometry is described. A primary aim of

the development process was to create a platform that could

be of the broadest utility in malaria research and therefore

across the widest range of instrumentation.

Using flow cytometry to quantitate parasite growth has

wide-ranging uses for high-throughput applications such as

drug discovery (21,22). Multiple fluorescent DNA dyes have

now been used to quantitate parasite growth, including EB

(3,23,24), Hoechst 33342 (12,24), SYBR Green I (13,17,21,22),

and SYTOX Green (14). In the course of testing dyes for the

development of this invasion phenotyping platform, these as

well as other options were considered (Vybrant DyeCycle

Green, Vybrant DyeCycle Ruby, DRAQ5, LDS751, SYBR Safe,

data not shown), but Hoechst 33342 and SYBR Green I

yielded the strongest fluorescence and clearest separation of

infected and uninfected red blood cells. Of the two com-

pounds, Hoechst 33342 has the significant advantage of pro-

ducing minimal background. By contrast, the advantage of

SYBR Green I is its stimulation by a 488 nm laser that is more

standard across all ranges of instrumentation, including less

expensive benchtop models that use solid state lasers. How-

ever, with SYBR Green I staining, an additional step of RNase

treatment is necessary to completely eliminate background in

uninfected RBC, presumably due to low-level binding of SYBR

Green I to ribosomal and mRNA present in mature RBC (25).

This background certainly does not prevent the use of SYBR

Green I for quantitation without RNase treatment (17), but

omitting this step may have an effect on sensitivity at low par-

asitemia.

While using fluorescent DNA dyes for quantitation of P.

falciparum growth is now common, scoring growth is not suf-

ficient to phenotype erythrocyte invasion, which requires a

distinction between parasites that have invaded target RBC of

interest from those that have invaded donor RBC present in

the starting culture. The assay presented here uses fluorescent

labels and two-color flow cytometry to distinguish invasion

into target and donor RBC. By contrast, the current standard

approach to phenotyping invasion is not to label target RBC

but instead to pretreat the donor P. falciparum cultures with a

combination of enzymes designed to prevent all invasion into

Figure 5. Invasion phenotypes of three laboratory strains of P. fal-
ciparum. Unlabeled pRBC were incubated with CFDA-SE- or

DDAO-SE-labeled RBC, at an unlabeled-to-labeled ratio of 1:2 and

a starting parasitemia of 1%. After 48 h, parasites were stained

with Hoechst 33342 or SYBR Green I, respectively, and final para-

sitemia in the target population was determined by gating on the

fluorescently labeled RBC population using flow cytometry. Inva-

sion efficiencies were determined as a percentage of the final par-

asitemia of a mock-treated-labeled positive control RBC group.

ORIGINAL ARTICLE

Cytometry Part A � 77A: 1067�1074, 2010 1073



uninfected donor RBC (15). This approach is certainly effec-

tive and is in wide use (4,15,16) but inevitably involves multi-

ple manipulations of the starting culture. Minimizing parasite

handling is clearly a desirable feature of any phenotyping

approach and has particular relevance when phenotyping

recently adapted or even nonadapted field isolates, which are

not as robust as commonly used lab strains. In addition to

sample handling issues, pretreatment of the starting culture

exposes the P. falciparum culture to enzymes present in non-

physiological buffers, such as neuraminidase which is often

present at low pH. Exposing P. falciparum cultures to neur-

aminidase at concentrations widely used in pretreatment pro-

tocols can have an impact on parasitemia, which may impact

the dynamic range of pretreatment-based assays (Supporting

Information Fig. S3). Finally, multiple enzyme treatment of

the donor culture is not always 100% effective in preventing

invasion, and low levels of invasion can be observed even in

double treated cells in invasion assays, which may decrease

sensitivity in an assay depending on pretreatment of donor

cultures (15,26).

The two-color flow cytometry approach described here

avoids many of these concerns. It requires no manipulation of

the starting P. falciparum culture other than dilution to the

desired parasitemia, it avoids exposure of the culture to any-

thing other than P. falciparum growth medium, and it maxi-

mizes sensitivity by counting only invasion events into target

enzyme-treated RBC. A similar approach has been used pre-

viously (3) combining FITC labeling with EB staining. How-

ever, FITC predominantly labels the cell surface, which in our

experience has a slight inhibitory effect on invasion, again

reducing assay sensitivity (data not shown). CFDA-SE and

DDAO-SE have the advantages of labeling cells cytoplasmi-

cally, and competition experiments showed that these have no

effect on parasite invasion. By trialing a number of fluorescent

dyes, two DNA dyes and two cell labels were identified as func-

tional for the assay, allowing a combinational approach to

phenotyping depending on the characteristics of the available

machinery. This assay has clear applications to measure the

quantitative impact of experimental or natural genetic varia-

tion in host or parasite on erythrocyte invasion, and could be

used in genotype�phenotype association studies. It could also

be applied to high throughput screening approaches for inva-

sion-inhibitory compounds, although care would need to be

taken regarding any fluorescent properties of inhibitors that

could interfere with the sensitivity of the assay.
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